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Abstract

Despite the superior performance, Large Language Models (LLMs) require significant computational resources for
deployment and use. To overcome this issue, quantization methods have been widely applied to reduce the memory
footprint of LLMs as well as increase the inference rate. However, a major challenge is that low-bit quantization
methods often lead to performance degradation. It is important to understand how quantization impacts the
capacity of LLMs. Different from previous studies focused on overall performance, this work aims to investigate the
impact of quantization on emergent abilities, which are important characteristics that distinguish LLMs from small
language models. Specifically, we examine the abilities of in-context learning, chain-of-thought reasoning, and
instruction-following in quantized LLMs. Our empirical experiments show that these emergent abilities still exist
in 4-bit quantization models, while 2-bit models encounter severe performance degradation on the test of these
abilities. To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact
analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance
compensation through model fine-tuning. Our work derives a series of important findings to understand the im-
pact of quantization on emergent abilities and sheds light on the possibilities of extremely low-bit quantization for LLMs.

Keywords: large language models, quantization, adavanced abilities

1. Introduction

Recently, Artificial Intelligence (Al) has witnessed
remarkable progress due to the emergence of
Large Language Models (LLMs) (Brown et al.,
2020; Zhao et al., 2023). Compared with small-
sized language models, LLMs, which largely scale
the model size and training corpus size, have ex-
hibited very different behaviors when elicited by
specially designed prompts. Generally, LLMs can
acquire more superior abilities, such as in-context
learning (ICL, Brown et al. 2020) and chain-of-
thought reasoning (CoT, Wei et al. 2022), which
may not be present in small-sized language models.
Such abilities are often formally called emergent
abilities (Wei et al., 2022)".

Despite the superior performance, it is very costly
to deploy LLMs in real-world applications due to
the huge model size. Faced with this issue, model
quantization (Dettmers et al., 2022; Frantar et al.,
2022; Yao et al., 2023a) has become a widely

*Corresponding author.

There is still no consensus on the existence of emer-
gent abilities, due to the lack of continuity in evaluation
metrics and model sizes in the empirical study (Wei et al.,
2022). It is also known that small models can possess
some emergent abilities with special adaptation. Despite
that, we still use this term to emphasize the superior
performance of LLMs.

used approach to reducing the memory footprint of
LLMs. The essential idea of quantization is to map
floating-point numbers into low-bit integers (e.g.,
BF16 to INT8), so as to reduce the total model
bits. Typically, existing methods take a post-training
quantization (PTQ) approach (Frantar et al., 2022;
Dettmers et al., 2022) without retraining the model
parameters. However, existing PTQ methods of-
ten suffer from performance degradation in low-bit
quantization.

To use the quantized LLMs in an effective way,
it is important to understand what level of perfor-
mance can be attained in varied bit precision, e.g.,
what is the lowest bit precision for quantization to
achieve decent performance on a specific task?
More recently, several studies have conducted
comprehensive evaluation experiments on the im-
pact of model quantization on the performance of
LLMs (Yao et al., 2023b; Dettmers and Zettlemoyer,
2022). However, they mainly analyze the general
performance of quantized LLMs (e.g., language
modeling), lacking a deep investigation into LLM’s
abilities on complex tasks.

In this work, we focus on examining the perfor-
mance of quantized LLMs on solving complex tasks,
to explore the impact of quantization on the emer-
gent abilities of LLMs. As demonstrated in previ-
ous studies (Wei et al., 2022), there exists a strong
dependency between emergent abilities and pa-
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rameter scale. It is curious whether the emergent
abilities would vanish under the setting of low-bit
precision though the model size remains to be the
original scale. In addition, it is also important to ex-
plore the factors (e.g., the model structure) that po-
tentially affect the emergent abilities. Furthermore,
we are also interested in the potential approaches
to enhance the performance of the low-bit models.

Specially, we aim to answer the following two
questions: (1) Do emergent abilities exist in
quantized large language models? If so, what
level of performance it can achieve? (2) How to
enhance the performance of low-bit models? To
answer the two key questions, we assess three key
abilities, namely in-context cearning (ICL), chain-of-
thought reasoning (CoT), and Instruction-Following
ability (IF), on a collection of LLaMA models (Tou-
vron et al., 2023) which are widely used as the
backbone models. We conduct extensive empirical
experiments, aiming to gain a better understanding
of the model performance of quantized LLMs.

For the first question, we evaluate the LLaMA
models at four sizes (i.e., 7B, 13B, 30B, and 65B),
examining their performance across a range of pre-
cision levels: 2-bit, 4-bit, 8-bit, and 16-bit. Our ex-
periments indicate that 4-bit precision yields the
most favorable trade-off between model perfor-
mance and memory footprint, achieving superior
results with the same amount of allocated total bits.
However, all models at different sizes suffer from a
severe decline at 2-bit precision.

Regarding the second question, we carefully ex-
amine the quantization sensitivity of different model
components (or substructures), specifically atten-
tion and feed-forward networks (FFN). In our experi-
ments, we find that FFN plays a crucial role in retain-
ing the model performance for low-bit quantization.
We also evaluated the effects of outlier dimensions,
which are specific dimensions that exhibit signifi-
cantly higher values compared to others in feature
activations. We find the outlier dimensions affecting
most Transformer layers are primarily responsible
for the decline in the quantization performance, and
they mainly concentrate on the down projections
of FFN. These observations motivate us to design
fine-grained substructure quantization strategies
for improving the performance of low-bit models.

