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Abstract

Recently, ChatGPT has demonstrated remarkable performance in various downstream tasks such as open-domain

question answering, machine translation, and code generation. As a general-purpose task solver, an intriguing inquiry

arises: Does ChatGPT itself know that it does not know, without any access to internal states? In response to this

query, we present an initial evaluation of ChatGPT for black-box calibration (Ye and Durrett, 2022). We designed three

types of proxy confidence, from three perspectives to assess its performance. Experiments are conducted on five

datasets, spanning four tasks, and the results show that ChatGPT has a degree of capability for black-box calibration.

Specifically, proxy confidence displayed a significantly positive Pearson correlation (95.16%) with accuracy in the

TruthfulQA dataset, while revealing a negative correlation in the ModAr dataset. We delved deeper into ChatGPT’s

black-box calibration ability by examining failure cases in the ModAr dataset. Our analysis revealed that ChatGPT’s

tendency to exhibit overconfidence may stem from its reliance on semantic priors. Furthermore, we investigated

why ChatGPT performs relatively well in TruthfulQA. The findings suggest that ChatGPT might implicitly acquire

calibration skills during the reinforcement learning process, rather than relying solely on simplistic heuristics.
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1. Introduction

Large language models (LLMs) (OpenAI, 2023a,b;

Anthropic, 2023; Chiang et al., 2023; Bubeck

et al., 2023) have taken off rapidly in natural

language processing (NLP) recently and show-

cased remarkable performance on a variety of NLP

tasks (Chowdhery et al., 2022; Brown et al., 2020;

Ouyang et al., 2022; Schick et al., 2024; Liang

et al., 2023). ChatGPT is a representative such that

it not only performs well on NLP tasks (Jiao et al.,

2023; Bang et al., 2023b; Qin et al., 2023; Park

et al., 2023) but also exhibits excellent instruction-

following capabilities to produce informative and

coherent responses, which is attributed to the rein-

forcement learning from human feedback (RLHF,

Christiano et al., 2017). However, these LLMs still

suffer from the uncertainty issue such that they re-

main prone to confidently hallucinated predictions

that appear plausible but are actually wrong (Ji

et al., 2023; Zhang et al., 2023a; Li et al., 2024).

Existing studies focus on the uncertainty issue of

LLMs in a white-box manner. For example, (Kada-

vath et al., 2022) demonstrates that LLMs (mostly)

know their uncertainty by examining the softmax

probability. (Lin et al., 2022a) shows that it is pos-

sible to teach LLMs to express their uncertainty

through words by fine-tuning the model. Different

Pinjia He is the corresponding author.

from these works, we direct our attention toward a

more nuanced question:

Does ChatGPT itself know that it does not

know under the black-box setting?

To answer the above question, this paper con-

ducts a comprehensive study on the black-box cal-

ibration (Guo et al., 2017; Ye and Durrett, 2022)

capability of ChatGPT. Specifically, we investigate

to what extent the confidence of ChatGPT is cor-

related with the accuracy of its responses. To es-

timate the black-box confidence of ChatGPT, we

propose three types of proxy confidence as out-

lined in Table 1, which are designed in distinct

perspectives:

• Qualitative Confidence: We directly ask

ChatGPT to output a confidence percentage

(from 0% to 100%) accompanied by its re-

sponse to the query, which essentially ex-

plores the self-awareness of ChatGPT. We

are curious whether responses with higher

confidence are more likely to be accurate than

those with lower confidence.

• Quantitative Confidence: We ask ChatGPT

to first provide an initial response and then

determine the correctness of it by answering

a follow-up question: “Is the answer True or

False?” This binary response serves as an
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Table 1: Illustration of three distinct proxy confidence. [hist] represents the previous dialogue turn between

the user and ChatGPT ("User:[query]; ChatGPT:[ans]). "consistency" refers to the percentage of subse-

quent answers that match the first answer provided by ChatGPT.

