
LREC-COLING 2024, pages 5376–5390
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

5376

DrBenchmark: A Large Language Understanding Evaluation
Benchmark for French Biomedical Domain

Yanis Labrak∗1,2, Adrien Bazoge∗3,4, Oumaima El Khettari4
Mickael Rouvier1, Pacôme Constant dit Beaufils5, Natalia Grabar6, Béatrice Daille4

Solen Quiniou4, Emmanuel Morin4, Pierre-Antoine Gourraud3 and Richard Dufour1,4
1LIA, Avignon Université 2Zenidoc

3Nantes Université, CHU Nantes, Clinique des données, INSERM, CIC 1413, F-44000 Nantes, France
4Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

5Nantes Université, CHU Nantes, Service de Neuroradiologie diagnostique et
interventionnelle, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France

6UMR 8163 – STL CNRS, Université de Lille
{first.last}@{univ-avignon.fr, univ-nantes.fr, chu-nantes.fr, univ-lille.fr}

Abstract
The biomedical domain has sparked a significant interest in the field of Natural Language Processing (NLP), which
has seen substantial advancements with pre-trained language models (PLMs). However, comparing these models
has proven challenging due to variations in evaluation protocols across different models. A fair solution is to aggregate
diverse downstream tasks into a benchmark, allowing for the assessment of intrinsic PLMs qualities from various
perspectives. Although still limited to few languages, this initiative has been undertaken in the biomedical field, notably
English and Chinese. This limitation hampers the evaluation of the latest French biomedical models, as they are either
assessed on a minimal number of tasks with non-standardized protocols or evaluated using general downstream
tasks. To bridge this research gap and account for the unique sensitivities of French, we present the first-ever
publicly available French biomedical language understanding benchmark called DrBenchmark. It encompasses
20 diversified tasks, including named-entity recognition, part-of-speech tagging, question-answering, semantic
textual similarity, and classification. We evaluate 8 state-of-the-art pre-trained masked language models (MLMs) on
general and biomedical-specific data, as well as English specific MLMs to assess their cross-lingual capabilities. Our
experiments reveal that no single model excels across all tasks, while generalist models are sometimes still competitive.

Keywords: NLP evaluation, Benchmarking, Medical domain, French language, Transformers

1. Introduction

For the past few years, the field of Natural Lan-
guage Processing (NLP) has witnessed major
breakthroughs, particularly in the area of language
modeling. Newer approaches such as the self-
attention mechanism (Vaswani et al., 2017), Sparse
Transformer (Child et al., 2019), and Replaced To-
ken Detection (Clark et al., 2020) have emerged.
These advancements have enabled the application
of language models pre-trained on large corpora
of textual data to a wide range of NLP tasks.

The evaluation of proposed models and ap-
proaches is an essential step in verifying their qual-
ity and performance. In the context of pre-trained
language models (PLMs), this validation typically
involves assessing their performance on targeted
downstream tasks. This task-selection process is
crucial, as the performance of models can vary
depending on the chosen ones. Consequently, a
model that performs well in one context may deliver
disappointing results in another one. To address
this issue and validate the models’ generalizabil-
ity, evaluation benchmarks have emerged, typically
encompassing diverse sets of tasks. Hence, the

availability of evaluation benchmarks plays a vital
role in driving continuous progress, fostering the de-
velopment of community members, and facilitating
fair comparison between models.

While numerous open benchmarks exist for gen-
eral tasks in NLP across multiple languages, the
biomedical field remains an area with relatively few
proposed benchmarks, mainly for English and Chi-
nese, facilitating the availability of many biomedical
models in these two languages. Even if the gap in
other languages is beginning to narrow with new
specialized models, the development of evaluation
platforms has been comparatively slower.

Although the French language is generally con-
sidered as well-endowed, it is notably lacking in
evaluation resources within the biomedical field. To
address this issue, we introduce DrBenchmark, the
first comprehensive open benchmark for the French
biomedical domain, comprising 20 diverse tasks.
These tasks encompass part-of-speech (POS) tag-
ging, named-entity recognition (NER), classifica-
tion, question-answering (QA), and semantic tex-
tual similarity (STS).

We also perform a quantitative study of 8 pre-
trained state-of-the-art masked language models
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(MLMs) with different configurations (languages
and domains) on DrBenchmark. Our in-depth anal-
ysis integrates a comparison of these models’ per-
formance, fine-tuning with limited data and word
tokenization. Our main contributions are:

• DrBenchmark, an original evaluation frame-
work for French biomedical NLP domain ag-
gregating a large set of 20 diversified, proven
and challenging tasks.

• A quantitative study using our proposed
biomedical benchmark on a wide range of
8 MLMs based on varied architectures, data
sources and training strategies.

• The release under CC BY-SA 4.0 license
on HuggingFace1 of a new open biomedical
dataset with clinical cases manually annotated
into the 22 International Classification of Dis-
eases 10th Revision (ICD-10) categories.

• A modular, reproducible and easily customiz-
able automated protocol using identical train-
ing and evaluation scripts allowing a simple
and fair comparison, with, as input, only the
evaluated language models. DrBenchmark is
freely available under MIT license on GitHub,
HuggingFace and summarized as a leader-
board on the website2.

The paper is organized as follows: Section 2
briefly introduces historical NLP benchmarks, in-
cluding biomedical ones. Section 3 presents our
proposed benchmark for French biomedical do-
main, with a focus on the downstream tasks. Sec-
tion 4 presents the experimental protocol while Sec-
tion 5 details the results and provides an analysis
of the studied pre-trained models. Section 6 finally
concludes the work and opens some perspectives.

2. Related work

In the recent years, several NLP open benchmarks
have been created to facilitate direct comparison
between proposed approaches. Among the earli-
est benchmarks, DecaNLP (McCann et al., 2018)
and GLUE (Wang et al., 2018), focused on general
English language understanding tasks rather than
being specific to a particular domain. Thus, GLUE
gathers nine tasks including text classification (lin-
guistic acceptability, sentiment analysis, etc.), se-
mantic analysis (paraphrase verification, sentence
similarity, etc.), QA, coreference detection, and nat-
ural language inference (NLI). Following a similar
concept, the French counterpart to GLUE, known
as FLUE (Le et al., 2020), consists of 7 general-
domain tasks in French, covering areas such as

1https://huggingface.co/DrBenchmark
2https://github.com/DrBenchmark/DrBenchmark

text classification, paraphrasing, NLI, parsing, and
word sense disambiguation.