Furthermore, we study how to enhance the
performance of quantization models through fine-
tuning. We evaluate the impacts of different fine-
tuning methods executed before and after quantiza-
tion. Our results reveal that parameter-efficient fine-
tuning after quantization can achieve commend-
able performance with significantly reduced com-
putational resources. Our approach can fine-tune a
2-bit LLaMA-65B model on a single NVIDIA A100,
surpassing the performance of a 16-bit LLaMA-13B
on zero-shot MMLU dataset.

2. Background

In this section, we introduce the background for
emergent abilities and post-training quantization.

Emergent Abilities With the increasing of model
parameters and training corpus, LLMs exhibit some
special abilities that may not be present in small-
sized language models, called emergent abili-
ties (Wei et al., 2022). Emergent abilities are an im-
portant indication of superior performance of LLMs,
which has received much attention in the research
community. Following the survey on LLMs (Zhao
etal., 2023), we focus on discussing three key emer-
gent abilities, namely in-context learning, chain-of-
thought reasoning, and instruction following. Next,
we will briefly introduce each ability.

* In-Context Learning (ICL) was introduced by
GPT-3 (Brown et al., 2020) to solve complex tasks
through specially designed prompts. It can effec-
tively guide LLMs to generate the intended output
for test examples by leveraging natural language
instructions and/or task demonstrations, without ne-
cessitating additional training or gradient update.

* Chain-of-Thought reasoning (CoT) is a special
prompting strategy that tackles intricate tasks that
encompass multiple reasoning steps, such as math-
ematical word problems. It incorporates interme-
diate reasoning steps for each demonstration in
the prompt, thus eliciting the capacity of solving
complex tasks via step-by-step reasoning.

* Instruction Following (IF) refers to the superior
ability that a LLM follows human instructions and
completes the target task as needed. Though it
shares a similar format with ICL by using natural
language instructions, it often includes no demon-
strations and requires specific tuning (i.e., instruc-
tion tuning) to elicit this ability.

Note that emergent abilities can be defined on dif-
ferent tasks or settings. We select the three abilities
for study, mainly because they are widely utilized
for solving complex tasks.

Post-Training Quantization Due to the huge
number of parameters, it is often infeasible to con-
duct full-tuning on the model parameters. Thus,
post-training quantization (PTQ) (Dettmers et al.,
2022; Frantar et al., 2022; Yao et al., 2023b) meth-
ods are widely used for LLMs. For PTQ methods,
they often only rely on small calibration data to
tune the quantization parameters, which is very effi-
cient in implementation. In this work, we adopt
a popular quantization method, GTPQ (Frantar
et al., 2022), to conduct our experiments. Spe-
cially, GPTQ employs a layerwise reconstruction
loss to minimize the discrepancy between the orig-
inal weights (W) and the quantized weights (\/7\7)
through the optimization of the following objective:
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argming | WX — WX |2. It can achieve very
promising results for 4-bit quantization on LLMs,
and also provides support for lower bit precision for
weight quantization.

In addition to model weights, activations are also
considered for quantization. However, due to the
presence of outlier dimensions (Dettmers et al.,
2022) in the feature activation values, quantizing
activations in low-bit precision is widely acknowl-
edged as a challenging task. These outlier dimen-
sions exhibit significantly higher values compared
to others and become particularly prominent as the
model scale increases.

3. Do Emergent Abilities Exist in
Quantized LLMs?

In this section, we aim to investigate the existence
of emergent abilities in quantized LLMs, specifi-
cally focusing on in-context learning (ICL), chain-of-
thought reasoning (CoT), and instruction following
(IF). Next we first introduce the experimental setup
and then present our key findings.

3.1.

In-Context Learning Test In order to evaluate
the ICL ability, we utilize two widely used datasets
for evaluating LLMs: MMLU (Hendrycks et al.,
2021) and BBH (Srivastava et al., 2022a). MMLU
serves as a comprehensive benchmark for assess-
ing multi-task knowledge understanding in various
domains, encompassing fields such as mathemat-
ics, computer science, humanities, and social sci-
ence. Additionally, BBH is a challenging variant
of BigBench (Srivastava et al., 2022b), which is
proposed to concentrate on investigating the cur-
rently unsolvable tasks of LLMs. Then we conduct
evaluations on the MMLU (i.e., five- and zero-shot)
and BBH (i.e., three- and zero-shot) datasets, re-
spectively.

Experimental setup

Chain-of-Thought Reasoning Test To assess
the CoT ability of the model, we employ the widely
used GSMB8K dataset. GSMB8K is a reasoning
dataset comprising 8K problems that collectively
evaluate the model’s ability in arithmetic reasoning
and the composition of mathematical steps. Follow-
ing the methodology introduced in Fu et al. (2023),
we conduct evaluations using a few-shot setting,
where demonstrations are provided. Each demon-
stration is formatted as <input, CoT, output>, allow-
ing it to elicit the model’s capability to reason and
generate coherent chains of thought.

Instruction Following Test To evaluate instruc-
tion following ability, we refer to the evaluation set
in Alpacafarm (Dubois et al., 2023) and conduct an

automatic evaluation based on GPT3.5 (abbrevi-
ated as AlpacaFarm). Specifically, we select the 16-
bit LLaMA-7B as the baseline and compare it with
other quantized models. Then we employ ChatGPT
to automatically annotate which response from two
compared models each time is better for the user
query, and report the win rate (%) as the metric.