Proxy Type Prompt Output Confidence

Quantitative|
answer question and give your

confidence (%): [query]
[ans], confidence is c% c%

Qualitative| [hist]; is the answer true or false? true / false high / low

Consistent
[query1]; · · · ; [query

n
] [ans1]; · · · ; [ansn]

consistency
[hist]; please think again. [ansnew]

indicator of ChatGPT’s confidence. Typically,

a response of “True” suggests a higher confi-

dence while that of a "False" indicates a lower

confidence.

• Consistency: Generally, we suppose that a

model exhibits higher confidence when its

responses remain consistent despite pertur-

bations. We empirically involve two specific

perturbations here: (1) repeatedly asking the

same question to ChatGPT multiple times; (2)

questioning ChatGPT’s initial response and

requesting it to answer again. By leveraging

the resulting consistency of the obtained re-

sponses, we may quantify the confidence of

ChatGPT.

ChatGPT is evaluated on multiple datasets, in-

cluding TruthfulQA (Lin et al., 2022b), MMLU

(Hendrycks et al., 2021), and three datasets

from BIG-bench (Srivastava et al., 2022), namely

Modified Arithmetic (ModAr), Analytic Entailment

(AnaEnt), and Language Identification (LangId).

Results indicate that ChatGPT possesses some
level of black box calibration.

• In particular, a positive correlation exists be-

tween quantitative confidence and accuracy

in the TruthfulQA dataset (see Figure 1), but

this is not observed in all datasets.

• ChatGPT exhibits a significant degree of over-

confidence, as indicated by an average confi-

dence level of 93.64% and an accuracy level

of 49.99%.

• Furthermore, the accuracy of responses in

the high consistency subset surpasses that

of the low consistency subset, with values of

87.64% and 48.41% respectively. It is impor-

tant to note, however, that there is an imbal-

ance in the number of samples between these

subsets, which undermines the black-box cali-

bration ability of ChatGPT.

• Further analysis indicates that one of the rea-

sons for ChatGPT’s tendency to exhibit over-

confidence in providing answers is its strong

prior knowledge base.

• Additionally, the black-box calibration of Chat-

GPT cannot be explained solely by simple

heuristics such as option numbers. It is spec-

ulated that ChatGPT implicitly learns this cal-

ibration during the process of reinforcement

learning.

2. Experiments

In this section, we present the datasets employed

in the experiments (Section 2.1). Subsequently, we

assess ChatGPT’s black-box calibration ability by

utilizing three proxy confidence (Section 2.2), and

consistency (Section 4). All experiments are con-

ducted in the zero-shot setting. The temperature of

ChatGPT is set to 0.7.

2.1. Dataset

ChatGPT was comprehensively evaluated by

conducting experiments on 5 carefully selected

datasets, which measure the model’s performance

in different aspects, including truthfulness, knowl-

edge, reasoning, and multilingual capability. The

datasets used are as follows:

• TruthfulQA (Lin et al., 2022b) (Multi-choice

QA) is a benchmark comprising questions

specifically curated to detect imitative false-

hoods that could be perpetuated by AI sys-

tems. The dataset consists of a total of 817

questions, organized into 38 distinct cate-

gories, such as Health, Law, and Conspira-

cies.

• MMLU (Lin et al., 2022b) (Multi-choice QA)

is a large multitask test dataset that contains

questions from various fields of knowledge,

such as mathematics, social sciences, and

business. It includes 57 tasks and questions

from various difficulty levels, like “Elementary,”

“High School”, “College”, and “Professional”.

• Modified Arithmetic (Srivastava et al., 2022)

(ModAr) involves a type of math problem that

requires identifying patterns same or similar to

standard arithmetic but with subtle differences.
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Figure 1: The distribution of correct and incorrect samples across various confidence intervals on the five

datasets, along with their respective accuracies.

For instance, a model may be asked to add

one to the result of an operation performed on

two three-digit numbers.

• Analytic Entailment (Srivastava et al., 2022)

(NLI) is designed to measure a model’s abil-

ity to recognize the logical inference between

sentences within a piece of reasoning by ana-

lyzing their meanings.

