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Abstract
Table-text document (e.g., financial reports) understanding has attracted increasing attention in recent two years.
TAT-DQA (Zhu et al., 2022) is a realistic setting for the understanding of visually-rich table-text documents,
which involves answering associated questions requiring discrete reasoning. Most existing work relies on
token-level semantics, falling short in the reasoning across document elements such as quantities and dates. To
address this limitation, we propose a novel Doc2SoarGraph model that exploits element-level semantics and
employs Semantic-oriented hierarchical Graph structures to capture the differences and correlations among
different elements within the given document and question. Extensive experiments on the TAT-DQA dataset
reveal that our model surpasses the state-of-the-art conventional method (i.e., MHST) and large language
model (i.e., ChatGPT) by 17.73 and 6.49 points respectively in terms of Exact Match (EM) metric, demonstrating
exceptional effectiveness. The source code is publicly available at https://github.com/fengbinzhu/Doc2SoarGraph/.
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1. Introduction

Table-text documents containing a hybrid of tabular
and textual data are pervasive in the real world, e.g.
SEC filings, academic papers and medical reports.
Recently, there has been a surge of work attempt-
ing to intelligently understand table-text documents
through answering associated questions (Chen
et al., 2020; Zhu et al., 2021; Chen et al., 2021;
Zhao et al., 2022). However, these works focus on
the well-annotated structured tables and manually
selected paragraphs from the original documents,
which is not in line with reality.

Research on the intelligent understanding of real-
world table-text documents has been activated with
the release of TAT-DQA (Zhu et al., 2022), a Docu-
ment Visual Question Answering (DocVQA) chal-
lenge over financial documents. In TAT-DQA, each
document contains extensive numerical data in
both tabular and textual formats, where discrete
reasoning capabilities (e.g., arithmetic calculation,
comparison, counting and sorting) are demanded
to answer the questions. One example is shown in
Figure 1. To address this challenge, MHST (Zhu
et al., 2022) applies sequence tagging on each to-
ken to select relevant tokens from the document,
followed by answer inference over the selected to-
kens. Though effective, the performance of MHST
is still not optimal. One reason is that the tokens
only carry part of the semantics of the original data.
For example, as shown in Figure 1, the spectrum
license fee in 2019 is 1, 731 million, while the quan-
tity 1, 731 corresponds to four tokens, i.e., “1”, “,”,
“73”, and “##1” after tokenization. The model can

*Corresponding author

Q: What was the total cost in Wireless including spectrum 
     license fee in 2019? 
A: 1,320 + 1,731 = 3,051 million

The spectrum license fee
in 2019 is 1,731 million

Figure 1: An example from TAT-DQA. We leverage
four types of semantic elements from the question
and document to facilitate discrete reasoning, i.e.,
Date, Quantity, Question and Block, marked in red,
purple, yellow and blue rectangle, respectively. The
quantities with yellow background are supporting
evidence to the question. The “million” with green
background is the scale of the answer.

hardly infer the meaning of the original number from
every single token unless they are all combined.

To mitigate this issue, we exploit element-level se-
mantics to facilitate discrete reasoning. As shown
in Figure 1, we consider four types of elements, in-
cluding Question, Block, Quantity and Date. Each

https://github.com/fengbinzhu/Doc2SoarGraph/
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of these elements carries more complete seman-
tics than single tokens that can be leveraged by the
model. The differences and correlations among
them can provide rich and crucial clues for the
model to conduct reasoning to derive the answer.
For example, though 2019 and 1, 731 in Figure 1 are
both numerical values, the former refers to “year
2019” (date), while the latter is “spectrum license
fee” (quantity), which cannot be compared. As
such, it would be more appropriate to model the
different types of elements separately. Moreover, to
understand the numerical value 1, 731 in the docu-
ment, it is essential to consider the text information
of the corresponding document block. Thus, the
correlations of different elements should also be
leveraged to facilitate model’s reasoning process.