Quantization Settings To evaluate the perfor-
mance of the aforementioned emergent abilities of
quantization, we conduct a series of comprehen-
sive experiments. Our tests are conducted based
on the implementation of GPTQ-for-LLaMA 2, which
only focus on weight quantization and encompass
all model components (i.e., query, key, value, out-
put projection matrices in attention module and
gate, up, down projection matrices in the feed-
forward networks). For model size, we include
a collection of LLaMA models of 7B, 13B, 30B,
and 65B parameters. We consider quantization
at 2-bit, 4-bit, 8-bit, and a non-quantized (16-bit)
precision. These diverse configurations aim to thor-
oughly evaluate the impact of different quantization
settings on model performance.

3.2. Results and Analysis

In this part, we present the experimental results
and the corresponding analysis.

Overall, the three kinds of emergent abilities
seem to be seldom affected with 4-bit quanti-
zation. Table 1 presents the test results of the
models using 2-bit, 4-bit, 8-bit and 16-bit precision
across multiple datasets, including MMLU, BBH for
ICL, GSM8K for CoT, AlpacaFarm for IF and Wiki-
Text for general language modeling ability. As we
can see, the results obtained using 4-bit and 8-bit
quantization are very similar to the original perfor-
mance (i.e., 16-bit floating-point number). However,
a significant decline is observed when employing
2-bit quantization, with results approaching near-
random levels, e.g., around 0.25 in 4-choice classifi-
cation tasks for MMLU and BBH and 0.0 for GSM8K.
It indicates that 4-bit quantization can effectively
retain emergent abilities on these test datasets.

4-bit precision exhibits a favorable trade-off in
terms of both total bits and performance. As
shown in Table 1, it can be observed that 4-bit quan-
tization offers a notable reduction in memory cost.
To further examine the relation between model per-
formance and resource usage, we follow Dettmers
and Zettlemoyer (2022) to introduce the measure
of total bits by multiplying the number of the pa-
rameters and the bits, and report the test results

2https://github.com/qwopqwop200/GPTQ-for-LLaMa
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Size  Precision MMLU (Acc) BBH (Acc) GSM8k AlpacaFarm WikiText  Mem. Tokens/s
0-shot 5-shot 0-shot 3-shot (Acc) (PPL) (GiB)
16-bit 29.2 35.2 17.3 31.0 13.1 / 5.7 13.9 33.032
7B 8-bit 28.4 33.7 17.2 31.3 13.5 48.93 5.7 7.9 30.833
4-bit 31.0 34.2 18.8 30.8 12.2 47.26 5.8 4.8 31.317
2-bit 2.3 3.8 0.4 2.7 0.0 9.23 3937.9 3.2 33.266
16-bit 414 47.0 20.9 36.6 16.4 52.68 5.1 26.6 24.968
138 8-bit 40.5 46.3 21.1 37.2 16.5 52.56 5.1 14.8 17.754
4-bit 39.0 45.9 19.8 36.6 15.6 52.71 5.2 8.6 18.139
2-bit 4.9 14.8 4.2 18.1 0.0 74 142.6 5.5 18.422
16-bit 53.7 58.4 19.5 39.4 34.7 55.45 4.1 65.4 16.596
30B 8-bit 54.2 57.9 19.9 39.4 347 53.58 41 35.3 8.187
4-bit 53.7 57.3 18.3 40.2 35.4 53.24 4.2 20.0 8.371
2-bit 3.7 26.1 3.8 25.3 0.2 11.42 25.1 12.2 8.649
16-bit - - - - - - - - -
658 8-bit - - - - - - - - -
4-bit 571 63.0 21.9 421 48.5 30.37 3.9 38.2 4.793
2-bit 9.0 22.6 1.0 24.0 0.8 8.97 77.8 22.9 4.826

Table 1: Evaluation results on MMLU, BBH, GSM8k and AlpacaFarm of the model variants in the LLaMA
family. The results of the LLaMA-65B model at 16-bit and 8-bit precisions are not included due to memory

constraints on a single GPU.
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Figure 1: Performance comparison of quantized models under varied memory costs. For AlpacaFarm,
the term “Relative Score” denotes the score ratio between quantized models and GPT3.5. The z-axis

denotes the total number of bits after quantization.

in Figure 1 by varying the number of total bits. s
From the four accuracy curves corresponding to dif-
ferent bit precision, we can see that 4-bit precision
consistently exhibits higher model accuracy under
the same amount of total model bits. Thus, 4-bit
quantization is recommended to be used for a fa-
vorable balance between memory cost and model
performance in practice.

The scaling effect depends on specific tasks,
and increasing the model scale benefits the CoT
task the most. We conducted an investigation,
as depicted in Figure 1, to examine the impact of
scaling the total number of bits on the performance
of a low-bit model across multiple tasks. Overall,
our analysis reveals that for the 2-bit precision, in-
creasing the total bits (i.e.,a larger model size) does
not yield substantial improvements, especially for
MMLU and GSMB8K, as the obtained outcomes do
not exhibit superiority over random scores (i.e., 0.25
on MMLU and 0.0 on GSMB8K). Indeed, it is still a
challenging task to effectively mitigate the errors re-

sulting from quantization in 2-bit models. For 4-bit
(or above) precision models, we observe notable
improvements on the CoT tasks when increasing
the total bits, which are not that significant for ICL
test. Further, for IF test, a small model scale can
be sufficient to achieve very good performance in
our test experiments?.