• Language Identification (Srivastava et al.,

2022) (Text Classification) involves the task

of classifying an input text into one of eleven

possible languages, with the objective of ac-

curately identifying the language among the

given options.

We randomly selected 817 samples from TruQA,

250 samples from LangID, 285 samples from

MMLU, 70 samples from AnaEnt, and 300 samples

from ModAr. We referred to the samples where the

model provided accurate answers as "correct sam-

ples" and the samples where the model provided

incorrect answers as "incorrect samples".

2.2. Quantitative & Qualitative
Confidence

In this subsection, we evaluate ChatGPT’s ability to

determine the accuracy of provided answers based

on quantitative or qualitative confidence.

Metric To evaluate ChatGPT’s performance, we

employ Expected Calibration Error (ECE) and Pear-

son Correlation Coefficient (PCC) as metrics. ECE

quantifies the degree of correspondence between

confidence and accuracy, whereas PCC measures

the correlation between confidence and accuracy.

Additionally, we introduce the Monotonicity Score

(MS), which quantifies the degree to which the ac-

curacy increases as the confidence increases:

MS =
1

Z

N−1∑

i=1

ni+1 + ni

2
sign (acci+1 − acci) ,

where N is the number of the confidence in-

tervals and acci the average accuracy for confi-

dence interval i (large i refer high confidence).

Z =
∑

N−1

i=1

ni+1+ni

2
is the normalization factor. sign

Table 2: Expected calibration error (×10−2) on vari-

ous datasets. The terms "UnderConf," "OverConf,"

and "ECE" refer to underconfidence, overconfi-

dence, and overall Expected Calibration Error, re-

spectively. Underconfident ECE denotes the cal-

ibration error when the confidence is lower than

the corresponding accuracy, while overconfident

ECE represents the calibration error when the con-

fidence is higher than the accuracy.

Dataset UnderConf OverConf ECE

TruQA 0.10 41.95 42.05

LangId 0.00 52.70 52.70

MMLU 0.11 33.39 33.50

AnaEnt 0.29 36.14 36.43

ModAr 0.75 50.12 50.87

Average 0.25 42.86 43.11

Table 3: The Pearson correlation coefficient, mono-

tonicity score, average confidence, and overall ac-

curacy of ChatGPT in 5 datasets.

Dataset PCC MS Avg.Con Acc

TruQA 95.16 78.91 92.49 50.49

LangId 74.97 63.73 89.18 36.48

MMLU 54.47 52.44 93.36 60.07

AnaEnt 87.95 35.51 96.42 55.65

ModAr -33.45 -86.96 96.73 47.28

Average 55.82 28.73 93.64 49.99

is the sign function. The value of MS ranges from

-1 to 1, with values of -1 and 1 indicating strictly de-

creasing and increasing monotonicity, respectively.

ChatGPT Appears To Know It Is Uncertainty
But Not Always. Based on Table 2 and 3, we

observe that ChatGPT demonstrates a significant

tendency towards overconfidence, with an average

confidence of 93.19 and an average accuracy of

47.02. On the other hand, ChatGPT displays a pos-

itive correlation with TruthfulQA, MMLU, AnaEnt,

and LangId. ChatGPT appears to have the ability

to recognize uncertainty in TruthfulQA, where con-

fidence is strongly correlated with accuracy (PCC
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Figure 2: The distribution of 57 tasks in the MMLU across various PCC and MS intervals.

= 95.16%, MS = 78.91%). This suggests that Chat-

GPT has the capacity to acknowledge when its

answers may be incorrect. However, this ability is

not consistent across ModAr. The differences in

task nature and input/output space between these

datasets may contribute to this discrepancy. For

instance, ModAr poses questions that are similar

to standard simple arithmetic but have different an-

swers, potentially leading the model to give a wrong

answer with high confidence. We will discuss this

in Section 3.1.