In this work, we propose a Doc2SoarGraph
model for question answering over visually-
rich table-text documents with semantic-oriented
hierarchical graphs. It models the differences and
correlations of the elements (i.e., quantities, dates,
question and document blocks) in the input data
with hierarchy graph structures taking each ele-
ment as one node. Considering that about 20% of
the documents are multi-page, we first transform
each multi-page document to a single image of the
model preferred dimension. Then, given a ques-
tion and a document, we adopt LayoutLMv2 (Xu
et al., 2021) to take in the question, document text
and the corresponding layout and document image,
and initializes the representations of all semantic
elements with the output. After that, we construct
a hierarchy of four graphs in two levels. In the first
level, we build three graphs: a Quantity Compari-
son (QC) graph to model the magnitude and com-
parison among all the Quantity nodes; a Date Com-
parison (DC) graph to model the time sequence
among all the Date nodes; a Text Relation (TR)
graph with the Question node and Block nodes as
these nodes usually contain rich text information.
In the second level, on top of these three graphs, a
Semantic Dependency (SD) graph is built with all
types of nodes to model the semantic relationships
and dependencies among them. Then, the model
selects the most question-relevant nodes from the
SD graph and applies different reasoning strategies
over the selected nodes to derive the final answer
based on the answer type.

Our main contributions are three-fold. 1)
We propose to exploit element-level semantics
to facilitate discrete reasoning over visually-rich
table-text documents. 2) We develop a novel
Doc2SoarGraph model to model the differences
and correlations among various elements with
semantic-oriented hierarchical graph structures,
which owns greatly enhanced evidence extraction
and discrete reasoning capabilities. 3) We conduct
extensive experiments on TAT-DQA dataset, and

the results show that our Doc2SoarGraph model
outperforms both state-of-the-art conventional
method (i.e., MHST) and large language model
(LLMs) (i.e., ChatGPT) by 17.73 and 6.46 points
respectively in Exact Match (EM), demonstrating
remarkable effectiveness.

2. Doc2SoarGraph Model

Consider a natural language question denoted as
Q, and a visually-rich table-text document denoted
as D with several pages P = (P1, P2, ..., P|P |),
where |P | is the number of pages. In the
document D, the page p has a list of blocks
Bp = (Bp

1 , B
p
2 , ..., B

p
|B|) that are generated by an

OCR/PDF converter, where |B| is the number of
blocks on the page p. Our goal is to generate the an-
swer to the question Q that usually requires discrete
reasoning based on the document D. To solve the
problem, we develop a Doc2SoarGraph model. An
overall architecture is illustrated in Figure 2.

2.1. Document Transformation
As pre-processing, we transform each multi-page
document in TAT-DQA into a one-page document
with a simple yet effective method. In particular,
we first transform each page to a single image with
the same dimension and then combine the corre-
sponding multiple images of the pages vertically
following the original page order. Then, we resize
the combined image to the dimension of a single-
page document, which is preferred by the model.
Since the document text and layout information
are available in TAT-DQA, we further adjust the lay-
out information according to the dimension of the
final document image. After that, all documents
are considered as single-page documents and we
obtain the initial visual embeddings of each docu-
ment by applying the same CNN-based encoder
as LayoutLMv2 (Xu et al., 2021).

2.2. Node Initialization
Rather than only relying on token-level semantics,
our method also exploits element-level semantics
to facilitate discrete reasoning with graph structures.
In particular, we harness four types of elements,
namely, the question, each document block gener-
ated by the OCR/PDF converter, each quantity and
each date in the question and the document block,
which are named Question, Block, Quantity and
Date, respectively. We take each type of element
as a kind of node, and get four types of nodes to
build the graphs, i.e., Question node, Block node,
Quantity node and Date node. We then employ
LayoutLMv2LARGE (Xu et al., 2021) to take as input
the question, the document text and layout infor-
mation, and the final document image, and output
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Figure 2: An overview of proposed Doc2SoarGraph model. Take the sample in Figure 1 as an example.

the token-level hidden representations. Then, we
compute the mean of the corresponding tokens for
each node as its initial representation.

2.3. Node Selection

Based on the four types of nodes as explained
above, we construct hierarchical graphs to model
their relationships so as to select those most rele-
vant nodes as the supporting evidence to the ques-
tion and facilitate discrete reasoning of the model.

