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Abstract
Few-shot relation extraction (FSRE) can alleviate the data scarcity problem in relation extraction. However, FSRE
models often suffer a significant decline in performance when adapting to new domains. To overcome this issue,
many researchers have focused on domain adaption FSRE (DAFSRE). Nevertheless, existing approaches primarily
concentrate on the source domain, which makes it difficult to accurately transfer useful knowledge to the target
domain. Additionally, the lack of distinction between relations further restricts the model performance. In this paper,
we propose the domain-aware and co-adaptive feature transformation approach to address these issues. Specifically,
we introduce a domain-aware transformation module that leverages the target domain distribution features to guide
the domain-aware feature transformations. This can enhance the model’s adaptability across domains, leading
to improved target domain performance. Furthermore, we design co-adaptive prototypical networks to perform
co-adaptive feature transformation through a transformer mechanism. This results in more robust and distinguishable
relation prototypes. Experiments on DAFSRE benchmark datasets demonstrate the effectiveness of our method,
which outperforms existing models and achieves state-of-the-art performance.
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1. Introduction

Relation extraction (RE) is a fundamental task in
information extraction, aiming to identify semantic
relations between entities within a given text. It
has widespread applications in various fields (Li
et al., 2022b; Zhu et al., 2023; Yao and Lai, 2023).
However, RE models often suffer from data scarcity
problems due to the expensive labor required for
manual annotation. To alleviate this problem, many
researchers (Han et al., 2018; Gao et al., 2019)
(Soares et al., 2019) turn to the task of few-shot
RE (FSRE). FSRE involves classifying a query in-
stance by exploring only a few labeled examples.
Despite the remarkable progress, when adapting
to the new domain, the FSRE models’ performance
would decline significantly.

To solve the above problems, Gao et al. (Gao
et al., 2019) first introduced the task of domain
adaptation FSRE (DAFSRE). Compared to FSRE,
DAFSRE aims to effectively transfer knowledge
from the source domain to the target domain by
exploring a few labeled instances. Thus, the model
can use this knowledge to guide the RE in the tar-
get domain. As shown in Table 1, in the source
domain, the model needs to learn the measure of
similarity scores between each relation ("has part"
and "instance of") and query instance, then perform

classification based on these similarity scores. In
the target domain, this model should identify which
relation ("inheritance type of" or "causative agent
of") the query instance belongs to, with the help of
the learned measure ability in the source domain.

Current approaches for DAFSRE primarily rely
on meta-learning, which aims to train the model to
learn how to learn (Vinyals et al., 2016). It achieves
this by sampling few-shot classification tasks from
the source domain and optimizing the model to
perform well on the target domain. Therefore, the
model can acquire cross-domain knowledge and
leverage it to quickly adapt to the target domain
(Soares et al., 2019; Zhai et al., 2023; Liu et al.,
2023). However, these methods cannot effectively
develop the potentially exploitable knowledge, such
as the knowledge from the target domain which may
provide valuable insights for domain adaptation. To
this end, several scholars propose the adversar-
ial training-based methods (Wang et al., 2022; Li
et al., 2022a; Chen et al., 2023b), which suggests
leveraging unlabeled target domain data and con-
ducting adversarial training during meta-learning.
As these methods have been found to be unstable
sometimes (Sajeeda and Hossain, 2022) , several
studies (Zhang et al., 2022; Hu and Ma, 2022) pro-
pose the feature transformation-based approaches
to use feature-wise transformation layers for do-
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Table 1: An example of DAFSRE. The head and tail
entity are indicated by blue and red, respectively.

Source Domain (general domain)

Support
Set

(R1) has part

It is native to the
Americas, including
Central and South
America, and ...

(R2) instance of

14 singles claimed
the top spot, includ-
ing "Poker Face",
which started ...

Query
Set (R1) or (R2)?

... accolades includ-
ing Filmfare Awards
nominations for
Best Director and
Best Screenplay.

Target Domain (medical domain)

Support
Set

(R1) inheritance
type of

Tar syndrome is in-
herited in an autoso-
mal recessive man-
ner and results ...

(R2) causative
agent of

Rickettsioses are
caused by obligate
... within the genus
rickettsia, mainly ...

Query
Set (R1) or (R2)?