Low-bit quantization performance benefits from
the demonstrations in ICL tests. For complex
tasks, we can provide few-shot demonstrations for
improving the model performance. To examine this,
in Table 1, we also present the results with few-shot
demonstrations for ICL. We can observe a notable
advantage of the five-shot setting compared to the
zero-shot setting, especially for 2-bit precision on
LLaMA-30B (i.e., 26.1 vs. 3.7). It suggests that the
low-bit quantization performance of LLMs can be
largely improved when appropriate demonstrations

We plan to conduct evaluation experiments on IF at
a larger scale.
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Bits

Cases

Score

Question:Indras has
half of the letters
names?

in Indras’ name.

6 letters in her name.
How many letters are in Indras and her sister’s

Her sister’s name has 4 more letters than

letters in her name.

4 Answer:Indras has 6
in Indras’ name.

half of the letters
3+ 4 =7.
has 7 letters.

2 Answer:Indras’
the letters in Indras’
4

30B

6 + 7 = 13.
name has 6 letters.
name.

Her sister’s name has 4 more letters than 35.4

So her sister’s name has 4 more letters than 3.
So her sister’s name has 7 letters.
The answer is

Indras has 6 letters and her sister
13 .

Her sister’s name has 4 more letters than half of 0.2
So she has 6 - 4 = 4 letters.

4 letters. The answer is

13B 4 Answer:Indras has 6 letters in her name.
half of the letters in Indras’ name.

The answer is 10

2 Answer:The answer is 15. Question: 15

So her sister’s name has 6 + 4 =

Her sister’s name has 4 more letters than 15.6

10 letters.

The answer is 15 . 0.0

7B 4 Answer:Indras has 6 letters in her name.
half of the letters in Indras’ name.
dras has 6 letters.
2 Answer:B. 82. M.H. or 4 weeks..

30..Cash.B.Age.B.G.o.just.J.1Age..

So her sister’s name has 6 + 4 =
Her sister’s name has 10 letters.
ungers are the best Cash...4........ 44 . 0.0

Her sister’s name has 4 more letters than 12.2
10 letters.

The answer is 10 .

In—

Table 2: Case study for the LLaMA models on GSM8K. The colors of pink and lime denote the wrong
and right prediction respectively. The score denotes the average accuracy over all of the GSM8K test set.

are utilized. However, such an improvement is not
significant for 2-bit precision in LLaMA-7B (i.e., 3.8
vs. 2.3), which indicates that the parameter scale
must reach a certain level for this ability.

For CoT tests, extreme 2-bit quantization re-
quires a large model scale. From Table 1, we
find that the CoT ability for 2-bit precision no more
exists for 7B and 13B models on our test datasets,
since they both get 0.0 accuracy on GSM8K while
30B achieves 0.2. It suggests a sufficiently large
model size is necessary for the CoT ability for 2-
bit quantization. In order to further investigate this
phenomenon, we conduct a case study analysis for
LLaMA models with 7B, 13B and 30B on GSM8K
test sets and show several test examples in Table 2.
From these examples, we can see that, the 7B
model was almost incapable of generating correct
text outputs, resulting in a garbled output. Though
the 13B model could generate response normally
but fail to produce the correct reasoning chain. As a
comparison, the 30B model succeeds in generating
the correct reasoning chain, albeit with inaccurate
inference results.

4. How to Enhance the Performance
of Low-bit Models?

In order to explore the strategies for achieving
higher performance with low-bit post-training quan-
tization (PTQ), we next conduct analysis experi-
ments to investigate the factors that affect the quan-
tization performance. First, we analyze the quanti-
zation sensitivity of fine-grained model structures.
Second, we examine the effects of performance
compensation via model fine-tuning.

Part Quantization Target Precision

Weights all component INT2/INT4
- ATT INT2/INT4
- FFN INT2/INT4
— crucial weights INT2/INT4

Activations  all non-outlier dimensions INT8
~+top-1 outlier dimension INT8
-+top-3 outlier dimensions INT8

Table 3: Experimental settings for quantization sen-
sitivity analysis. Since activations are more difficult
to be quantized, we adopt 8-bit quantization.

4.1. Quantization Sensitivity Analysis

4.1.1. Experimental Setup

As discussed in prior studies (Dettmers et al., 2022;
Yao et al., 2023b), different model components (or
feature dimensions) might exhibit varied sensitivity
to quantization, i.e., different levels of performance
degradation. In this part, we mainly focus on low-bit
quantization, and set up the following three experi-
ments about quantization sensitivity (Table 3):

« Component quantization analysis. In this ex-
periment, we examine the sensitivity of two major
components in the Transformer architecture, i.e.,
attention layers and feed-forward networks (FFN).
Specifically, we consider evaluating the perfor-
mance of two variants denoted as “—~ ATT” and
“= FFN”, where either the attention or FFN com-
ponents are preserved at FP16 precision, while
the remaining components are quantized into low
bits. It aims to analyze the level of performance
degradation for each kind of model component.