• Hierarchical Graphs Construction. We con-
struct four graphs, which form a two-level hierarchy,
to model the element-level semantics. Formally,
a graph G is represented by an adjacency matrix
A ∈ RN×N , where N is the number of nodes. If
there is an edge connecting the ith and jth nodes,
we assign value 1 to the corresponding position
(i, j) in the matrix A, and otherwise 0.
Quantity Comparison (QC) Graph (denoted as
GQC): It is dedicated to retaining the numerical
magnitude and comparison between every two
quantities. For two Quantity nodes qi, qj , if qi ≥ qj ,
a directed edge eij = (qi, qj) pointing from qi to qj

is added following NumNet (Ran et al., 2019).
Date Comparison (DC) Graph (denoted as GDC ):
It is dedicated to retaining the time sequence and
comparison between every two dates. For two Date
nodes di, dj , a directed edge eij = (di, dj) pointing
from di to dj is added if di ≥ dj (di later than dj).
Text Relation (TR) Graph (denoted as GTR): It is
dedicated to associating the informative descrip-
tions among the question and the document blocks.
The Question node and a Block node or every two
Block nodes will have an undirected edge between
them, forming a fully-connected graph.
Semantic Dependency (SD) Graph (denoted as
GSD): It is built with all the four types of nodes to
model the semantic dependencies of the Quantity
or Date node upon the Question or Block node,
besides attaining all the correlations in the above
three graphs. 1) Edges for two Quantity nodes, two
Date nodes, a Question node and a block node,
or two Block nodes will be added in GSD following
the construction rules for GQC , GDC , and GTR, re-
spectively. 2) Between one Quantity node and one
Question or Block node, a directed edge pointing
from the Quantity node to the Question node or
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the Block node will be added to the graph GSD if
the quantity is part of the question or block; edges
between one Date node and one Question or Block
node are added in the same way.

• Node Classifier. After constructing the hierarchi-
cal graphs, a dedicated graph convolution network
(GCN) (Kipf and Welling, 2017a) is applied for each
graph to learn node representations respectively.
As illustrated in Figure 2, the GCN (QC), GCN (DC)
and GCN (TR) are applied respectively on the QC
graph, DC graph and TR graph to learn correspond-
ing node representations, which are then used to
initialize the node representations of the SD graph.
The GCN (SD) is applied on the SD graph to learn
the final representation of each node hnode. A bi-
nary node classifier is then applied on each node
in the SD graph to predict whether the node is rele-
vant to the question or not. The probability on node
classification is computed as

Pnode = softmax(FFN(hnode)) (1)

where FFN is a feed-forward network with two lay-
ers. All the nodes that are classified as relevant
to the question are collected. The representation
of the SD graph hSD is obtained by computing the
mean of all the node representations in SD graph.

2.4. Answer Generation
We generate the final answer with the selected
nodes, as follows.
• Token Masking. Based on the selected nodes,
we mask the tokens that are not included in the
selected Block nodes to reduce the search space
for answer prediction and update the token repre-
sentations with their corresponding block node rep-
resentations. Particularly, we obtain the token-level
representations from the output of the LayoutLMv2
encoder first. Then, we mask the tokens not cov-
ered by any selected block nodes. For tokens that
are included in the selected block nodes, we update
the representation of each token by concatenat-
ing its token representation with the corresponding
block representation,

h
′

token = concat(htoken, hnode) (2)

where htoken is the token representation output
from the encoder; hnode is the representation of the
token’s corresponding block node obtained from the
SD graph; concat denotes concatenation; h′

token is
the updated token representation. For tokens that
are masked in the sequence, we pad their repre-
sentations with zero. Finally, we obtain a sequence
of updated token representations h

′

[t1,t2,...,ts] and s

is the maximum sequence length.

• Answer Type Classifier. TAT-DQA offers four
different answer types, i.e., Span, Spans, Counting,

Arithmetic. We adopt an Answer Type Classifier
to predict the answer type of a question, which is
essentially a multi-class classifier taking the SD
graph representation hSD as input. The probability
of each answer type is computed as

Ptype = softmax(FFN(hSD)). (3)

FFN is a feed-forward network with two layers.