Malignant hyper-
thermia (mh) is an
autosomal dom-
inant metabolic
myopathy.

main adaption. The purpose of this method is to
enhance the source domain features by applying
affine transforms, which can simulate broader vari-
ations of feature distributions during the training
stage. These approaches can improve the cross-
domain learning ability of the model significantly.
More recently, the large language models (LLMs)
demonstrated great potential in few-shot learning
tasks (Brown et al., 2020), which achieve the best
results among numerous natural language process-
ing (NLP) benchmarks.

Although these methods have achieved a lot of
progress, there are still some unresolved issues
that require attention.

First, most existing methods implicitly instruct the
broadening of the feature distribution through ad-
versarial training (Tseng et al., 2019; Hu and Ma,
2022) or statistics information (Zhang et al., 2022)
to alleviate the domain adaption problem. However,
since these domain-agnostic methods primarily fo-
cus on the source domain, and sometimes the do-
main gap can be quite significant, they may not be
able to accurately transfer useful knowledge from
the source domain to the target domain. Conse-
quently, the model’s cross-domain generalization
ability cannot be effectively improved. As shown

(a) Domain-agnostic Fea-
ture Transformation

(b) Domain-aware Fea-
ture Transformation

Figure 1: The black, green, and brown triangles
correspond to source domain features, features
enhanced by domain-agnostic feature transforma-
tion and by domain-aware feature transformation.
The domain-agnostic feature transformation can
not broaden the feature to the target domain, which
makes less transferable knowledge being learned.

in Figure 1(a), these methods can only broaden
the features around the source domain and strug-
gle to align them with the target domain features
, which makes less useful and transferable knowl-
edge being learned. As for LLMs, despite their
substantial knowledge acquired from extensive cor-
pora, when adapting to some specialized domains,
they may experience severe model hallucinations
(Zhang et al., 2023b,a) due to their limited under-
standing of the domain-specific text. Therefore, the
model may perform poorly in the target domain.

Second, the current approaches usually concen-
trate solely on capturing the similarity information
between the query and support instances, then,
directly perform classification based on this infor-
mation. This may lead to misclassification when
there are confusing relations in the support set.
For instance, consider the source domain data pre-
sented in Table 1. A query instance containing the
keyword "including" may correspond to either the
relation classes "has part" or "instance of". In this
scenario, a model that exclusively focuses on cap-
turing the similarity information between the query
and support instances could potentially generate
a high similarity score for the query and both "has
part" and "instance of" relations. Consequently,
without learning the difference between the "has
part" and "instance of" relations, it could be chal-
lenging to determine the specific relation class of
the query instance.

To tackle these problems, this paper proposes
the Domain-aware and Co-adaptive Feature Trans-
formation (DCFT) approach. DCFT aims to mitigate
the domain gap and facilitate learning for distin-
guishing confusing relations. Figure 2 shows the
overall framework of DCFT. Specifically, DCFT com-
prises three components: the encoder, the Domain-
aware Transformation Module (DTM), and the Co-
adaptive Prototypical Networks (CPN). 1) The en-
coder is used to convert each word in a sentence
into a contextualized embedding. 2) The DTM uti-
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lizes the distribution feature of the target set in the
unsupervised target domain data to guide a domain-
aware feature transformation layer. This layer en-
hances the source domain data to make it align
more closely with the target domain. By doing so,
the model is effectively trained on the data related
to target domain features. Hence, more useful and
transferable knowledge can be learned, resulting
in better model performance in the target domain.
3) To emphasize the differentiation among support
relation classes, the CPN employs the Transformer
mechanism (Vaswani et al., 2017) to model interac-
tions among all samples in the support and query
sets. The intra-class aggregation layer and inter-
class adaptive layer in these networks can help the
model select informative instances and highlight
the key feature that aids in differentiating various
relation prototypes. Therefore, the model can ef-
fectively distinguish different classes.

In summary, the main contributions of this paper
are as follows:

• To accurately transfer knowledge from the
source to the target domain, we design a
domain-aware transformation module to lever-
age the target domain distribution information,
enhancing the model’s domain adaptability.

• We propose the co-adaptive prototypical net-
works to perform co-adaptive feature transfor-
mation through the transformer mechanism,
which helps to obtain distinguishable prototype
and query representations.