* Outlier quantization analysis. As found in prior
studies (Dettmers et al., 2022), quantizing large
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Figure 2: Impacts of different model components or
substructures on MMLU (five-shot). The memory
footprint is counted in GiB (in green dotted lines).

magnitude feature dimensions (called outliers) can
ruin quantization precision, especially when the out-
liers emerge in all Transformer layers. Thus we first
sort the outlier dimensions based on the number
of layers they affect and focus on the top-n dimen-
sions. Specifically, we first select the top outlier
dimensions in activations (preserved at Fp16 pre-
cision in the LLM.int8() method (Dettmers et al.,
2022)), and quantize those belonging to the top-
n dimensions and other non-outlier dimensions to
INT8 precision. The results are then compared
with the standard LLM.int8() method. This enables
us to investigate the impacts of outlier feature di-
mensions in terms of emergent abilities.
 Substructure quantization analysis. Prior stud-
ies focused on component or feature-level quantiza-
tion impacts. Furthermore, we observe varying im-
portance among different substructures within com-
ponents when quantizing LLMs. For instance, as
detailed in Section 4.1.2, outlier dimensions primar-
ily occur in the down projections of the FFN com-
ponents. Consequently, we advocate for a more
refined substructure-level quantization. Specifi-
cally, vital substructures within a component are
preserved at the FP16 precision level. We present
the results as 'non-crucial weights’, allowing us to
identify high quantization error in crucial weight ma-
trices using established quantization algorithms.

4.1.2. BResults and Analysis

The FFN component is of substantial signifi-
cance for 2-bit quantization. We conducted test
experiments to evaluate the quantization sensitivity
of different model components, specifically atten-
tion and FFN components. As 4-bit quantization
can retain the original performance while 2-bit mod-
els suffer from severe declines, we focus on ana-
lyzing the extreme 2-bit case. Results in Figure 2
demonstrate the FFN component exhibits substan-
tial significance for 2-bit models. Keeping FFN in
FP16 improves LLaMA-7B-2bit’s performance from

0.038 to 0.225 and LLaMA-13B-2bit’s performance
from 0.148 to 0.286. These improvements show
the importance of FFN components for retaining the
performance, which needs specific consideration
under extreme 2-bit quantization.

The outlier dimension which affects most of lay-
ers is primarily responsible for the performance
degradation. We also explore the impact of out-
lier dimensions on low-bit model performance, as
highlighted in Dettmers et al. (2022). Specifically,
we focus on outlier dimensions that influence the
majority of layers. We identify the top outlier di-
mensions by the number of layers they impact and
assess the effects of quantizing the top-1 and top-3
outlier dimensions while preserving other outlier
dimensions as FP16. The evaluation results for
LLaMA-7B and LLaMA-13B are shown in Figure 3.
Notably, these top outliers significantly impact quan-
tization performance, especially CoT results and
PPL scores. Interestingly, quantizing the top-1 out-
lier dimension results in more severe performance
degradation for LLaMA-13B compared to the 7B
model, indicating a larger model’s increased vulner-
ability to quantizing important outliers. Additionally,
outlier dimensions appear to emerge in specific
substructures of components; for example, they
mainly occur in the down projection of the FFN
components for LLaMA-7B.

2-bit model’s performance can be further en-
hanced with fine-grained substructure quan-
tization. In Figure 2, we maintain Fp16 preci-
sion for crucial substructure weights, termed "non-
crucial weights." We prioritize key weights in the
FFN’s "down" projections and select critical sub-
structures from the attention component based on
GPTQ quantization errors. For LLaMA-7B, we keep
"query" and "key" projections, and for LLaMA-13B,
we retain "key" and "output” projections. These con-
sistently outperform preserving the entire FFN com-
ponent (labeled "non-FFN") while reducing mem-
ory usage compared to "non-FFN" (green dotted
line). Further results for GSM8K and WikiText will
be shown in the Appendix. These findings high-
light the importance of fine-grained quantization in
extreme 2-bit quantization.

4.2. Fine-tuning Compensation Analysis

4.2.1. Experimental Setup

Recent studies have explored fine-tuning for com-
pensating quantization performance (Yao et al.,
2023b; Dettmers et al., 2023). Inspired by these
works, we investigate fine-tuning’s impact on quan-
tization performance through two experiment set-
tings: fine-tuning before and after quantization. In
both settings, we mainly focus on 2-bit and 4-bit
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Figure 3: Impacts of feature outliers on LLaMA models (7B and 13B). “non-outlier” denotes the quantization
on all non-outlier dimensions, and “+top-1” and “+top-3” refer to quantization of the top-1 and top-3 outlier
dimensions in addition to the non-outlier dimensions. “|” indicates that lower indicators are better.

#To Bits MMLU GSMB8K AlpacaFarm
Base LoRA FFT Base LoRA FFT Base LoRA FFT
16-bit 35.2 37.7 417 131 25.8 38.0 / 45.67 75.00
7B 4-bit  34.2 35.7 401 13.5 227 35.7 4726 39.55 73.59
2-bit 3.8 1.2 9.0 0.0 0.0 2.6 9.23 6.65 5.68
16-bit 47.0 46.0 477 164 35.2 46.0 5268 74.68 74.69
13B  4-bit 46.3 46.7 46.7 16.5 30.7 444 5271 7163 7559
2-bit 14.8 20.7 184 0.0 2.3 2.0 7.4 13.25 15.37

Table 4: The results of pre-quantization fine-tuning on MMLU, GSM8k and AlpacaFarm of LLaMA families.
We denote “Base” as baseline results without fine-tuning. “LoRA” and “FFT” denote parameter-efficient

fine-tuning LoRA and full-parameter fine-tuning respectively.

quantization for LLaMA model weights on MMLU,
GSMB8K, and AlpacaFarm tasks. For model sizes,
we use models 7B and 13B in the first setting and
7B, 13B, and 65B in the second setting. Next, we
provide detailed fine-tuning methods.