• Span Classifier. For the Span question, the
answer is a sub-sequence of the input sequence,
which is achieved by the Span Classifier. It takes
the token representations obtained in Section 2.4
as the input and predicts the start and end indices
of the sub-sequence. Formally, the probability dis-
tribution of the start position over the sequence is
obtained by

Pstart = softmax(FFN(h
′

[t1,t2,...,ts])) (4)

where FFN is a feed-forward network with two lay-
ers. Similarly, we can obtain the probability of the
end position Pend.

• Token Classifier. For the Spans and Counting
questions, a Token Classifier is employed to infer
the final answer. In particular, for each valid token
obtained in Section 2.4, Token Classifier assigns a
B, I or O label and takes those tagged with B and
I to generate the final answer. Formally, it takes
in the updated representation h

′

token of each valid
token and computes the probability of the label as

Ptoken = softmax(FFN(h
′

token)) (5)

where FFN is a feed-forward network with two lay-
ers. After obtaining the tokens, the final answer
for Spans and Counting questions is generated
heuristically following MHST (Zhu et al., 2022).

• Tree Generator. For the Arithmetic question,
a Tree Generator is adopted to generate an ex-
pression tree with the selected Quantity and Date
nodes, which can be executed to infer the answer.
Following MHST (Zhu et al., 2022), the Tree Gener-
ator is implemented with GTS (Xie and Sun, 2019),
which generates expression trees in a goal-driven
manner. To adapt GTS in our model, we make
two major modifications. First, instead of feeding
all the numbers and dates in the input into GTS,
we only feed the selected most relevant Quantity
and Date nodes, which significantly reduces the
number of candidates for GTS to predict each leaf
node and alleviates the difficulties. Second, when
GTS predicts each node in the expression tree, we
revise the generation of the context vector by at-
tending to all the nodes in the SD graph instead
of the tokens in the sequence, which can offer en-
hanced comprehensive semantic representations
of the document.



5123

Type Model EM F1

Human Expert Performance 84.10 90.80

Fine-tuned
NumNet+ V2 30.60 40.10
TagOp 33.70 42.50
MHST 41.50 50.70

LLMs
MAmmoTH (70B) 35.42 42.82
WizardMath (70B) 36.44 41.55
LLaMA 2-Chat (70B) 41.91 49.74
ChatGPT 52.74 61.40

Ours Doc2SoarGraph (+6.49) (+6.21)
59.23 67.61

Table 1: Performance of our model and baseline
models on the test set of TAT-DQA.

The expression tree generated by the Tree Gener-
ator includes three kinds of nodes: the arithmetical
operators Vop (i.e., +,-,*,/), the constant numbers
Vcon (i.e., 1,2,3, .., 100 ), and the quantity and date
nodes Vnode that are selected in Section 2.3. The
target vocabulary for tree generation is denoted as
V = Vop ∪ Vcon ∪ Vnode and its length is denoted
as L. Following the typical construction method of
GTS (Xie and Sun, 2019), the expression tree is
constructed starting from producing the topmost
operator and then the left and right child nodes.

• Scale Classifier. Scale is vital for a numerical
answer in TAT-DQA, including five possible values:
Thousand, Million, Billion, Percent and None. A
Scale Classifier is developed to predict the scale
of the final answer. In particular, it takes as input
the SD graph representation hSD and computes
the probability of each scale as

Pscale = softmax(FFN(hSD)) (6)

where FFN is a feed-forward network with two lay-
ers. After obtaining the scale, we generate the
final answer by multiplying or concatenating the
answer value with the scale following the practice
in MHST (Zhu et al., 2022).