• Experimental results on the benchmark
datasets show that our approach significantly
outperforms the baseline models and achieves
state-of-the-art DAFSRE performance.

2. Task definition

DAFSRE aims to predict novel classes using only a
few labeled instances, where the domain of the test
set differs from the training set. The N -way-K-shot
setting is widely used to simulate low-resource RE
scenarios. This setting includes a support set S
and a query set Q. The support set S = {sik; i =
1, ..., N, k = 1, ...,K} consists of N novel classes,
each with a small number of labeled instances K.
The instances in Q = {qj ; j = 1, ..., R} need to
be classified using the given N × K support in-
stances. An auxiliary dataset Dtrain is provided to
train the encoder, which contains abundant general
classes, each with a large number of labeled in-
stances. Each instance in S, Q and Dtrain contains
a sentence with pre-annotated entities. It is impor-
tant to note that source and target domain relation
classes are disjoint to ensure the few-shot learning
scenarios. Furthermore, the unlabeled data from

the target domain T is provided, which may enable
us to explore some pertinent information specific
to the target domain. The goal of DAFSRE is to
optimize the following objective function:

L = − 1

R

∑
q∈Q

P (yq | S, q). (1)

3. Methodology

The overall framework is illustrated in Figure 2.
DCFT mainly consists of three components:
Encoder, Domain-aware Transformation Module
(DTM) and Co-adaptive Prototypical Networks
(CPN). In this section, we will present the details of
our proposed DCFT approach.

3.1. Encoder
A good feature representation is crucial for solving
tasks (Yao et al., 2023b; Chen et al., 2023a; Yao
et al., 2023a). The encoder is used to convert each
word in a sentence into a contextualized embed-
ding. Consistent with prior research (Han et al.,
2021a,b), we adopt BERT (Devlin et al., 2019) as
the sentence encoder. Considering the vital role of
entity words in DAFSRE tasks, we enclose entities
within the sentence with special tokens [E] and [\E]
to mark the entity boundary and emphasize the en-
tity for the encoder. After providing the sentence’s
tokens to BERT, we can obtain the embedding of
each token.

h1,h2, ...,hm = Encoder(x),hi ∈ Rde , (2)

where de is the dimension of the entity embedding.
Then, we concatenate the head and tail entity

embeddings hhead,htail, as well as the difference
between them hhead − htail to obtain the represen-
tation of each support or query instance h

′ .

h
′
= [hhead;htail;hhead − htail],h

′
∈ R1×3de. (3)

3.2. Domain-aware transformation
module

Our focus in this module is to enhance the adapt-
ability of the model in a specific target domain. As
illustrated in Figure 1(a), the semantic gap between
the source and target domain can sometimes be
considerable. This may result in the model becom-
ing overfitted to the source domain and faltering in
generalizing to the target domain. To tackle this
challenge, we aim to simulate the feature distribu-
tions of the target domain during the training phase
through explicit target-domain-guided feature trans-
formation. By providing the model with more infor-
mation about the feature distribution of the target
domain, we can explicitly guide the feature trans-
formation that makes source domain data more



5278

Figure 2: The framework of the proposed model DCFT. Ld is the domain discrepancy loss and Lc is the
classification loss.

closely aligned with the target domain as shown in
Figure 1(b).

We achieve this goal by a learnable domain-
aware feature transformation layer with domain
discrepancy loss. Our approach is inspired by re-
cent research indicating that the mean and stan-
dard deviation of features encode essential "do-
main style" information, making them suitable for
domain-aware transformation and manipulation in a
reliable and effective manner (Li et al., 2021; Tang
et al., 2021). Specifically, as shown in Figure 2,
We introduce a domain-aware feature transforma-
tion layer that follows the encoder. This layer is
governed by hyper-parameters θγ ∈ R1×3de and
θβ ∈ R1×3de, which represent the standard devia-
tions of the Gaussian distributions used to sample
the scaling and bias terms for the affine transfor-
mation, respectively. To transform an instance’s
representation h

′ , which has a dimension of 1×3de,
we first randomly sample the scaling term γ and
bias term β from Gaussian distributions N(·) ,
γ ∼ N (1, softplus (θγ)) , β ∼ N (0, softplus (θβ)) .