Pre-Quantization Fine-tuning In this experi-
ment, we consider a common setting where an
optimized model needs to be quantized for prac-
tical deployment. For the ICL ability test, we fol-
low Dettmers et al. (2023) and evaluate the impact
of fine-tuning using the Alpaca dataset (Taori et al.,
2023). For CoT ability testing, we follow Chung
et al. (2022) and use the CoT collection, a mixture
of nine datasets with CoT annotations written by
human raters. For IF ability test, we follow (Taori
et al., 2023) to fine-tune LLaMA models on Alpaca
dataset since it is reported to benefit LLaMA models
in instruction following. Additionally, we incorporate
LoRA (Hu et al., 2022) to explore the impacts of
parameter-efficient fine-tuning on LLMs.

Post-Quantization Fine-tuning We investigate
the effectiveness of fine-tuning to counteract
quantization-induced performance decline in
LLaMA models. Our goal is to gauge fine-tuning’s
ability to mitigate quantization’s negative impact
on model performance. To facilitate parameter-

efficient fine-tuning after weight quantization, we
develop a specialized tool. This tool enables
fine-tuning of LLaMA-65B models at 2-bit precision
using just one A100 80G GPU, outperforming the
16-bit LLaMA-13B model (measured by MMLU,
5-shot). Optimizing quantized weights directly is
challenging and often requires techniques like
Quantization-Aware Training (QAT) (Liu et al,,
2023c). We draw inspiration from the parameter-
efficient fine-tuning methods (Liu et al., 2021; Gao
et al., 2023; ?), which entails training with a small
subset of parameters while keeping the remainder
fixed. These methods significantly reduce memory
requirements (Liu et al., 2023a; Gao et al., 2022;
Sun et al., 2020; Gao et al., 2020). Subsequently,
we adapt the widely used LoRA (Hu et al., 2022)
method by substituting its fixed pre-trained weights
with quantized weights generated by GPTQ. We
apply this adaptation to pre-trained weights from
LLaMA models at various scales (7B, 13B, 30B,
and 65B) and quantization levels (2-bit, 4-bit, and
8-bit) with GPTQ. Incorporating quantized weights
into the LoRA framework significantly reduces
memory consumption. Notably, fine-tuning the
LLaMA-65B model only consumes 17.8 GiB,
demonstrating efficient parameter utilization. The
code for this work is implemented using GPTQ
and LoRA and is available as an open-source
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project on https://github.com/RUCAIBox/
QuantizedEmpirical.

4.2.2. Results and Analysis

The benefits of pre-quantization fine-tuning en-
counter significant decline at 2-bit precision.
We perform comparison experiments, employing
full-parameter fine-tuning (FFT) and parameter-
efficient fine-tuning with LoRA on the FP1 6 model,
followed by quantization with GPTQ. Results are
summarized in Table 4. Compared to the base
model, FFT shows significant improvements in
MMLU, GSM8K, and AlpacaFarm. With 4-bit quan-
tization, these gains are maintained with minimal
performance degradation on MMLU and Alpaca-
Farm. However, with extreme 2-bit quantization,
the benefits of FFT decrease notably, especially
for GSM8K (2.6 for LLaMA-7B and 2.0 for LLaMA-
13B). Importantly, the CoT capability of LLMs is
severely compromised in this scenario (0.0 for both
LLaMA-7B and LLaMA-13B). This suggests that
pre-quantization fine-tuning struggles to effectively
compensate for performance degradation in low-bit
models on complex tasks.

Parameter-efficient fine-tuning still lags behind
full-parameter fine-tuning, especially on ICL
and CoT tasks. Parameter-efficient fine-tuning,
known for reducing fine-tuning parameters while
maintaining decent performance, has gained pop-
ularity (Liu et al., 2021, 2023a). We present LoRA
fine-tuning results in the "LoRA" column of Table 4.
LoRA demonstrates significant improvements over
base models in most cases, with performance ben-
efits persisting for 4-bit quantization but not always
for 2-bit quantization. However, LoRA still lags be-
hind FFT (e.g., 25.8 vs. 38.0 on GSM8K). Notably,
LoRA fine-tuning experiences a substantial per-
formance drop on GSM8K with 4-bit quantization,
suggesting that full-parameter fine-tuned models
may be more suitable for complex inference tasks
during quantization.

Post-quantization fine-tuning yields substantial
performance improvement meanwhile can be
conducted in a lightweight way. To fine-tune
a quantized model, we make two major modifica-
tions based on the original LoRA method. First, we
employed GPTQ to quantize the FP16 model to
2/4 bits. Subsequently, we replace the pre-trained
weights with the quantized weights, keeping the re-
maining steps unchanged. The results are shown
in the column “LoRA,” of Table 5. This approach
significantly reduces memory requirements for fine-
tuning, enabling fine-tuning of a 65B model on a
single NVIDIA A100. Compared with the base
model, LoRA, has a notable impact, especially at

#To Bits #Tr  Mem. 0-shot 5-shot
(M) (GiB) Base LoRA,Base LoRA,
7B 4-bit 20.0 3.8 31.0 314 342 368
2-bit 20.0 2.2 2.3 3.7 3.8 7.4
13B 4-bit 313 7.0 39.0 441 459 455
2-bit 31.3 3.9 4.9 28.3 148 289
658 4-bit 999 327 571 57.0 63.0 605
2-bit 999 178 9.0 420 226 444
Table 5: Results for LLaMA families on
MMLU.“Mem.  (GiB)” represents memory us-

age, and “#Tr (M)” indicates trainable parameters.
“LoRA,” stands for LoRA fine-tuning with quantized
weights, while “Base” refers to baseline results
without fine-tuning.