We performed additional experiments on MMLU

by sampling 57 sub-datasets, each containing 100

samples, from 57 different tasks. The results, pre-

sented in Figure 2, indicate that out of the 57 tasks,

35 tasks have a PCC greater than 0.50, and 16

tasks have a PCC greater than 0.90. However, as

previously observed, some datasets exhibit weak

or even negative correlations. We further discuss

this in Section 3.2.

In the experiments before, we directly applied

ChatGPT’s confidence in its response as our quan-

titative confidence. However, the confidence is not

deterministic, which may undermine the reliability

of our findings. Thus, we repeatedly prompt Chat-

GPT to generate the response for each question 5

times, after which we obtain a total of 5 confidence

values. The mean confidence standard deviations

for each dataset are shown in Figure 5, which in-

dicates the confidence fluctuates in an acceptable

range from 3.31% (MMLU) to 6.14% (ModAr).

ChatGPT Always Think Its Answer Is Correct.
According to Table 4, ChatGPT deems its response

as "True" in the majority of cases (95.36%). This

suggests that ChatGPT faces difficulty in conveying

its uncertainty in this way. Consequently, utilizing

this proxy confidence could lead to a high rate of

false negatives (incorrect with "True"). Surprisingly,

incorrect samples have a higher likelihood of being

considered "True" than correct samples (97.83%

Table 4: The "True" response proportion across

correct, incorrect, and overall subsets.

Dataset Correct Incorrect Overall

TruQA 97.24 97.98 97.54

MMLU 98.85 99.07 92.76

ModAr 90.37 90.00 90.18

AnaEnt 100.00 100.00 100.00

LangId 91.75 99.33 96.34

Average 94.97 97.83 95.36

vs. 94.97%).

2.3. Consistency

Consistency refers to the proportion of subsequent

answers that are the same as the first answer. It

can serve as an indicator of confidence, assum-

ing that a confident model should produce stable

answers. We offer two methods: (1) Repetition
Consistency, repeating the same question multi-

ple times (e.g., 5 times in our experiments), and (2)

Regeneration Consistency, asking ChatGPT to

re-generate its answer after questioning its initial

response. If the subsequent answer differs from

the original, we classify it as a "flip". In this sec-

tion, we show the results of four datasets except for

ModAr, because the prediction of ModAr is always

consistent, we will analyze this in Section 3.1.

2.3.1. Repetition Consistency

Higher Consistency Means Higher Accuracy.
We present the relationship between accuracy and

consistency in Figure 4. The result indicates that as

ChatGPT becomes more confident (higher consis-

tency), its accuracy also improves. This is intuitive,

because the model may provide different answers

when uncertain, but only outputs the correct an-

swer when it is certain.
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Figure 5: The standard deviation of confidence

(repeat 5 times for each query).

Table 5 shows that the proportion with consis-

tent responses in correct samples is substantially

higher than that in incorrect samples in these

Table 5: Percentage of responses that do not

change during repeated asking. "T/F" represents

correct and incorrect samples. "Prompt" means we

use different prompts each time. The difference

between correct and incorrect samples is denoted

by ∆.

Dataset Base(T/F) Base(∆) Prompt(T/F) Prompt(∆)

TruQA 0.87 / 0.68 0.19 0.81 / 0.53 0.28

MMLU 0.83 / 0.57 0.26 0.83 / 0.49 0.34

AnaEnt 0.90 / 0.70 0.20 0.85 / 0.70 0.15

LangId 0.65 / 0.42 0.23 0.37 / 0.09 0.28

Average 0.81 / 0.59 0.22 0.72 / 0.45 0.26

datasets. The proportion in correct samples is 81%,

while it is only 59% in incorrect samples. If we use

different prompts each time, the gap will further

increase from 22% to 26%. This is reasonable be-

cause it introduces more randomness by using

different prompts, which distinguishes answer sta-

bility better (see Figure 3). Overall, these results

suggest ChatGPT is more confident in its answers

which are correct. It should be mentioned that this

conclusion is not held on ModAr, we will discuss

this in Section 3.1.