(4)
Then we compute the domain-aware feature as:

ĥ = γ × h
′
+ β. (5)

Although it is possible to empirically determine
hyper-parameters θγ and θβ of the domain-aware
feature transformation layer, manually adjusting a
universal set of parameters that perform well across
various scenarios remains difficult. So we design a
domain discrepancy loss that exploits the "domain
style" information we mentioned before. This loss
provides supervised information for the transforma-
tion process and dynamically adjusts the θγ and θβ .

It is computed as the difference in mean and stan-
dard deviation between the domain-aware features
and the contextualized embeddings of some target
domain instances. By utilizing this loss, the domain-
aware feature transformation layer is encouraged to
enhance features that are more aligned with the tar-
get domain. As a result, the model can effectively
train on the data related to target domain features
and improve its performance on the target domain.
The domain discrepancy loss is calculated by the
following formula:

Ld = (mean(DTM(S))−mean(DTM(Trs)))2

+η(std(DTM(S))− std(DTM(Trs)))2,
(6)

where DTM(·) indicates the domain-aware feature
transformation operation as mentioned previously,
mean(·) and std(·) are functions used to calculate
the mean and standard deviation of a set of feature
vectors, respectively. Trs is a subset of T obtained
by random sampling. η is used for balancing the
weight of mean and standard deviation discrep-
ancy.

3.3. Co-adaptive prototypical networks
To facilitate the co-adaptation of domain-aware
support and query features, we propose the co-
adaptive prototypical networks (CPN), which em-
ploy a self-attention mechanism to further transform
and improve the features. The CPN is composed
of two transformation layers: the intra-class aggre-
gation layer and the inter-class adaptive layer.

Intra-class aggregation layer: In the original
prototypical networks, the relation prototype is ob-
tained by taking the average of the features of all



5279

instances within a relation. However, in the case of
few-shot scenarios, the absence of sufficient sup-
porting data can result in a significant deviation of
the prototype if there is an instance that the rep-
resentation differs greatly from that of the others.
This is especially prevalent in situations where the
data is noisy or where the relations exhibit a wide
range of semantics. Such phenomena lead to un-
suitable prototypes that can adversely impact the
accuracy of classification.

To improve the effectiveness of prototypical net-
works, we propose the intra-class aggregation
layer. We argue that each instance within a relation
should have a distinct weight, and that this weight
should be determined based on all instances within
that relation. The proposed layer would give priority
to the more informative and central instances that
are better representative of the relation prototype.
Specifically, given the features of all instances of the
same relation after the DMT module, we first em-
ploy the Transformer Encoder (TE) layer (Vaswani
et al., 2017) to these features to capture their intra-
class interactions. It is based on the self-attention
function Self-Att(·):

Self-Att(Q,K,V) = softmax

(
QKT

√
3de

)
V, (7)

where Q = K = V ∈ Rk×3de is the domain-aware
features of all instances within a relation.

√
3de is

used to rescale the inner product of two vectors.
This formulation was also extended to a multi-head
self-attention (MHSA). The TE is combined with
the MHSA, feed-forward network (FFN), residual
connection, and layer normalization:

headi = Self-Att
(
QWQ

i ,KWK
i ,VWV

i

)
, (8)

MHSA(Q,K,V) = Mean (head1, . . . ,headh) , (9)

V0 = MHSA(Q,K,V) +V, (10)

TE(V) = Φ(V0 + FFN(Φ(V0))), (11)

where WQ
i ,WK

i ,WV
i ∈ R3de×3de is the learnable

feature projection matrix of i-th head for Q,K and
V. V0 is the output of multi-head self-attention with
residual connection. Φ indicates the normalization
layer.

After we get the features processed by TE(·), we
put them into an FFN and a softmax layer to map
the features of each instance to a one-dimensional
scalar, then we compute the weight of each in-
stance:

αi = Softmax(FFN(Ŝi′)), (12)

where αi = {αi
k; k = 1, 2, . . . ,K} is the weight

vector for the instances in relation i. Ŝi′ indicates
the all instances features in relation i processed by
DTM(·) and TE(·).

Then, we compute the weighted sum of the
domain-aware features within a relation i with αi

to obtain the corresponding intra-class adaptive
relation prototype pi.

pi =

K∑
k

αi
kŝ

i
k, (13)

where ŝik indicates the domain-aware feature of k-th
instance in relation i.