In the case of specialized domains, general
benchmarks may not adequately evaluate the per-
formance of in-domain models. Specifically, within
the biomedical domain, only few benchmarks have
been proposed, and they primarily focus on few lan-
guages. For instance, platforms like BLURB (Gu
et al., 2021) and BLUE (Peng et al., 2019) pre-
dominantly offer benchmarks for English, while
CBLUE (Zhang et al., 2022a) caters to the Chinese
language. To provide more specific information,
BLURB integrates 13 tasks, including NER, infor-
mation and relation extraction, sentence similarity,
text classification, and QA. BLUE encompasses 10
tasks, such as NER, sentence similarity, relation
extraction, text classification, and inference. On the
other hand, CBLUE covers 8 tasks, including NER,
information extraction, text and intent classification,
sentence similarity, and query relevance.

To our knowledge, aside the multilingual bench-
mark BigBIO (Fries et al., 2022) which includes
only 4 corpora for French and is initially intended
for generative text completion under zero-shot sce-
nario, no large benchmark specialized in the French
biomedical field exists. This makes the comparison
of recent specialized models, such as (Labrak et al.,
2023; Touchent et al., 2023; Copara et al., 2020;
Berhe et al., 2023), extremely challenging.

3. DrBenchmark Overview

Our proposed benchmark comprises 20 French
biomedical language understanding tasks, one of
which is specifically created for this benchmark.
The descriptions and statistics of these tasks are
presented in Table 1. DrBenchmark encompasses
the following overall aspects:

1. A variety of tasks with different require-
ments and objectives: Part-of-Speech (POS)
tagging, Multi-class, Multi-label and Intent clas-
sification, Named-Entity Recognition (NER),
Multiple-Choice Question-Answering (MCQA),
and Semantic Textual Similarity (STS).

2. A diverse range of data origins: Scientific
literature, clinical trials, clinical cases, speech
transcriptions, and more as described in Ta-
ble 2.

Please note that within DrBenchmark, we include
classical tasks like NER and POS tagging, as well
as more specific and challenging tasks like MCQA
and multi-label classification. In Section 3.1, we
provide an overview of the different French down-
stream tasks, while, in Section 3.2, we offer insights
into the pipeline and its reproducibility.

https://huggingface.co/DrBenchmark
https://github.com/DrBenchmark/DrBenchmark
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Dataset Task Metric Train Validation Test License
CAS POS tagging SeqEval F1 2,653 379 758 DUA
ESSAI POS tagging SeqEval F1 5,072 725 1,450 DUA

QUAERO NER - EMEA SeqEval F1 429 389 348 GFDL 1.3
NER - MEDLINE SeqEval F1 833 832 833 GFDL 1.3

E3C NER - Clinical SeqEval F1 969 140 293 CC BY-NC
NER - Temporal SeqEval F1 969 140 293 CC BY-NC

MorFITT Multi-label Classification Weighted F1 1514 1,022 1,088 CC BY-SA 4.0

FrenchMedMCQA Question-Answering Hamming / EMR 2,171 312 622 Apache 2.0
Multi-class Classification Weighted F1 2,171 312 622 Apache 2.0

Mantra-GSC
NER - EMEA SeqEval F1 70 10 20 CC BY 4.0
NER - Medline SeqEval F1 70 10 20 CC BY 4.0
NER - Patents SeqEval F1 35 5 10 CC BY 4.0

CLISTER Semantic Textual Similarity EDRM / Spearman 499 101 400 DUA

DEFT-2020 Semantic Textual Similarity EDRM / Spearman 498 102 410 DUA
Multi-class Classification Weighted F1 460 112 530 DUA

DEFT-2021 Multi-label Classification Weighted F1 118 49 108 DUA
NER SeqEval F1 2,153 793 1,766 DUA

DiaMed Multi-class Classification Weighted F1 509 76 154 CC BY-SA 4.0

PxCorpus NER SeqEval F1 1,386 198 397 CC BY 4.0
Multi-class Classification Weighted F1 1,386 198 397 CC BY 4.0

Table 1: Descriptions and statistics of the 20 tasks included in DrBenchmark.

Dataset Sources
CAS Clinical cases

ESSAI Clinical trial protocols
QUAERO Drug leaflets & Biomedical titles

E3C Clinical cases
MorFITT Biomedical abstracts

FrenchMedMCQA Pharmacy Exam
Mantra-GSC Biomedical abstract / titles, drug labels, & patent

CLISTER Clinical cases
DEFT-2020 Clinical cases, encyclopedia & drug labels
DEFT-2021 Clinical cases

DiaMed Clinical cases
PxCorpus Drug prescriptions transcripts

Table 2: Data sources covered by each datasets.

3.1. Downstream tasks

DEFT-2020 (Cardon et al., 2020) contains clini-
cal cases, encyclopedia and drug labels introduced
in the 2020 edition of an annual French Text Min-
ing Challenge, called DEFT, and annotated for two
tasks: (i) textual similarity and (ii) multi-class classi-
fication. The first task aims at identifying the degree
of similarity within pairs of sentences, from 0 (the
less similar) to 5 (the most similar). The second
task consists in identifying, for a given sentence,
the most similar sentence among three sentences
provided.

DEFT-2021 (Grouin et al., 2021) is a subset of
275 clinical cases taken from the 2019 edition of
DEFT. This dataset is manually annotated in two
tasks: (i) multi-label classification and (ii) NER. The
multi-label classification task focuses on identifying
the patient’s clinical profile based on the diseases,
signs, or symptoms mentioned in the clinical cases.
The dataset is annotated with 23 axes from Chap-
ter C of the Medical Subject Headings (MeSH).
The second task involves fine-grained information

extraction for 13 types of entities (more detail in
Appendix B.7).

E3C (Magnini et al., 2020) is a multilingual
dataset of clinical cases annotated for the NER
task. It consists of two types of annotations (more
detail in Appendix B.4): (i) clinical entities (e.g.,
pathologies), (ii) temporal information and factual-
ity (e.g., events). While the dataset covers 5 lan-
guages, only the French portion is retained for the
benchmark. Since the dataset does not come with
pre-defined subsets, we performed a 70 / 10 / 20
random split, as described in Table 3.