L =Lnode+Ltree+Lstart+Lend+Ltype+Ltoken+
Lscale

Lnode =
1

|N|
∑
n∈N

CE(Pn
node, g

n
node)

Ltree =
1

|S|
∑
s∈S

CE(P(v
s|v1, ..., vs−1, Q,G), gsv)

Lstart = CE(Pstart, gstart)
Lend = CE(Pend, gend)
Ltype = CE(Ptype, gtype)

Ltoken =
1

|T|
∑
t∈T

CE(Pt
token, g

t
token)

Lscale = CE(Pscale, gscale).
(7)

2.5. Training
To optimize the proposed model, the objective is to
minimize the sum of the losses of all classification
tasks. Formally, the overall loss for each sample
can be computed as

Here N is a set of nodes; gnnode is the ground-
truth label if the node n is selected; CE(·) refers to
the cross-entropy loss; S is the number of decod-
ing steps during the expression tree generation; gsv
is the ground-truth node in the step s; gstart and
gend are the ground-truth starting and ending posi-
tions of the span answer; gtype is the ground-truth
answer type; T refers to all the valid tokens after
applying the token masking in Section 2.4; gttoken
is the ground-truth label of the token t; gscale is the
ground-truth scale value. When the nodes in the
ground-truths in Node Selection are not selected,
we will add them manually in order to better train
the tree-based decoder when training.

3. Experiments

We conduct extensive experiments to validate the
effectiveness of our proposed model and present
comprehensive analyses.

3.1. Experiment Settings
• Dataset. We conduct all experiments on
TAT-DQA (Zhu et al., 2022) built with visually-rich
table-text documents in finance. It contains 16, 558
QA pairs on 2, 758 documents where each docu-
ment contains at least one table. These documents
are split into training, development and test sets
with a ratio of 8 : 1 : 1, and all the questions of a
specific document belong to only one of the splits.
Over 50% of questions require discrete reasoning
to generate answers while the answers to others
can be extracted directly from the documents.

• Baselines. We select two kinds of baselines:
fine-tuned models and large language models
(LLMs). Fine-tuned models are trained over
TAT-DQA dataset, including: 1) NumNet+ V2 (Ran
et al., 2019) is a text QA model with impressive
capability of discrete reasoning over textual data.
It constructs a numerically-aware graph neural net-
work, which takes all numbers in the given question
and document as nodes and builds edges via nu-
merical comparison, and then performs discrete
reasoning over the graph. 2) TagOp (Zhu et al.,
2021) is a table-text QA model which first applies se-
quence tagging on each token to extract question-
relevant ones and then applies a set of pre-defined
aggregation operators (e.g. addition, counting)
over extracted tokens. 3) MHST (Zhu et al., 2022)
is a multi-modal QA model which employs Lay-
outLMv2 (Xu et al., 2021) as the encoder to take the
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question and document as input, extracts support-
ing evidence using sequence tagging, and applies
a tree-based decoder (Xie and Sun, 2019) to gen-
erate an expression tree with the evidence. LLMs
are tested directly in a zero-shot manner, including
two general LLMs, LaMA 2-Chat (70B) (Touvron
et al., 2023) and ChatGPT (Brown et al., 2020),
and two LLMs specialized in math word problems
(MWP), MAmmoTH (70B) (Yue et al., 2023) and
WizardMath (70B) (Luo et al., 2023).

• Evaluation Metrics. Following (Zhu et al., 2022),
Exact Match (EM) and numeracy-focused (macro-
averaged) F1 are used to measure the performance
of all models, taking into account the scale of the an-
swer. Both metrics are in the range of [0%, 100%],
where a higher value indicates better performance.

• Implementation Details. We implement our
model in PyTorch and train it on one NVIDIA DGX-1
with eight V100 GPUs. We adopt LayoutLMv2large

as the encoder. We use Adam optimizer with learn-
ing rate 5e− 4 and warmup over the first 6% steps
to train. The maximum number of epochs is set to
50 and the maximum sequence length 512. The
batch size is set to 8 and the number of gradient
accumulation steps is 8. The dropout probabilities
for GCNs and GTS are 0.6 and 0.5 respectively
while 0.1 for others. We set 12 as the maximum
number of selected nodes in node selection. Beam
search is applied during inference to select the best
expression tree and the beam size is 5.