Inter-class adaptive layer: Once we have ob-
tained a prototype for each relation, we can sim-
ply calculate the distances between the query and
each prototype to perform classification based on
the similarity score. However, this approach fails
to account for discriminative information among dif-
ferent relation prototypes, which may significantly
impair performance when dealing with confusing
relations.

To capture the complex interactions among all re-
lation prototypes and query instances, we propose
the inter-class adaptive layer. By employing a TE
layer in the relation prototypes and query features,
we can focus more on the discriminative feature
dimensions that aid in differentiating between var-
ious relation prototypes. The query features can
also be improved by attending to relevant features
for each relation prototype, thereby enhancing the
classification performance. Concretely, given each
intra-class adaptive relation prototype pi and the
domain-aware query q̂, we first put them into the
TE and an activation function to obtain the discrimi-
native features:

[ṗ1, . . . , ṗN , q̇] = σ(TE([p1, . . . ,pN , q̂])), (14)

where σ represents the ReLU function, ṗi stands
for the discriminative feature of relation i, q̇i stands
for the discriminative feature of query instance.

Then, we perform a residual connection to make
the relation prototypes and query pay more atten-
tion to these discriminative features:

[p̃1, . . . , p̃N , q̃] = [ṗ1, . . . , ṗN , q̇]⊕ [p1, . . . ,pN , q̂],
(15)

where ⊕ is the element-wise plus function, p̃i and
q̃ indicates the final domain-aware and co-adaptive
features of relation prototypes and the query.

Finally, the label probability of query for classifi-
cation is:

p(y = r | S, q) = exp (d (p̃r, q̃))∑N
i=1 exp (d (p̃

i, q̃))
, (16)

where d(·) indicates the squared Euclidean dis-
tance between two vectors.
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Table 2: Accuracy (%) of models on FewRel 2.0 Pubmed test set under N -way-K-shot (NW-KS) settings.
Best (bold) and second best numbers are highlighted in each column. We run all the algorithms on the
same conditions.

Model 5W-1S 5W-5S 10W-1S 10W-5S AVG
Proto (Snell et al., 2017) 40.12 51.50 26.45 36.93 38.75
Proto-ADV (Snell et al., 2017) 41.90 54.74 27.36 37.40 40.35
MAML (Finn et al., 2017) 66.62 78.53 51.90 65.57 65.66
BERT-PAIR (Gao et al., 2019) 67.41 78.57 54.89 66.85 66.93
DaFeC (Cong et al., 2021) 61.20 76.99 47.63 64.79 62.65
REGRAB (Qu et al., 2020) 71.70 80.74 61.66 74.06 72.04
REGRAB-ADV (Qu et al., 2020) 65.10 71.61 56.44 56.71 62.47
MTB (Soares et al., 2019) 74.7 87.9 62.5 81.1 76.6
CP (Peng et al., 2020) 79.7 84.9 68.1 79.8 78.1
HCPR (Han et al., 2021a) 76.34 83.03 63.77 72.94 74.02
FAFE (Dou et al., 2022) 73.58 90.10 62.98 80.51 76.79
GM_GEN (Li and Qian, 2022) 76.67 91.28 64.19 84.8 79.24
ChatGPT (OpenAI, 2023) 66.34 78.06 55.19 65.81 66.35
DCFT 82.54 93.27 71.44 87.98 83.81

In our approach, we have adopted the cross-
entropy loss as the classification loss function. It
can be defined as follows:

Lc(S, q) = − log p(y = t | S, q), (17)

where t stands for ground truth label.
The final objective function of our model is de-

fined as L = Lc+λLd, where λ is a hyperparameter
used to balance the two terms.

4. Experiments

4.1. Dataset and evaluation
Dataset: We conduct experiments on the FewRel
2.0 dataset (Gao et al., 2019) since it is the only
qualified large-scale dataset suitable for eval-
uating the DAFSRE model. This dataset com-
prises 4 sub-datasets from four different domains,
including Wikipedia, SemEval-2010 task8, NYT,
and Pubmed. In our experimental setup, we take
64/10/15 relations, with a total of 44800/1000/1500
labeled instances for training/validation/testing.
The training set is drawn from the humanities
domain, and constructed using articles from
Wikipedia. In contrast, the standard validation and
test sets derived from the medical domain, aligned
through the matching of PubMed1 with UMLS2. Ad-
ditionally, we used the simulated-Semeval dataset
to conduct another experiment. In our experiments,
the Wikipedia data served as the source domain,
while the Pubmed and simulated-Semeval data
were the target domains.