Subset Train Validation Test
Clinical 87.38 % of layer 2 12.62 % of layer 2 100 % of layer 1

Temporal 70 % of layer 1 10 % of layer 1 20 % of layer 1

Table 3: Description of the sources for E3C.

The QUAERO French Medical Corpus (Névéol
et al., 2014), simply referred to as QUAERO in this
paper, contains annotated entities and concepts
for NER tasks. The dataset covers two text genres
(drug leaflets and biomedical titles), consisting of
a total of 103,056 words sourced from EMEA or
MEDLINE. 10 entity categories corresponding to
the UMLS Semantic Groups (Lindberg et al., 1993)
were annotated (more detail in Appendix B.3).. In
total, 26,409 entity annotations were mapped to
5,797 unique UMLS concepts. Due to the pres-
ence of nested entities in annotations, we simpli-
fied the evaluation process by retaining only an-
notations at the higher granularity level from the
BigBio (Fries et al., 2022) implementation, following
the approach described in Touchent et al. (2023),
which translates into an average loss of 6.06% of
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the annotations on EMEA and 8.90% on MEDLINE.
Additionally, considering that some documents from
EMEA exceed the maximum input sequence length
that most current language models can handle, we
decided to split these documents into sentences.

MorFITT (Labrak et al., 2023) is a multi-label
dataset annotated with medical specialties. It con-
tains 3,624 biomedical abstracts from PMC Open
Access. It has been annotated across 12 medical
specialties (more detail in Appendix B.5), for a total
of 5,116 annotations.

FrenchMedMCQA (Labrak et al., 2022) is
a Multiple-Choice Question-Answering (MCQA)
dataset for biomedical domain. It contains 3,105
questions coming from real exams of the French
medical specialization diploma in pharmacy, inte-
grating single and multiple answers. The first task
consists of automatically identifying the set of cor-
rect answers among the 5 proposed for a given
question. The second task consists of identifying
the number of answers (between 1 and 5) suppos-
edly correct for a given question.

Mantra-GSC (Kors et al., 2015) is a multilingual
dataset annotated for biomedical NER. From the 5
languages covered, we included only the French
subset in this benchmark. The dataset is obtained
from 3 sources which have been partitioned to
be evaluated separately by 2 annotation schemes
(more detail in Appendix B.6): Medline (11 classes),
and EMEA and Patents (10 classes). The sources
cover different types of documents (biomedical
abstracts/titles, drug labels and patents). To en-
sure evaluation consistency, we randomly split the
dataset into 3 subsets: 70% for training, 10% for
validation, and 20% for testing.

CLISTER (Hiebel et al., 2022) is a French clini-
cal cases Semantic textual similarity (STS) dataset
of 1,000 sentence pairs manually annotated by
several annotators, who assigned similarity scores
ranging from 0 to 5 to each pair. The scores were
then averaged together to obtain a floating-point
number representing the overall similarity. The ob-
jective of this dataset is to develop models that can
automatically predict a similarity score that closely
aligns with the reference score based solely on the
two sentences provided.

CAS (Grabar et al., 2018) comprises 3,790 clini-
cal cases that have been annotated for POS tag-
ging with 31 classes using automatic annotations
through Tagex 3, with an evaluation conducted by
comparing the automatic outputs against manual

3https://allgo.inria.fr/app/tagex

annotations. This evaluation yielded 98% precision.
Since the dataset does not come with predefined
subsets, we made the decision to randomly split it
into 3 subsets of 70%, 10% and 20% of the total
data for training, validation and test respectively.

ESSAI (Dalloux et al., 2021) contains 7,247 clin-
ical trial protocols annotated in 41 POS tags using
TreeTagger (Schmid, 1994). As the dataset was
not originally divided into 3 subsets, we applied the
same procedure as on the CAS corpus.

PxCorpus (Kocabiyikoglu et al., 2022) is a spo-
ken language understanding dataset in the domain
of medical drug prescription transcripts. It includes
4 hours (1,981 recordings) of transcribed and an-
notated dialogues focused on drug prescriptions.
The recordings were manually transcribed and se-
mantically annotated. The first task involves classi-
fying the textual utterances into one of the 4 intent
classes (prescribe, replace, negate, none). The
second task is a NER task where each word in a
sequence is classified into one of 38 classes, such
as drug, dose, or mode (more detail in Appendix
B.9).

DiaMed is an original dataset created specifically
for DrBenchmark. It comprises 739 new French
clinical cases collected from an open source journal
(The Pan African Medical Journal). The cases have
been manually annotated by several annotators,
one of which is a medical expert, into 22 chapters
of the International Classification of Diseases, 10th
Revision (ICD-10) (Wor, 2019). These chapters
provide a general description of the type of injury
or disease. To ease the annotation process, only
label at the chapter level were used (more detail in
Appendix B.8). The inter-annotator agreement be-
tween the 4 annotators has been computed for two
annotation sessions (see Table 4), with 15 different
clinical cases assessed per session.

Session 1 - 0 to 15 docs Session 2 - 15 to 30 docs
Annotator ID κ G κ G
Annotator 1 & 2 0.538 0.566 0.697 0.705
Annotator 1 & 3 0.682 0.709 0.697 0.705
Annotator 1 & 4 0.397 0.429 0.548 0.558
Annotator 2 & 3 0.311 0.357 1.000 1.000
Annotator 2 & 4 0.472 0.497 0.672 0.707
Annotator 3 & 4 0.311 0.354 0.672 0.707
Average 0.452 0.485 0.714 0.730

Table 4: Inter-annotator agreement statistics. κ is
referring to Kappa Cohen and G to Gwet’s AC1.