Given that the tabular and textual data in each
document are typically lengthy, it is impractical to
incorporate additional in-context examples owing
to the input length constraints of the LLMs, thus we
test all LLMs in a zero-shot setting. We utilize the
latest ChatGPT1 (Brown et al., 2020) APIs2. The
parameters temperature, top_p and max_tokens
are set with 0, 1.0 and 1, 000, and other parameters
as default. We obtain the official trained check-
points of LLaMA 2-Chat (Touvron et al., 2023),
MAmmoTH (Yue et al., 2023) and WizardMath (Luo
et al., 2023) from Hugginface3. The model in-
ference is done on one NVIDIA DGX-A100 with
eight A100 GPUs. The parameters num_beam and
do_sample are 1 and false respectively.

3.2. Main Results
We first compare our Doc2SoarGraph model with
all baseline models. The experimental results
are shown in Table 1. We can observe that: 1)
Our Doc2SoarGraph model significantly outper-
forms all baseline models. In particular, our model
reaches 59.23% and 67.61% on the test set in terms

1GPT3.5-Turbo (Sep 2023)
2https://platform.openai.com/.
3https://huggingface.co/models

Model EM F1

MHST Ours MHST Ours
Span 41.10 50.00 58.30 62.88
Spans 25.70 41.43 43.30 71.19
Counting 43.20 40.00 43.20 40.00
Arithmetic 42.70 73.96 42.70 73.96

Table 2: Performance comparison of our model
and MHST for different answer types on TAT-DQA
test set. Best results are marked in bold.

of Exact Match and F1 metrics respectively, i.e., an
increase of 17.73 and 16.91 points over MHST (Zhu
et al., 2022), and 6.49 and 6.21 points over Chat-
GPT. These results well demonstrate the great ef-
fectiveness of our model. 2) The LLMs specialized
in mathematical reasoning, i.e. WizardMath (Luo
et al., 2023) and MAmmoTH (Yue et al., 2023), still
largely underperform our Doc2SoarGraph model,
indicating that current numerically-enhanced LLMs
still struggle in discrete reasoning over tabular and
textual QA. 3) The best fine-tuned model MHST
achieves comparable performance to the outstand-
ing LLaMA-2 Chat with much smaller size, and
Doc2SoarGraph largely outperforms the powerful
ChatGPT. This shows that current general LLMs
still struggle with table-text document QA, and fine-
tuning on the dataset is still a promising approach.

3.3. In-depth Analysis of Our Model

• Analysis on Evidence Extraction. Generally,
for discrete reasoning over table-text documents,
the model first extracts supporting evidence and
then reasons over it.

Here we verify whether the evidence extraction
power is indeed enhanced with our model. We
compute the average recall, precision and F1 score
of the extracted evidence with our method and
MHST on the dev set. For fairness, we only use the
Arithmetic questions that only depend on quan-
tity and date nodes. Given one question, assume
the number of quantities/dates its answer actu-
ally requires is n, the number of predicted quan-
tities/dates by the model is m and the number of
correct quantities/dates in prediction is c. The re-
call and precision are computed with c/n and c/m
respectively. Then we can compute the F1 with
the precision and recall. After getting the metrics
of each question, we further obtain the average
recall, precision and F1.. The results are shown
in Figure 3. We can see that our model demon-
strates significant improvements over the MHST.
Specifically, our method has an increase of 23.76
and 24.43 points in average precision and average
recall compared with MHST, significantly improving
the evidence extraction.

https://platform.openai.com/
https://huggingface.co/models
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Model EM (↑) F1 (↑)

MHST 41.50 (-) 50.70 (-)
+ Node Initialization 54.30 (12.80) 61.59 (10.89)
+ Doc Transformation 56.58 (2.28) 64.06 (2.47)
+ Hierarchical Graphs 58.80 (2.22) 66.60 (2.54)
+ Token Masking (Full) 59.23 (0.43) 67.61 (1.06)

Table 3: Analysis on effects of the components
in Doc2SoarGraph on test set. Best results are
marked in bold.

30

40
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60

70

80

90

100

Avg. Precision Avg. Recall Avg. F1

MHST Doc2SoarGraph

Figure 3: Comparison of evidence extraction power
of our Doc2SoarGraph and MHST on Arithmetic
questions on dev set.