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.nlm.nih.gov/research/umls/

Evaluation: The standard metric used to evalu-
ate the performance of the DAFSRE model is the
average accuracy of the N -way-K-shot task. Ac-
cording to the previous works (Gao et al., 2019;
Han et al., 2018) , we have set N to 5 and 10 and
K to 1 and 5, thus forming four few-shot learning
scenarios. As the test set labels in FewRel 2.0 are
not publicly available, we report the final test accu-
racy by submitting the model’s predictions to the
FewRel Leaderboard3.

4.2. Implementation details
Our approach is implemented with PyTorch
(Paszke et al., 2019). We take the uncased model
of BERTbase as the encoder in our approach. In our
training phase, we set the number of iterations to
5000, and perform validation every 200 iterations.
The learning rate is set to 2e-5, while λ is set to 0.5,
and η is set to e-3. We train and evaluate our model
using one GeForce RTX 3090 GPU with about 24
GB of memory.

4.3. Comparison with previous works
Tables 2 and Tables 3 compare the proposed ap-
proach with current state-of-the-art methods. In
addition to ChatGPT4, we divide other models
into two categories based on whether they intro-
duce additional information (e.g. relation descrip-
tion information, additional large-scale pre-training
data), including: Proto (Snell et al., 2017), Proto-
ADV (Snell et al., 2017), MAML (Finn et al., 2017),

3https://thunlp.github.io/fewrel.html
4The version of ChatGPT we used is gpt-3.5-turbo-

0613



5281

Table 3: Accuracy (%) of models on simulated-Semeval dataset under N -way-K-shot (NW-KS) settings.
* is our re-implementation based on the corresponding open-source codes. ⋆ is reported by Yuan et al.
(Yuan et al., 2023)

Model 5W-1S 5W-5S 10W-1S 10W-5S AVG
Proto* (Snell et al., 2017) 48.54 78.48 36.43 68.15 57.90
Proto-ADV* (Snell et al., 2017) 39.79 58.76 27.23 45.46 42.81
MAML⋆ (Finn et al., 2017) 42.75 52.87 27.89 43.06 41.64
BERT-PAIR* (Gao et al., 2019) 49.70 67.64 37.71 55.14 52.55
DaFeC* (Cong et al., 2021) 48.04 57.07 34.36 42.66 45.53
REGRAB⋆ (Qu et al., 2020) 49.56 64.57 36.17 54.10 51.10
REGRAB-ADV⋆ (Qu et al., 2020) 50.71 65.46 38.61 54.56 52.34
HCPR* (Han et al., 2021a) 56.98 73.65 43.75 62.64 59.26
FAFE* (Dou et al., 2022) 59.03 76.99 46.27 66.48 62.19
GM_GEN* (Li and Qian, 2022) 51.48 79.02 44.96 69.86 61.33
ChatGPT (OpenAI, 2023) 46.75 67.17 38.85 52.43 51.30
DCFT 59.46 80.31 47.21 72.13 64.78

BERT-PAIR (Gao et al., 2019), DaFeC (Cong et al.,
2021), REGRAB (Qu et al., 2020), REGRAB-ADV
(Qu et al., 2020). And external information en-
hanced models: MTB (Soares et al., 2019), CP
(Peng et al., 2020), HCPR (Han et al., 2021a),
FAEA (Dou et al., 2022), GM_GEN (Li and Qian,
2022). The details of these models are presented
in the Related work section. As for ChatGPT, dur-
ing inference phase, we follow the (Brown et al.,
2020) to construct prompts, which concatenates a
few demonstrations and the test sample to predict
the label.