3.2. Reproducibility and usage
To facilitate the adoption of DrBenchmark and en-
sure consistency in implementations, we have de-

https://allgo.inria.fr/app/tagex
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Model Tokenizer Vocabulary Pretraining Corpus Text Size

French Generalist
CamemBERTa SentencePiece 32K CCNET from-scratch CCNET 4 GB
CamemBERT SentencePiece 32K OSCAR from-scratch OSCAR 138 GB
FlauBERT BPE 50K Wiki + Web crawl from-scratch Wiki + Web crawl 71 GB

French Biomedical
DrBERT-FS SentencePiece 32K NACHOS from-scratch NACHOS 7.4 GB
DrBERT-CP WordPiece 30K PubMed continual pretraining PubMed + NACHOS 21 + 4 GB
CamemBERT-bio SentencePiece 32K OSCAR continual pretraining OSCAR + biomed-fr 138 + 2.7 GB

Cross-lingual Generalist XLM-RoBERTa WordPiece 30K CC-100 from-scratch CC-100 2.5 TB
English Biomedical PubMedBERT WordPiece 30K PubMed from-scratch PubMed 21 GB

Table 5: Summary of the pre-training specifications for the different BERT-based models compared.

veloped a practical toolkit based on the Hugging-
Face Datasets library (Lhoest et al., 2021). This
toolkit includes data loaders that adhere to nor-
malized schemes and predefined data splits. It
also provides pre-training and evaluation scripts for
each of the tasks, utilizing the HuggingFace Trans-
formers (Wolf et al., 2020) and PyTorch (Paszke
et al., 2019) libraries. For further guidance, we have
integrated all the training details, including hyperpa-
rameters, in Appendix A. This information will help
users to reproduce and customize the experiments
conducted with DrBenchmark.

4. Experimental Protocol

In this section, we outline the experimental proto-
col used to compare the performance of existing
language models within DrBenchmark. To guaran-
tee fair comparison, we focus exclusively on pre-
trained masked language models (MLMs) in this
study. These MLMs are based on BERT-like archi-
tectures (Devlin et al., 2019).

We first provide a brief overview in Section 4.1
of the 8 pre-trained language models that were
studied: French generalist models (CamemBERT,
CamemBERTa and FlauBERT), cross-lingual gen-
eralist model (XLM-RoBERTa), French biomedical
models (DrBERT and CamemBERT-bio), and En-
glish biomedical model (PubMedBERT). Subse-
quently, in Section 4.2, we describe the evaluation
protocol employed to assess the performance of
these models.

4.1. Pre-trained Masked Language
Models

Table 5 summarizes the models and their parame-
ters compared on DrBenchmark.

CamemBERT (Martin et al., 2020) is a RoBERTa
based model for French, pre-trained from-scratch
on the generalist French 138 GB subset of OSCAR
corpus (Ortiz Suarez et al., 2019).

CamemBERTa (Antoun et al., 2023) is a DeBER-
TaV3 (He et al., 2023) based model pre-trained

from-scratch on around 30% of the French sub-
set of CCNET corpus (Wenzek et al., 2020) used for
CamemBERTCCNET , that had seen approximately
133 billion tokens during its pre-training.

FlauBERT (Le et al., 2020) is a BERT based
model pre-trained from-scratch using a subsam-
ple of 71 GB of the French Common Crawl and
Wikipedia corpora.

XLM-RoBERTa (Conneau et al., 2020) is a cross-
lingual RoBERTa based model trained on 116 lan-
guages, including French, by using 2.5 TB of the
CommonCrawl corpus.

PubMedBERT (Gu et al., 2021) is a BERT based
biomedical-specific model pre-trained from-scratch
on the 3.1 billion words of the PubMed corpus (21
GB). This is the only model for English.

DrBERT-FS and DrBERT-CP (Labrak et al.,
2023) are French biomedical MLMs built using a
from-scratch pre-training of RoBERTa (DrBERT-
FS) and continual pre-training of PubMedBERT
(DrBERT-CP) from the French public biomedical
corpus NACHOS (Labrak et al., 2023) integrating 1.08
billion words (7.4 GB) and 646 million words (4 GB)
respectively.

CamemBERT-bio (Touchent et al., 2023)
is a French biomedical language model
built using a continual pre-training of the
CamemBERTOSCAR−138GB model. It was trained
on the French public corpus biomed-fr (Touchent
et al., 2023) with 413 million words (2.7 GB) and a
wide range of data collected on the web.

4.2. Models evaluation
All the models are fine-tuned regarding a strict pro-
tocol using the same hyperparameters for each
downstream task. The reported results are ob-
tained by averaging the scores from four separate
runs, thus ensuring robustness and reliability. We
also report statistical significance computed using
Student’s t-test.
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French Generalist French Biomedical English Biomedical Cross-lingual Generalist
Dataset Task Baseline CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio PubMedBERT XLM-RoBERTa
CAS POS 23.50 95.53** 96.56** 95.22** 96.93 96.46** 95.22** 94.82** 96.91
ESSAI POS 26.31 97.38** 98.08** 97.05* 98.41 98.01** 97.39** 97.42** 98.34

QUAERO NER EMEA 8.37 62.68** 64.86** 74.86 64.11** 67.05** 66.59** 53.19** 64.47**
NER MEDLINE 4.92 55.25** 55.60** 48.98 55.82** 60.10 58.94 53.26** 51.12**

E3C NER Clinical 4.47 54.70** 55.53 47.61 54.45 56.55 56.96 38.34 52.87**
NER Temporal 21.74 83.45 83.22 61.64 81.48** 83.43 83.44 80.86** 82.6

MorFITT Multi-Label CLS 3.24 64.21** 66.28** 70.25 68.70** 70.99 67.53** 68.58** 67.28**

FrenchMedMCQA MCQA 21.83 / 11.57 28.53 / 2.25** 29.77 / 2.57** 27.88 / 2.09** 31.07 / 3.22** 32.41 / 2.89** 35.3 / 1.45 32.90 / 1.61** 34.74 / 2.09**
CLS 8.37 66.21 64.44** 61.88 65.38 66.22 65.79 65.41* 64.69*

MantraGSC
NER FR EMEA 0.00 29.14** 40.84** 66.20 66.23 60.88 30.63** 40.14** 52.64*
NER FR Medline 7.78 23.20** 22.55** 20.69 42.38 35.52 23.66** 27.53* 18.73*
NER FR Patents 6.20 00.00** 44.16** 31.47** 57.34 39.68 00.00** 4.51** 8.58**

CLISTER STS 0.44 / 0.00 0.55 / 0.33** 0.56 / 0.47** 0.50 / 0.29** 0.62 / 0.57** 0.60 / 0.49* 0.54 / 0.26** 0.70 / 0.78 0.49 / 0.23**