• Analysis on Answer Types. TAT-DQA provides
four different answer types, and here we analyze
the performance of our model on each answer
type. The results are summarized in Table 2. Com-
pared with MHST, our model gains the largest in-
crease (i.e., 31.26% in EM) on Arithmetic ques-
tions, demonstrating impressive discrete reasoning
capability. This enhancement is possibly due to the
effective modeling of the differences and correla-
tions among the quantities, dates and blocks from
the documents. For Spans and Counting questions,
they share almost all techniques in the proposed
model. Comparably, the model gains a 15.72%
increase on Spans questions but has a 3.2% de-
crease on Counting (i.e., failing one more case).
This is probably due to the data bias on Counting
questions because the number of Counting ques-
tions (<2.0%) is much less than Spans (>12.0%) on
test set. The model obtains an increase of 8.9% in
EM on Span questions, indicating our design also
benefits answer extraction from the document.

• Analysis on Single- and Multi-page Docu-
ments. We analyze the performance differences of
three models on single-page documents and multi-
page documents, i.e. MHST, ChatGPT and our
Doc2SoarGraph model. See Figure 4 for the com-
parison results. We make following observations.
1) All three models perform better on single-page
documents than on multi-page ones, implying that
it is more challenging to understand multi-page
documents than single-page ones. 2) Our model
outperforms MHST and ChatGPT with large mar-
gins for understanding single-page documents, fur-

Model Dev Test
EM F1 EM F1

Full Graphs 57.97 65.38 59.23 67.61
- QC Graph 56.69 65.18 57.73 66.89
- DC Graph 56.14 64.83 57.73 66.82
- TR Graph 55.23 63.57 55.86 65.09
- SD Graph 56.27 64.77 56.95 66.54

Table 4: Ablation study of the hierarchical graphs
in our model on test set.
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Figure 4: Performance comparison in F1 score on
one- and multi-page documents on test set.

ther indicating the effectiveness of our model. 3)
For multi-page document understanding, the per-
formance of our model is better than MHST but
worse than ChatGPT. The inferiority of our model
to ChatGPT is mostly possibly due to the much
shorter input allowed by our model.

• Analysis on Model Components. Our
Doc2SoarGraph contains four steps, i.e., Multi-
page Document Transformation, Node Initializa-
tion according to various semantic elements, Node
Selection via hierarchical graphs, and Answer Gen-
eration powered by token masking. Here we in-
vestigate the contributions of each component
to its final performance. Compared to MHST,
our Doc2SoarGraph is equipped with the four com-
ponents, and it is found that all added components
can benefit model performance. Furthermore, we
find node initialization makes surprisingly greater
contributions to the model, indicating the impor-
tance of modeling the differences and correlations
among various elements in table-text documents.

Also, we develop our model with hierarchical
graphs, i.e. the QC graph, DC graph, TR graph
and SD graph. To test the necessity of each graph,
we remove each of them to see the performance
changes. The results are summarized in Table 4.
Performance drop can be observed as we remove
each graph, indicating that each graph contributes
to the good performance of our model.

• Error Analysis. We randomly sample 100 error
instances of our method on dev set and analyze
the reasons. We find the errors occur to all six
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Module Error %

Span Classifier (SPC) Offset Error 21%

No Overlap 11%

Node Classifier (NC) Missing Nodes 24%

Token Classifier (TC) Missing Tokens 11%

Redundant Tokens 8%

Tree Generator (TG) Wrong Expression 12%

Wrong Sign 4%

Scale Classifier (SC) Wrong Scale 6%

Answer Type Classifier (ATC) Wrong Answer Type 3%

Table 5: Statistics of errors in each module.

modules (Col. 1 in Table 5), i.e. Span Classifier
(SPC), Token Classifier (TC), Node Classifier (NC),
Tree Generator (TG), Scale Classifier (SC) and
Answer Type Classifier (ATC), listed in a descend-
ing order of error percentage. These errors are
classified into nine categories (Col. 2 in Table 5).
We can see, 1) 32% errors are caused by SPC
module predicting inaccurate predictions of starting
and ending positions for Span questions, i.e., 21%
predictions overlapping but not exactly matching
ground truth, and 11% predictions having zero over-
lap with ground truth; 2) 24% errors are caused by
NC module failing to select the relevant nodes; 3)
19% errors are due to TC module predicting less or
more tokens than it needs to derive the answer; 4)
16% errors are caused by TG module generating a
wrong expression tree, among which 4% are wrong
number signs (i.e., positive/negative) and 12% are
other wrong expressions; 5) 6% and 3% errors are
caused by SC module and ATC module predicting
wrong scale and answer types.