2 bits (e.g., 44.4 vs. 22.6 for the five-shot setting).
Notably, under fewer total bits, the 2-bit effect of
the 65B model surpasses the non-fine-tuned 13B
model with FP 1 6 precision on zero-shot setting (i.e.,
42.0 vs. 41.4). These findings demonstrate that
even after 2-bit quantization, large models can be
effectively enhanced through fine-tuning.

5. Related Work

In this section, we discuss the related work in two
major aspects.

Emergent Abilities Recent research has re-
vealed that some superior abilities in Large Lan-
guage Models (LLMs) may not be present in small
models, sparking great interest in their capabili-
ties (Wei et al., 2022). These abilities, such as
ICL for few-shot learning without parameter up-
date (Brown et al., 2020), CoT for complex reason-
ing with coherent chains of thought (Fu et al., 2023;
OpenAl, 2023), and IF for precise instruction exe-
cution (Taori et al., 2023; Chung et al., 2022), have
been explored in various tasks. However, there’s a
lack of comprehensive research evaluating these
abilities in quantized LLMs. Our work aims to fill this
gap by providing a detailed analysis of emergent
abilities in quantized LLMs.

Post-Training Quantization Post-training quan-
tization (PTQ) is a widely used technique to reduce
memory consumption and computational costs in
neural networks. Various studies have investigated
PTQ’s application to LLMs, involving quantization
of model weights (Frantar et al., 2022; Dettmers
and Zettlemoyer, 2022) and feature activations
(Dettmers et al., 2022; Yao et al., 2023b). PTQ
helps reduce training requirements with minimal
performance impact. However, comprehensive em-
pirical evaluations of quantized LLMs’ emergent
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abilities are lacking. Notably, relevant studies in-
clude Yao et al. (2023b), which analyze PTQ strate-
gies on LLMs, and Yao et al. (2023b), who explore
zero-shot performance scaling laws for k-bit quan-
tization. While these studies focus on overall abili-
ties, our perspective uniquely emphasizes the study
of emergent abilities in quantized LLMs.

6. Conclusion

In this work, we empirically explored how post-
training quantization affects the emergent abilities
of LLMs. We found that large models (fine-tuned or
not) perform well with 4-bit weight quantization but
degrade significantly at 2-bit precision. Moreover,
we delve into the fine-grained components and sub-
structures for studying the quantiztion sensitivity, re-
vealing that preserving crucial components, feature
dimensions, and substructures enhances low-bit
quantization. Additionally, fine-tuning mitigates per-
formance degradation in quantized models, show-
ing the great potential to enhance the capacity of
quantized LLMs.
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A. Appendix

A.1. Impacts of Model Components

We provide more details about the impacts of model
components or substructures on MMLU (5-shot),
GSMB8K and WikiText in Figure 4.

A.2. Case Study

Here, we present case studies for the performance
of quantized LLaMA models on MMLU, GSM8K and
AlpacaFarm datasets. The results involve model
scale of 7B (Table 6), 13B (Table 7) and 30B (Ta-
ble 8)
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Tasks Bits Cases Score

Question:Suppose now that a researcher wishes to use
information criteria to determine the optimal lag
MMLU length for a VAR. 500 observations are available for
the bi-variate VAR, and the values of the determinant
of the variance-covariance matrix of residuals are
0.0336, 0.0169, 0.0084, and 0.0062 for 1, 2, 3, and
4 lags respectively. What is the optimal model order
according to Akaike’s information criterion?

16 Answer:D 35.2

4 Answer:D 34.2

2 Answer:4 1 and, a 3.8
Question:Indras has 6 letters in her name. Her sis-—
ter’s name has 4 more letters than half of the letters

GSM8K in Indras’ name. How many letters are in Indras and
her sister’s names?

16 Answer:Indras has 6 letters in her name. Her sister’s 13.11
name has 4 more letters than half of the letters in
Indras’ name. So her sister’s name has 6 + 4 = 10
letters. Indras’ name has 6 letters. So Indras’ name
has 6 - 10 = -4 letters. The answer is -4.

4 Answer:Indras has 6 letters in her name. Her sister’s 12.21
name has 4 more letters than half of the letters in
Indras’ name. So her sister’s name has 6 + 4 = 10
letters. Indras has 6 letters. Her sister’s name has
10 letters. The answer is 10.

2 Answer:B. 82. M.H. or 4 weeks.. ungers 0
are the best Cash.. D 44, 30..
Cash.B.Age.B.G.o.just.J.1lAge. 6 days are.. which
4b. J.od4.b.gone and the best of the best.

Question:How can I increase my productivity while
working from home?
AlpacaFarm

16 Answer: Here are some tips to help you increase your 1121
productivity while working from home: 1. Set work
hours and stick to them. 2. Have a designated work
area. 3. Avoid distractions. 4. Set a schedule and
stick to it...