2.3.2. Regeneration Consistency

Non-flip Means Higher Accuracy. As shown in

Table 6, the accuracy of the non-flip subset is sig-

nificantly higher than that of the flip subset (87.64%

vs 48.41%), supporting the notion that stable an-

swers have higher accuracy. However, the average

flip rate is high (79.48%), indicating that ChatGPT

is prone to changing its answer. This may lead to

many false positive errors (correct but flip). To fur-

ther analyze this, we present the flip rate of the
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Table 6: The accuracy in flip and non-flip sub-

sets. The Flip rate represents the percentage of

instances where ChatGPT alters its response upon

questioning.

Dataset Acc (Flip) Acc (Non-flip) Flip Rate

TruQA 47.21 95.12 82.77

MMLU 55.64 96.00 91.13

AnaEnt 62.32 100.00 98.57

LangId 44.29 100.00 85.37

Average 48.41 87.64 79.48
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Figure 6: The flip rate of correct and incorrect sub-

sets.

correct and incorrect subsets in Figure 6. In these

4 datasets, almost all incorrect answers will flip

after prompting "Please think again". Regarding

the flip rate of the correct subset, it is high too

while significantly lower than that of the incorrect

subset. In AnaEnt, there are 98% correct answers

and 100% incorrect answers flips when required

to regenerate answers. We consider this extremely

high flip rate may be because the task is a binary

classification task, and ChatGPT is strongly biased

to the remaining answer if its answer is argued by

users.

3. Results and Discussion

As mentioned before, Table 3 illustrates a positive

correlation between confidence and accuracy in

TruthfulQA, MMLU, Analytic Entailment, and Lan-

guage Identification, whereas a negative correla-

tion is observed in Modified Arithmetic. In the fol-

lowing section, we delve into the underlying rea-

sons for this discrepancy.

3.1. ModAr

We divided Modar samples into two distinct cate-

gories: Normal and Overriding types. The Normal

type involves standard mathematical operations

such as addition, subtraction, or multiplication. In

contrast, the Overriding type presents similar math-

ematical operations but with different input-label

mappings, requiring the model to understand the

operations and override the semantic prior (refer

to Table 7 for details). Table 9 displays the re-

sults obtained from these two types of data. The

model achieves nearly 100% accuracy on normal

data, but only 0% accuracy on overriding data. De-

spite the remarkably low accuracy on the latter, the

model exhibits high confidence, surpassing that of

normal data. This finding suggests that the model

tends to be excessively confident in its answers

when it possesses strong prior knowledge, which

can significantly impair its calibration. Furthermore,

we employed Chain-of-thought (CoT) and an expla-

nation prompt on the overriding data, but the model

still demonstrates extremely high confidence. The

explanation prompt is You should understand the

meaning of the operation ’->’ before giving the an-

swer. For example, if a + b -> (a+b+1), ’->’ repre-

sents the sum of two numbers plus one.

3.2. TruthfulQA

In this subsection, we provide preliminary explana-

tions for ChatGPT’s black-box calibration capability

to enhance our understanding. We specifically fo-

cus on the TruthfulQA dataset, where confidence

and accuracy exhibit a high correlation, and use

quantitative confidence as the proxy. Our analysis

considers two aspects:

• Input Data. Does ChatGPT solely utilize some

simple heuristics in questions to generate con-

fidence? We know that some heuristics can

have a strong correlation with accuracy. For

instance, in TruthfulQA, the number of options

in a question ranges from 2 to 11. If ChatGPT

assigns lower or higher confidence to ques-

tions with fewer or more options, respectively,

this may result in a high correlation between

confidence and accuracy. In our experiments,

we consider heuristics such as the number

of options, query length, perplexity, difficulty

level, and superficial semantic features.

• Model. Can ChatGPT’s capability be at-

tributed to techniques in the training process?