From the tables, we can observe that: 1) Our
approach consistently outperforms most methods
across all settings. Notably, our approach sig-
nificantly improves the accuracy by an average
of 4.57% compared to the second-best model
GM_GEN on FewRel 2.0 Pubmed test set. On
another dataset, the simulated-Semeval dataset,
DCFT also yields gains of 2.59% compared to the
second-best model FAFE. It demonstrates the ef-
fectiveness of DCFT in addressing the DAFSRE
task and achieving state-of-the-art performance.
2) Compared to methods like MTB and CP, which
rely on extensive pre-training with external data,
(i.e., about 600 million relation statement sen-
tences, much higher than the 44,800 sentences
of the FewRel 2.0 dataset), our approach still im-
proved the average accuracy by over 5%. This indi-
cates that our approach has strong domain adapt-
ability and few-shot learning ability, even without
pre-training on large amounts of relation extrac-
tion data. 3) As for the LLMs, their performance
in this task is unexpectedly poor. This may be due
to their limited understanding in medical domain,
which can lead to model hallucinations (Zhang et al.,
2023b) and they confidently output incorrect an-
swers. Moreover, the performance of the LLMs

Table 4: Experimental results of the ablation studies
on the FewRel 2.0 PubMed test set.

Model 5W-1S 5W-5S AVG
DCFT 82.54 93.27 87.91
w/o DTM 79.36 90.71 85.04
w/o CPN 80.63 90.15 85.39
w/o CPN-Intra 82.54 91.32 86.93
w/o CPN-Inter 80.63 91.69 86.16

can also be compromised by excessively long text
inputs (e.g. 10-way-5-shot scenario) due to catas-
trophic forgetting.

4.4. Ablation study
In this section, we remove specific components or
modules on the model to perform ablation study.
In Table 4, the w/o DTM means the model without
DTM, i.e., the instance feature obtained by the en-
coder was directly fed into CPN for classification.
The w/o CPN indicates the model without CPN, the
instances within a relation are directly averaged to
calculate the prototype for classification. We also
disassemble the CPN module to investigate the
contributions of different components.

Effect of DTM: The results of w/o DMT are pre-
sented in Table 4, where each experimental con-
figuration exhibits a decline to a certain extent,
with an average reduction of 2.87%. This table
reveals that the DTM holds more significance in
the 1-shot scenario as the accuracy dropped by
3.18%. This finding highlights the crucial role of the
target domain-guided transformation in DAFSRE,
particularly when the available data is scarce.

Effect of CPN: According to Table 4, the absence
of the CPN results in a decline in accuracy by 1.91%
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Table 5: Experimental results of the variants of our
model on the FewRel 2.0 PubMed test set.

Model 5W-1S 5W-5S AVG
DCFT 82.54 93.27 87.91
DCFT-fixed 80.84 92.78 86.81
DCFT-random 81.09 90.46 85.78
DCFT-ADV 79.82 92.15 85.99
-BERT-large 81.62 91.88 86.75
-RoBERTa-base 81.11 93.22 87.17
-RoBERTa-large 80.22 92.54 86.38

and 3.12% in 1-shot and 5-shot scenarios, respec-
tively. This observation implies that the inter-class
aggregation layer and inter-class adaptive layer are
able to capture interactive information and improve
the query and prototype representations, leading
to better overall model performance.

4.5. Variations experiments

Additionally, we intend to explore some other vari-
ants of our model to gain a more comprehensive
understanding of its capabilities. As shown in Ta-
ble 4, DCFT-fixed fixes the hyper-parameters θγ
and θβ in DTM at each step and eliminate the do-
main discrepancy loss, while DCFT-random ran-
domizes these hyper-parameters. Another varia-
tion is DCFT-ADV, which replaces the DTM with
a domain-adversarial part following the approach
of DANN (Ganin et al., 2016). -BERT-large, -
RoBERTa-base and -RoBERTa-large indicate us-
ing BERT and RoBERTa(Liu et al., 2019) models
of different scales as encoders.

Module variations: Table 5 shows that all vari-
ations in module show a significant decline in ac-
curacy, especially the domain-adversarial training
version DCFT-ADV. Notably, DCFT-random yields
an improvement (+1.73%) in the 1-shot scenario
compared to the w/o DMT ablation. However, it
undermines the model’s performance (-0.25%) in
the 5-shot scenario, indicating the instability of this
variant. Furthermore, DCFT-fixed shows unstable
improvement compared to the w/o DMT ablation as
well. These findings underscore the crucial role of
unsupervised target domain data in guiding feature
transformation, which can enhance the model’s
cross-domain adaptability in a stable manner.