4 Answer:It's important to know what you want to get 1058

done and to set priorities. Knowing what to do and
where to start is key to staying productive. Here are
some tips to help you stay productive: 1. Work in a
well-1lit area that'’s free from distractions. 2. Set
a reasonable time limit for yourself. 3. Set a spe-
cific goal for each day...

2 Answer:The best The Behavre when L9Life of. Their, Be 608
in the World Op LoDur and Liflo the attitudeFHHow the
of them onlineDo 1ld vs Life in the future play that,
but the process of, and is a habit of, the pro will be
the toys, but-fold to-magnet-H of who and ISP a book.

Table 6: Case study for the influence of post-training quantization on LLaMA-7B.
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Tasks

Bits

Cases

Score

13B

MMLU

Question:Suppose now that a researcher wishes to use
information criteria to determine the optimal lag
length for a VAR. 500 observations are available for
the bi-variate VAR, and the values of the determinant
of the variance-covariance matrix of residuals are
0.0336, 0.0169, 0.0084, and 0.0062 for 1, 2, 3, and

4 lags respectively. What is the optimal model order
according to Akaike’s information criterion?

Answer:A
Answer:A
Answer:C. 1, 2,

47.0
45.9
14.8

GSM8K

16

Question:Indras has 6 letters in her name. Her sis-—
ter’s name has 4 more letters than half of the letters
in Indras’ name. How many letters are in Indras and
her sister’s names?

Answer: Indras has 6 letters in her name. Her sis-
ter’s name has 4 more letters than half of the letters
in Indras’ name. So her sister’s name has 6 + 4 = 10
letters. The answer is 10.

Answer:Indras has 6 letters in her name. Her sister’s
name has 4 more letters than half of the letters in
Indras’ name. So her sister’s name has 6 + 4 = 10
letters. The answer is 10.

Answer:The answer is 15. Question: 15 —. The answer
is 15. The answer is 15. The answer is 15. The an-
swer is 15.

16.37

15.62

AlpacaFarm

16

Question:How can I increase my productivity while
working from home?

Answer: Here are some good tips to increase your pro-
ductivity while working from home: 1. Get dressed
for work: Taking the time to get dressed and shower
can set a positive tone for your workday. 2. Have

a dedicated and organized workspace: Having a space
that is only dedicated to work can help you focus on
your tasks...

Answer:Here are four ways you can increase your pro-—
ductivity while working from home: 1. Set a produc-—
tivity schedule: Set a schedule for your day that
includes work and breaks, and stick to it. 2. Get
out of the house: Go to a coffee shop or a library
to get out of the house and into a different environ-
ment...

Answer:The energy of the energy of the Renewable en-
ergy of the energy of the Renewable energy of the Re-
newable energy of the Renewable energy of the Renew-
able energy of the Renewable energy of the Renewable
energy. ..

1084

1119

635

Table 7: Case study for the influence of post-training quantization on LLaMA-13B.
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Tasks

Bits

Cases

Score

30B

MMLU

Question:Suppose now that a researcher wishes to use
information criteria to determine the optimal lag
length for a VAR. 500 observations are available for
the bi-variate VAR, and the values of the determinant
of the variance-covariance matrix of residuals are
0.0336, 0.0169, 0.0084, and 0.0062 for 1, 2, 3, and

4 lags respectively. What is the optimal model order
according to Akaike’s information criterion?

Answer:A
Answer:A
Answer:C

58.4
57.3
26.1

GSM8K

16

Question:Indras has 6 letters in her name. Her sis-—
ter’s name has 4 more letters than half of the letters
in Indras’ name. How many letters are in Indras and
her sister’s names?

Answer: Indras has 6 letters. Her sister’s name has
4 more letters than half of the letters in Indras’
name. So her sister’s name has 4 more letters than 3.
So her sister’s name has 4 + 3 = 7 letters. Indras
has 6 letters and her sister has 7 letters. So the
answer is 6 + 7 = 13.

Answer:Indras has 6 letters in her name. Her sister’s
name has 4 more letters than half of the letters in
Indras’ name. So her sister’s name has 4 more let-—
ters than 3. 3 + 4 = 7. So her sister’s name has 7
letters. Indras has 6 letters and her sister has 7
letters. 6 + 7 = 13. The answer is 13.
Answer:Indras’ name has 6 letters. Her sister’s name
has 4 more letters than half of the letters in Indras’
name. So she has 6 — 4 = 4 letters. 4 letters. The
answer is 4.

34.65

35.41

AlpacaFarm

16

Question:How can I increase my productivity while
working from home?

Answer: There are several ways to increase your pro-—
ductivity at home. Here are some of the most effec-
tive: 1. Make a schedule: Scheduling your day and
prioritizing your tasks can help you stay organized
and boost your productivity. 2. Take breaks: Taking
regular breaks can help keep you fresh and focused...
Answer:Here are some ways you can increase your pro-—
ductivity while working from home: 1. Create a sep-
arate workspace: One of the biggest challenges of
working from home is the tendency to mix work life
with home life. You can overcome this by creating a
separate workspace in your home that you can set aside
just for work...

Answer:The answer is to have a work-life-home type
lifestyle.

1142

1120

630

Table 8: Case study for the influence of post-training quantization on LLaMA-30B.
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