DEFT-2020 STS 0.49 / 0.00 0.59 / 0.58** 0.59 / 0.43** 0.58 / 0.51** 0.72 / 0.81* 0.73 / 0.86 0.58 / 0.32** 0.78 / 0.86 0.60 / 0.26**
CLS 14.00 96.31 97.96 42.37** 82.38 95.71* 94.78* 95.33* 67.66**

DEFT-2021 Multi-Label CLS 24.49 18.04** 18.04** 39.21 34.15** 30.04** 17.82** 25.53** 24.46**
NER 0.00 62.76** 62.61** 33.51 60.44** 63.43* 64.36 60.27** 60.32**

DiaMED CLS 15.36 30.40** 24.05** 34.08** 60.45 54.43** 39.57** 54.96** 26.69**

PxCorpus NER 10.00 92.89** 95.05** 47.57 95.88 71.38 93.08** 94.66** 95.80
CLS 84.78 94.41 93.95 93.45* 94.43 94.52 94.49 93.12 93.91

Table 6: Performance of the studied models over 4 runs. Best model in bold and second is underlined.
Statistical significance is computed using Student’s t-test: * stands for p < 0.05, ** stands for p < 0.01.

To ensure a fair and consistent comparison
among systems for sequence-to-sequence tasks
such as POS tagging and NER, we chose the Se-
qEval (Nakayama, 2018) metric in conjunction with
the IOB2 format and the training of all the models to
predict only the label on the first token of each word
as mentioned by Touchent et al. (2023). It provides
a tokenizer-agnostic evaluation and mitigates any
correlation between models’ performances and the
tokenization process.

For STS tasks, the models’ performance was
assessed using two metrics: (1) the Spearman
correlation, and (2) the mean relative solution dis-
tance accuracy (EDRM), as defined by the original
authors of the DEFT-2020 dataset (Cardon et al.,
2020).

5. Experiments and Results

In Section 5.1, we compare the results obtained
by each model within DrBenchmark, which permits
to position a wide range of state-of-the-art models
in the biomedical field across various NLP tasks.
Then, we propose to gain a comprehensive un-
derstanding of the models’ behavior by examining
areas such as low-resource fine-tuning scenarios
(Section 5.2) and the analysis of word tokenization
of the studied models (Section 5.3).

5.1. Comparison of models performance
The results of the 8 models are reported in Table 6
and compared to a baseline obtained by consider-
ing the majority class for all predictions. Overall,
although we might anticipate certain models to ex-
cel in all tasks, we discovered that no single model
outperforms the rest in all application scenarios.

Interestingly, most of the models examined man-
age to secure the top position in at least one of the
French biomedical downstream tasks studied. The
only exception pertains to the cross-lingual general-
ist model (XLM-RoBERTa), which manages to reach
the second-best position on several tasks.

Despite this unexpected outcome, we ob-
serve that French biomedical language models
(DrBERT-FS, DrBERT-CP, CamemBERT-bio), presumed
to be the most aligned with the nature of the
data of the benchmark, exhibit indeed superior
performance across many tasks. More precisely,
DrBERT-FS achieves the highest performance in 8
tasks, DrBERT-CP in 5 tasks, and CamemBERT-bio in
2 tasks. This indicates that domain and language-
specialized models achieve the best performance
in up to 75% of the DrBenchmark downstream
tasks.

Biomedical vs. Generalist. The nature of the
data appears to have an influence. General-
ist models (CamemBERT, CamemBERTa, FlauBERT and
XLM-RoBERTa) are more suitable for tasks that re-
quire extensive linguistic knowledge but may not
perform as well as specialized models nor even
reach their level of performance. We observe that
all generalist models obtain better performance
only on 4 out of the 20 tasks, but still remain com-
petitive on most tasks. Furthermore, our experi-
ments with DrBERT-FS indicate that biomedical mod-
els may require less pre-training data compared to
generalist ones. However, it is important to note
that this observation requires further confirmation.
In some tasks, biomedical models that undergo con-
tinual pre-training from a generalist model, such as
CamemBERT-bio, can prove to be the most effective,
underscoring the value of pre-training on generalist
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Figure 1: Performance with varying training subset sizes (25%, 50%, 75% and 100%). Results are
reported on the full test set.

datasets.

From-scratch vs. Continual Pre-Training.
DrBERT-CP and CamemBERT-bio, pre-trained from
PubMedBERT and CamemBERT respectively, demon-
strate improved performance compared to their
initial models. Notably, DrBERT-CP outperforms
CamemBERT-bio in 15 out of 20 tasks. These find-
ings suggest that when it comes to continual pre-
training, starting with a specialized model in the
specific domain (here, PubMedBERT) may be a better
choice than a generalist model (here, CamemBERT),
even with different languages. Additionally, we ob-
serve that DrBERT-FS achieves the highest perfor-
mance in 8 tasks, suggesting that starting from-
scratch can be a competitive strategy compared to
continual pre-training.

French vs. Other language. French models
generally achieve better performance compared
to English or multilingual ones. When considering
the English PubMedBERT model, we observe that its
performance in most tasks is comparable to that
of the French models, with the exception of NER
tasks where French models demonstrate superior-
ity. Thus, we observe that the language appears to
be less prominent when utilized in domain-specific
tasks, such as those in the biomedical field.

RoBERTa vs. DeBERTaV3 architectures. De-
spite being trained on only 30% of the pre-training
data used by CamemBERTCCNET , CamemBERTa
achieves identical or better performances in 68%
of the tasks (12 out of 20), benefiting from the De-
BERTaV3 architecture in domain-specific scenar-
ios. However, all the models based on CamemBERT

face difficulties in corpora with limited amount of
data, such as MantraGSC Patents, where they fail
to generate labels other than ’O’. On the other hand,
in the same low-resource scenarios, CamemBERTa
models exhibit greater robustness and achieve su-
perior performance. The architecture on which the
models are based therefore seems to play a role in
the performance obtained.