Backbone variations: To verify the effective-
ness of our method on different backbones, we
replaced the BERT-base encoder with BERT-large,
RoBERTa-base, and RoBERTa-large, respectively.
The results show that our method performs well
on these variations. However, from Table 5, we
can find that replacing the larger-scale encoders
does not significantly improve model performance.
This is mainly due to the limited training data, which

Figure 3: Impacts of the number of intra-class ag-
gregation layer (left) and inter-class adaptive layer
(right) in different few-shot scenarios on FewRel
2.0 Pubmed test set.

Figure 4: A example of correlation scores between
query and relation prototypes without (left) and with
(right) CPN. A higher score indicates a higher simi-
larity of prototypes, making it hard to distinguish.

prevents sufficient training of larger models.

4.6. Parameter Analysis
To explore the impact of number of intra-class ag-
gregation layer and inter-class adaptive layer in dif-
ferent few-shot scenarios, we conduct experiments
with different layer number as reported in Figure 3.
Specifically, one intra-class aggregation layer and
four inter-class adaptive layer can achieve optimal
performance in 5-shot scenarios. While one inter-
class adaptive layer can achieve best performance
in 1-shot scenario. This indicates that a single intra-
class aggregation layer is sufficient to model the
interaction between instances well. When there
are fewer instances, excessive inter-class adap-
tive layers may lead to overfitting of the model and
damage its performance.

4.7. Visualization
In Fig 4, we present the correlation score between
query and relation prototypes with and without CPN.
Without CPN, the correlation score between the
query and prototypes was found to be high, indicat-
ing that the prototypes were more similar to each
other, making it difficult to classify the query. How-
ever, with the help of CPN, the model is able to
generate more distinguishable features for the rela-
tion prototypes, resulting in a lower similarity score
among them and ultimately enhancing the model’s
classification performance.
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5. Related work

Early works usually apply metric learning-based
methods (Koch et al., 2015; Qu et al., 2020; Han
et al., 2021a) to resolve DAFSRE, which leverage
the distance distribution of each relation to per-
form classification. For example, DaFeC (Cong
et al., 2021) applies a clustering promotion mech-
anism to learn better features for the target do-
main. BERR-PAIR (Gao et al., 2019) measures
the similarity of sentence pairs to classify instances
and achieve impressive performance. More re-
cently, meta-learning-based approaches, such as
MAML (Finn et al., 2017) and Proto (Snell et al.,
2017), have become popular in DAFSRE tasks.
REGRAB (Qu et al., 2020) completes the FSRE
task via Bayesian meta-learning on the relation
graph. REGRAB-ADV (Qu et al., 2020) adds an
adversarial part to the REGRAB model. Since the
information available in a single sentence is lim-
ited in few-shot learning scenarios, recent works
such as MTB (Soares et al., 2019) and CP (Peng
et al., 2020) have taken an extensive pre-training
approach with external data. Furthermore, HCPR
(Han et al., 2021a) proposes a hybrid contrastive
relation-prototype approach that focuses on hard
few-shot relation extraction tasks. FEFA (Dou et al.,
2022) utilizes a function words adaptively enhanced
attention framework to attend to class-related func-
tion words with relation descriptions, achieving im-
pressive results. GM_GEN (Li and Qian, 2022) pro-
poses to generate a general model for all tasks and
finetune to get tiny task-specific models. Recently,
LLMs like ChatGPT (OpenAI, 2023) have been
pre-trained on extensive datas, which exhibit re-
markable reasoning capabilities across many NLP
tasks. However, despite the significant progress in
DAFSRE, the current methods exhibit limitations
in effectively leveraging the feature distribution of
the target domain and considering the interaction
between instances.

6. Conclusion

In this paper, we propose the domain-aware and co-
adaptive feature transformation approach, which
aims to mitigate the domain gap and facilitate learn-
ing to distinguish confusing relations for DAFSRE.
We introduce a domain-aware transformation mod-
ule that conducts target-domain-guided feature
transformation, which enhances the model’s adapt-
ability to the target domain. Additionally, the co-
adaptive prototypical networks are utilized to model
both intra- and inter-class interactions among all
instances, leading to improved classification per-
formance. Experimental results demonstrate the
effectiveness of our approach and achieve state-of-
the-art performance on the DAFSRE benchmark.
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