For example, ChatGPT might implicitly learn

to know its uncertainty from the designed re-

ward function used in the reinforcement learn-

ing process. We explore this by comparing

the performance of models with varying sizes

and training strategies, including Alpaca (7B)

(Taori et al., 2023), text-davinci-002, ChatGPT.

The Calibration Capability Can Not Be Ex-
plained By Heuristics We Provide. Table 8

presents the average option count, question length,
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Table 7: Normal and overriding samples from ModAr.

ModAr Normal Overriding

Query|

In the following lines, the symbol -> represents

a simple mathematical operation.

355 + 927 -> 1282

694 + 206 -> 900

767 + 234 -> 1001

441 + 354 -> 795

514 + 207 -> 721

708 + 852 ->

In the following lines, the symbol -> represents

a simple mathematical operation.

980 + 605 -> 1586

660 + 623 -> 1284

566 + 848 -> 1415

935 + 466 -> 1402

627 + 142 -> 770

200 + 179 ->

Response|

ANSWER: 1560. The operation 708 + 852

results in 1560. This is obtained by adding

the two numbers together. Percentage of

confidence: 100%

ANSWER: 379 . The last mathematical

operation was 200 + 179, which equals 379.

My confidence in this answer is 100%.

(ground-truth: 380)

Table 8: The number of options, length, and perplexity in 5 different confidence groups. "H.a" and "P.m"

represent the human aging test and professional medicine test from MMLU respectively.

Heuristic / Group Conf=100 Conf=95 Conf=90 Conf=85 Conf=80

Option Number 4.67 5.21 5.28 5.66 5.27

Perplexity 10.72 8.57 9.11 7.92 8.71

Length (TruQA) 274 338 320 355 318

Length (H.a) 155 193 171 204 167

Length (P.m) - 733 790 731 705

Table 9: The number of correct/incorrect predic-

tions on normal data and overriding data. "with

CoT" means we use CoT on overriding data. "with

Expl" means we used a prompt with more explana-

tion for the operation.

Right / Wrong Conf=90 Conf=95 Conf=100

Normal 11 / 0 29 / 0 91 / 0

Overriding 0 / 4 0 / 21 0 / 113

with CoT 0 / 2 0 / 6 0 / 120

with Expl 0 / 3 2 / 4 20 / 109

ModAr 11 / 4 29 / 21 91 / 113

and perplexity1 for various confidence intervals.

Despite the most confident group having fewer

options and shorter question lengths than other

groups, no apparent correlation exists. Figure

7 displays t-SNE visualization (Van der Maaten

and Hinton, 2008) of the superficial semantic fea-

tures of each sample. We employ SentenceBERT

(Reimers and Gurevych, 2019) to encode each

TruthfulQA sample into an embedding and subse-

quently use t-SNE to project these features onto

a two-dimensional space with different confidence

levels represented by colors. It is observed that

points of different confidence are mixed together.

As to difficulty, we select tasks with varying levels

of difficulty from MMLU, including Elementary, High

School, and College Mathematics Tests. The re-

sults, as shown in Table 10, demonstrate that con-

fidence is roughly unchanged as difficulty levels

1we calculate perplexity using a pre-trained GPT-2-

large model as a proxy language model.

Figure 7: t-SNE visualization of superficial seman-

tic features. We employ SentenceBERT to encode

each TruthfulQA sample into an embedding and

subsequently use t-SNE to project these features

onto a two-dimensional space with different confi-

dence levels represented by colors.

increase. For instance, the average confidence in

elementary, high school, and college mathematics

tests are 96.60%, 95.73%, and 94.90% respec-

tively. In psychology tests, the professional test

demonstrates only slightly lower confidence than

the high school test (91.17% vs 92.95%). In sum-

mary, the above results suggest that the heuristics

used cannot explain the confidence expressed by

ChatGPT.