5.2. Impact of fine-tuning with limited
data

Unlike the process of training language models, the
fine-tuning approach involves utilizing annotated
data to adapt a pre-trained language model for solv-
ing specific downstream tasks. In the previous sec-
tion, we observed that language models pre-trained
on medical data generally achieved better perfor-
mance on DrBenchmark compared to generalist
models trained on much larger datasets. However,
we now question the models’ ability to be effectively
applied to biomedical tasks when there is limited
fine-tuning training data available. For this purpose,
we conducted experiments by varying the amount
of training data during the fine-tuning process by
randomly choosing four percentages of the training
data: 25%, 50%, 75% and 100%. To make the
experiment as fair as possible, we did four runs for
each percentage, model and dataset combination.
The validation and test sets have not been changed
for the sake of comparison.

We observe that on certain datasets, some mod-
els capture information more quickly than others,
like in Figures 1b, 1f and 1a. Unsurprisingly, in
almost all scenarios, having the complete training
set yields better results than having only 25% of
it. However, we note few exceptions in Figures 1a
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French Generalist French Biomedical English Biomedical Cross-lingual Generalist
Dataset Task CamemBERT CamemBERTa FlauBERT DrBERT-FS DrBERT-CP CamemBERT-bio PubMedBERT XLM-RoBERTa
CAS POS 1.63 1.64 1.34 1.36 1.81 1.63 1.81 1.8
ESSAI POS 1.55 1.56 1.28 1.29 1.78 1.55 1.78 1.75

QUAERO NER EMEA 1.66 1.67 1.37 1.37 1.73 1.66 1.73 1.77
NER Medline 2.01 2.01 1.58 1.64 1.97 2.01 1.97 2.18

E3C NER FR Clinical 1.64 1.65 1.39 1.32 1.80 1.64 1.80 1.78
NER FR Temporal 1.63 1.63 1.38 1.31 1.80 1.63 1.80 1.76

MorFITT Multi-Label CLS 1.51 1.51 1.33 1.39 1.91 1.51 1.91 1.73

FrenchMedMCQA MCQA 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00
CLS 1.80 1.80 1.55 1.55 2.03 1.80 2.03 2.00

MantraGSC
NER FR EMEA 1.50 1.46 1.34 1.37 1.99 1.50 1.99 1.71
NER FR Medline 2.25 2.25 1.88 2.05 2.47 2.25 2.47 2.49
NER FR Patents 1.58 1.58 1.41 1.51 2.06 1.58 2.06 1.86

CLISTER STS 1.76 1.76 1.55 1.55 2.09 1.76 2.09 1.93

DEFT-2020 STS 1.43 1.43 1.31 1.45 1.92 1.43 1.92 1.64
CLS 1.31 1.32 1.20 1.23 1.75 1.31 1.75 1.51

DEFT-2021 CLS 1.70 1.71 1.48 1.51 2.05 1.70 2.05 1.90
NER 1.62 1.63 1.35 1.35 1.80 1.62 1.80 1.79

DiaMED CLS 1.66 1.67 1.45 1.46 1.99 1.66 1.99 1.88

PxCorpus NER 1.71 1.76 1.63 1.66 2.13 1.71 2.13 1.83
CLS 1.71 1.76 1.63 1.66 2.13 1.71 2.13 1.83

Average 1.67 1.67 1.43 1.47 1.90 1.67 1.90 1.85

Table 7: Average sub-word units per word for each model and dataset. For each task, the lowest sub-word
value is shown in bold, and the highest value is underlined. Models are grouped based on their tokenizer
type. Cells in green indicate the best model in terms of performance for the task, while cells in red indicate
the worst model.

and 1h with FlauBERT, where we observe the oppo-
site trend. For intermediate percentages, 50% and
75%, we observe a decrease in performance with
certain models, such as FlauBERT in Figures 1a
and 1g, and DrBERT-CP in Figures 1d and 1h. In
NER tasks (Figures 1a, 1d, 1f and 1g), DrBERT-FS
achieves the best performance in scenarios with
very little data, indicating good model robustness.

5.3. Analysis of word tokenization

Tokenizers play a crucial role in MLMs by utilizing
size-limited vocabularies to split texts into sub-units,
aiming to handle out-of-vocabulary (OOV) words.
Due to variations in the training data, vocabularies
differ across different models, as illustrated in Fig-
ure 2. As a result, tokenizers segment words in
distinct ways, yet remarkably achieve similar per-
formance levels as previously noted in Table 6.

So far, there has been a prevailing notion in the
community that excessive segmentation of words
in tokenization leads to a loss of morphological
form and semantic meaning, introducing noise and
adversely affecting performance (Church, 2020;
Hofmann et al., 2021; Bostrom and Durrett, 2020).
However, our experiments, as shown in Table 7, re-
veal that FlauBERT is the model with the least word
segmentation (1.43 in average), while DrBERT-CP
tends to have the highest average segmentation
(1.90 in average). Surprisingly, when comparing
the performance of these two models on the bench-
mark tasks, we observe that DrBERT-CP outper-
forms FlauBERT on 16 out of the 20 tasks, thus
contradicting previous conclusions drawn by the

Figure 2: Vocabularies inter-coverage matrix.

community. Table 14 in Appendix C provides some
examples of the tokenization done by each ana-
lyzed model, showcasing a list of commonly used
biomedical terms. Yet, tokenization, as it is cur-
rently done in MLMs, seems to play a minor role in
the performance of systems.

Table 8 summarizes the results obtained on av-
erage by the considered MLMs when aggregat-
ing the tasks into one of the five designated cate-
gories: POS, NER, MCQA, MCC (Multi-class clas-
sification), MLC (Multi-label classification), or STS
tasks. Upon analyzing the average performance by
task category, it becomes evident that the leading
model, DrBERT-FS, does not excel in tasks such as
MLC or STS. For example, the multilingual biomed-
ical model PubMedBERT demonstrates a notable ad-
vantage, with nearly 18 EDRM points ahead of
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CamemBERT-bio in the STS tasks.