This Capability May Be Implicitly Learned In
Reinforcement Learning. We compare different

models in Table 11. Alpaca2 is fine-tuned from the

2here we use a replicate version from https://

huggingface.co/chavinlo/alpaca-native

https://huggingface.co/chavinlo/alpaca-native
https://huggingface.co/chavinlo/alpaca-native
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Table 10: Average confidence and accuracy in different tasks from MMLU. The difficulty level includes

Elementary, High School, College, and Professional. There might be an accuracy gap between tasks in

different difficulty levels, while the confidence is very close.

Task & Difficulty
(Conf/Acc)

Elementary High School College Professional

Biology - 94.75/81.82 94.25/71.00 -

Chemistry - 93.47/58.16 93.35/46.39 -

Computer Science - 94.10/66.00 93.93/41.84 -

Mathematics 96.60/45.00 95.73/34.38 94.90/35.35 -

Medicine - - 92.95/65.00 90.20/73.74

Physics - 93.60/36.00 93.43/43.43 -

Psychology - 92.95/83.00 - 91.17/68.37

Average 96.60/45.00 94.10/59.89 93.80/50.50 90.69/71.06

Table 11: The black-box calibration of different mod-

els. “Avg con” and "Acc" mean average confidence

and accuracy respectively.

Model PCC MS Avg.Con Acc

Alpaca(7B) -16.37 15.89 82.32 18.89

Davinci(175B) -20.69 25.10 87.97 28.98

ChatGPT 95.16 78.91 92.49 50.49

LLaMA, utilizing instruction-following demonstra-

tions from text-davinci-003. Davinci (text-davinci-

002) is trained with supervised fine-tuning instead

of reinforcement learning. However, these mod-

els exhibit a negative PCC (-16.37% in Alpaca

and -20.69% in Davinci), while ChatGPT demon-

strates significantly better black-box calibration per-

formance. We speculate this observed difference

may stem from the reinforcement learning em-

ployed in the training of ChatGPT, whereby some

reward functions are incorporated to discourage

model responses. As a result, it is possible for the

models to implicitly learn the black-box calibration.

4. Related Works

4.1. Evaluation of LLMs

Large language models (LLMs) are gaining in-

creasing popularity in both academia and industry.

As LLMs continue to play a vital role, their evalu-

ation becomes increasingly critical (Chang et al.,

2023). Previous works have evaluated LLMs from

different perspectives, such as correctness (Zhang

et al., 2023b; Bang et al., 2023a; Wang et al., 2024;

Liu et al., 2023), fairness (Gallegos et al., 2023; Li

et al., 2023; Wan et al., 2023; Wang et al., 2023a),

and safety (Wei et al., 2023; Kumar et al., 2023;

Tian et al., 2023; Yuan et al., 2023; Wang et al.,

2023b). Different from the previous works men-

tioned above, this paper evaluates LLMs from a

calibration perspective and aims to answer the fol-

lowing question: does ChatGPT itself know that it

does not know?

4.2. Uncertainty of LLMs

Due to the popularity of large language model stud-

ies, several concurrence works are coming out

during our submission. For example, (Ye et al.,

2024) introduces a new benchmarking approach

for LLMs that integrates uncertainty quantification.

However, the method is white-box and can not

assess the widely deployed closed-source LLMs,

such as ChatGPT and GPT-4. (Xiong et al., 2023)

explores black-box methods for confidence elicita-

tion for LLMs on five types of tasks and finds that

LLMs tend to be over-confident. Our paper is a

complementary work that verifies this finding on

different tasks and datasets.

5. Conclusion

In this paper, we examined ChatGPT’s black-box

calibration capability and proposed three types of

proxy confidence: quantitative confidence, qualita-

tive confidence, and answer consistency. Our ex-

periments on five datasets revealed that ChatGPT

has a certain level of black-box calibration ability. Al-

though the quantitative confidence metric showed

a strong positive correlation with accuracy in some

datasets, this was not the case for all datasets. Our

analysis indicates that ChatGPT does not learn

this ability from simple heuristics but may learn it

implicitly through reinforcement learning. Overall,

our findings contribute to a better understanding of

the capabilities of ChatGPT and provide insights

for future research.
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