Tasks

Models POS NER MCQA MCC* MLC* STS

CamemBERT 96.45 51.52 28.53 / 2.25 71.83 41.12 0.57 / 0.45

CamemBERTa 97.32 58.16 29.77 / 2.57 70.10 42.16 0.57 / 0.45

FlauBERT 96.13 51.85 27.88 / 2.09 57.94 54.73 0.54 / 0.40

DrBERT-FS 97.67 64.23 31.07 / 3.22 75.66 51.42 0.67 / 0.69

DrBERT-CP 97.23 59.84 32.41 / 2.89 77.72 50.51 0.66 / 0.67

CamemBERT-bio 96.30 53.06 35.30 / 1.45 73.65 42.67 0.56 / 0.29

PubMedBERT 96.12 46.93 32.90 / 1.61 77.20 47.05 0.74 / 0.82

XLM-RoBERTa 97.62 54.21 34.74 / 2.09 63.23 45.87 0.54 / 0.24

Table 8: Average results obtained by the differ-
ent MLMs for each type of task. MLC stands for
Multi-label classification and MCC for Multi-class
classification.

6. Conclusion

In this paper, we introduced DrBenchmark, the first
large language understanding benchmark tailored
for the French biomedical domain. We conducted a
qualitative evaluation of 8 state-of-the-art masked
language models (MLMs) on this comprehensive
benchmark, encompassing 20 diverse downstream
tasks. Our findings illuminate the limitations of
generalist models in tackling complex biomedical
tasks, emphasizing the importance of employing
domain-specific models to achieve peak perfor-
mance. While the French biomedical models excel
in most tasks, no single model emerges as univer-
sally superior. Remarkably, certain out-of-domain
models or models trained in different languages
exhibit superior performance in specific tasks and
maintain competitiveness in others.

In conclusion, we have observed that several
biomedical tasks in DrBenchmark exhibit relatively
poor performance, even when utilizing specialized
biomedical models. We postulate that the models
examined in this study, here state-of-the-art MLMs,
may not be the most effective choices for specific
tasks such as question-answering or multi-label
classification. In our future research, we intend
to shift our focus towards generative approaches,
such as LLaMA (Touvron et al., 2023), OPT (Zhang
et al., 2022b), or GPT-NeoX-20B (Black et al.,
2022), as well as their instruction-tuned counter-
parts (Iyer et al., 2023). These alternatives may
offer more suitable solutions for addressing these
types of tasks.
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Limitations

The quantitative study we conducted on the PLMs
requires further in-depth analysis to comprehend
the impact of different parameters. Firstly, we in-
vestigated the influence of tokenizers based on the
average number of sub-tokens they produce per
word. It is important to note that various tokeniza-
tion algorithms are employed, depending on the
model under examination. Therefore, it is neces-
sary to specifically assess the impact of these algo-
rithms on model construction. Additionally, the size
of the data has not been thoroughly investigated,
particularly the significance of the pre-training data
size, especially specialized data in the biomedical
field. Analyzing the influence and importance of the
amount of data used would be crucial for gaining
deeper insights.

Although the benchmark is easily reproducible
and customizable, it required a substantial amount
of computational power to execute all runs. We
utilized approximately 2,500 hours on V100 GPUs
from the Jean-Zay supercomputer to complete the
quantitative study. According to the Jean Zay super-
computer documentation 4, the total environmental
cost is estimated to be equivalent to 647,500 Wh or
36.9 kgCO2eq/kWh, based on the carbon intensity
of the energy grid mentioned in the BLOOM environ-
mental cost study conducted on Jean Zay (Luccioni
et al., 2022). While we acknowledge the significant
cost of our study, we believe it will enable the re-
search community to direct their future studies more
efficiently by providing a comprehensive overview
of the performance and behavior of existing models.
This will help prevent redundant evaluations of the
same models.
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Appendices

A. Hyperparameters

For the experiments, we utilize the following hyper-
parameters that yield optimal performance from the
models. To mitigate overfitting, we locally save the
best model based on its validation metric.

Hyper-parameter Value
Max sequence length 512
Epochs 20
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 9: Hyper-parameters for the question-
answering experiments.

Hyper-parameter Value
Max sequence length 512
Epochs 10 / 25 / 35
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 10: Hyper-parameters for the classification
experiments. The number of epochs is by default
10 except for DEFT-2020 (25 epochs) and MorFITT
(35 epochs).

Hyper-parameter Value
Max sequence length 512
Epochs 10
Batch size 16
Learning Rate 1e-5
Weight Decay 0.01

Table 11: Hyper-parameters for the POS tagging
experiments.

Hyper-parameter Value
Max sequence length 512
Epochs 30
Batch size 16
Learning Rate 2e-5
Weight Decay 0.01

Table 12: Hyper-parameters for the regression ex-
periments.

Hyper-parameter Value
Max sequence length 512
Epochs 15
Batch size 16
Learning Rate 1e-4
Weight Decay 0.01

Table 13: Hyper-parameters for the NER experi-
ments.
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B. Dataset Classes

B.1. CAS
INT, PRO:DEM, VER:impf, VER:ppre, PRP:det, KON, VER:pper, PRP, PRO:IND, VER:simp, VER:con,
SENT, VER:futu, PRO:PER, VER:infi, ADJ, NAM, NUM, PUN:cit, PRO:REL, VER:subi, ABR, NOM,
VER:pres, DET:ART, VER:cond, VER:subp, DET:POS, ADV, SYM and PUN.

B.2. ESSAI
INT, PRO:POS, PRP, SENT, PRO, ABR, VER:pres, KON, SYM, DET:POS, VER:, PRO:IND, NAM,
ADV, PRO:DEM, NN, PRO:PER, VER:pper, VER:ppre, PUN, VER:simp, PREF, NUM, VER:futu, NOM,
VER:impf, VER:subp, VER:infi, DET:ART, PUN:cit, ADJ, PRP:det, PRO:REL, VER:cond and VER:subi.

B.3. QUAERO
O, GEOG, PHEN, DISO, ANAT, OBJC, PHYS, PROC, DEVI, CHEM and LIVB

B.4. E3C
Clinical: O, and CLINENTITY

Temporal: O, EVENT, ACTOR, BODYPART, TIMEX3 and RML

B.5. MorFITT
microbiology, etiology, virology, physiology, immunology, parasitology, genetics, chemistry, veterinary,
surgery, pharmacology and psychology

B.6. MantraGSC
Medline: ANAT, PROC, CHEM, PHYS, GEOG, DEVI, LIVB, OBJC, DISO, PHEN and O.

EMEA and Patents: ANAT, PROC, CHEM, PHYS, DEVI, LIVB, OBJC, DISO, PHEN and O.

B.7. DEFT-2021
Multi-label Classification: immunitaire (immunology), endocriniennes (endocrinology), blessures (in-
jury), chimiques (chemicals), etatsosy (signs and symptoms), nutritionnelles (nutrition), infections (infec-
tions), virales (virology), parasitaires (parasitology), tumeur (oncology), osteomusculaires (osteomuscular
disorders), stomatognathique (stomatology), digestif (digestive system disorders), respiratoire (respiratory
system disorders), ORL (otorhinolaryngologic diseases), nerveux (nervous system disorders), oeil (eye dis-
eases), homme (male genital diseases), femme (female genital diseases), cardiovasculaires (cardiology),
hemopathies (hemic and lymphatic diseases), genetique (genertic disorders) and peau (dermatology).

Named-entity recognition: O, ANATOMY, DATE, DOSAGE, DURATION, MEDICAL EXAM, FRE-
QUENCY, MODE, MOMENT, PATHOLOGY, SOSY, SUBSTANCE, TREATMENT and VALUE

B.8. DiaMed
• A00-B99 Certain infectious and parasitic diseases

• C00-D49 Neoplasms

• D50-D89 Diseases of the blood and blood-forming organs and certain disorders involving the immune
mechanism

• E00-E89 Endocrine, nutritional and metabolic diseases

• F01-F99 Mental, Behavioral and Neurodevelopmental disorders

• G00-G99 Diseases of the nervous system
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• H00-H59 Diseases of the eye and adnexa

• H60-H95 Diseases of the ear and mastoid process

• I00-I99 Diseases of the circulatory system

• J00-J99 Diseases of the respiratory system

• K00-K95 Diseases of the digestive system

• L00-L99 Diseases of the skin and subcutaneous tissue

• M00-M99 Diseases of the musculoskeletal system and connective tissue

• N00-N99 Diseases of the genitourinary system

• O00-O9A Pregnancy, childbirth and the puerperium

• P00-P96 Certain conditions originating in the perinatal period

• Q00-Q99 Congenital malformations, deformations and chromosomal abnormalities

• R00-R99 Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified

• S00-T88 Injury, poisoning and certain other consequences of external causes

• U00-U85 Codes for special purposes

• V00-Y99 External causes of morbidity

• Z00-Z99 Factors influencing health status and contact with health services

B.9. PxCorpus
Intent classification: MEDICAL PRESCRIPTION, NEGATE, NONE and REPLACE

Named-entity recognition: O, A, CMA_EVENT, D_DOS_FORM, D_DOS_FORM_EXT, D_DOS_UP,
D_DOS_VAL, DOS_COND, DOS_UF, DOS_VAL, DRUG, DUR_UT, DUR_VAL, FASTING, FREQ_DAYS,
FREQ_INT_V1, FREQ_INT_V1_UT, FREQ_INT_V2, FREQ_INT_V2_UT, FREQ_STARTDAY, FREQ_UT,
FREQ_VAL, INN, MAX_UNIT_UF, MAX_UNIT_UT, MAX_UNIT_VAL, MIN_GAP_UT, MIN_GAP_VAL,
QSP_UT, QSP_VAL, RE_UT, RE_VAL, RHYTHM_HOUR, RHYTHM_PERDAY, RHYTHM_REC_UT,
RHYTHM_REC_VAL, RHYTHM_TDTE and ROA

C. Word tokenization

French Generalist French Biomedical English Biomedical Cross-lingual Generalist

Term CamemBERTa CamemBERT FlauBERT DrBERT-FS PubMedBERT XLM-RoBERTa
CamemBERT-bio DrBERT-CP

asymptomatique a-s-ym-pto-matique a-s-y-mp-to-matique as-ym-ptom-atique ✓ asympt-omat-ique as-y-mp-tomat-ique
blépharorraphie blé-phar-or-ra-phi-e blé-phar-or-ra-phi-e bl-é-phar-or-raph-ie blé-ph-ar-or-ra-ph-ie ble-pha-ror-ra-phi-e b-lép-har-orra-phi-e

bradycardie brad-y-cardi-e brad-y-cardi-e bra-dy-car-die ✓ brady-car-di-e bra-dy-card-ie
bronchographie bronch-ographie bron-ch-ographie bron-cho-graphie bronch-ographie bronch-ograph-ie bron-ch-ographie

bronchopneumopathie bronch-op-ne-um-opathie bron-cho-p-ne-um-opathie bron-chop-neu-mo-pathie bronchop-neumopathie bronch-op-neum-opath-ie bron-chop-ne-umo-pathi-e
dysménorrhée dys-mén-or-r-h-ée dys-mén-or-r-h-ée dys-mé-nor-rh-ée dys-m-énorrhée dysm-eno-rr-he-e dys-mén-or-r-hé-e

glaucome gla-uc-ome gla-uc-ome glau-come ✓ glauc-ome gla-u-come
IRM ✓ ✓ ✓ ✓ ir-m I-RM

kystectomie k-yst-ectomie ky-st-ectomie ky-st-ec-tomie kys-tectomie ky-st-ectom-ie ky-st-ecto-mie
neuroleptique neuro-le-p-tique neuro-le-p-tique neur-ol-ep-tique neur-oleptique neurol-ept-ique neuro-lep-tique

nicotine ✓ ✓ ✓ ✓ ✓ nico-tine
poliomyélite poli-om-y-élite poli-om-y-élite poli-omy-élite poli-omyélite poli-omyel-ite poli-om-y-é-lite

rhinopharyngite rh-ino-phar-y-ng-ite rhin-oph-ary-ng-ite rh-ino-phar-yn-gite rhin-opharyng-ite rhin-oph-aryng-ite r-hin-op-har-y-ng-ite
toxicomanie toxico-mani-e toxico-mani-e ✓ ✓ toxic-oman-ie toxic-om-anie

vasoconstricteur vas-oc-on-strict-eur vas-oc-on-strict-eur vas-o-cons-tri-cteur vasoconstric-teur vasoconstric-te-ur vaso-con-strict-eur

Table 14: Visual comparison of models’ tokenization on commonly used biomedical terms. A checkmark
indicates that the word is present as a complete token, while hyphens separate subword units.
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