4. Related Work

4.1. Document VQA

Document VQA aims to answer a question in
natural language based on a visually-rich doc-
ument (Cui et al., 2021; Mathew et al., 2020;
Tanaka et al., 2021; Zhu et al., 2022). Com-
pared to typical VQA, the documents in this chal-
lenges like DocVQA (Mathew et al., 2020), Vi-
sualMRC (Tanaka et al., 2021) and TAT-DQA (Zhu
et al., 2022) usually contain rich textual information
that plays a key role in addressing the challenge. It
is mostly tackled by pre-trained language models,
e.g. LAMBERT (Garncarek et al., 2020), Struc-
turalLM (Li et al., 2021a) which exploit both textual
and layout information of the documents. Some
works develop multi-modal language models that
incorporate visual information into the model, e.g.,
LayoutLMv2 (Xu et al., 2021) and DocFormer (Ap-
palaraju et al., 2021). Additionally, some DocVQA

models are developed by fine-tuning pre-trained
language models, e.g. TILT (Powalski et al., 2021)
and MHST (Zhu et al., 2022). Recently, large-
scale language models like ChatGPT (Brown et al.,
2020) have achieved impressive results across
a range of natural language processing (NLP)
tasks (Zhao et al., 2023). In this work, we develop
Doc2SoarGraph to comprehend visually-rich table-
text documents by extending SoarGraph (Zhu et al.,
2023), achieving comparable performance with
the very large-scale language models like Chat-
GPT (Brown et al., 2020).

4.2. Discrete Reasoning

Discrete reasoning has been explored in many NLP
tasks since 1960s (Feigenbaum et al., 1963; Dua
et al., 2019). Recent works focus on a hybrid of
annotated (semi-)structured table and a list of asso-
ciated paragraphs (Chen et al., 2021; Zhao et al.,
2022; Zhu et al., 2021), retrieving or extracting evi-
dences from given table and paragraphs and then
reasoning over evidences to generate the answer
(Lei et al., 2022; Zhou et al., 2022; Li et al., 2022a;
Nararatwong et al., 2022; Yarullin and Isaev, 2023;
Zhu et al., 2021). Most recently, a document VQA
dataset TAT-DQA (Zhu et al., 2022) is released,
which triggers the increasing interest in discrete
reasoning over real-world complex documents with
both tables and text. To tackle this challenging
task, Zhu et al. (2022) proposed the MHST model,
which extracts relevant tokens from the document
using sequence tagging and applies heuristic or
“seq2tree” method to generate the answer accord-
ing to the answer type. We also address the TAT-
DQA challenge but with a more powerful model.

4.3. Graph-based Document
Representation

Early works use grid-based methods to represent
visually-rich documents, such as representing each
document page as a grid of characters (Katti et al.,
2018) or a grid of contextualized word piece em-
bedding vectors (Denk and Reisswig, 2019). Later,
many works (Riba et al., 2019; Hwang et al., 2021;
Wei et al., 2020; Yu et al., 2020; Cheng et al., 2020)
represent documents with more powerful graphs
to facilitate information extraction from visually-rich
documents. For example, (Riba et al., 2019) adopts
a GNN-based model to extract structured tables
from invoices; (Hwang et al., 2021) constructs a
directed graph to model the spatial dependency
among text tokens in the documents. In this work,
we represent the question and document by build-
ing hierarchical graphs with different semantic ele-
ments in the document (i.e., quantities, dates, and
document blocks).



5127

5. Conclusion

In this work, we propose a novel
Doc2SoarGraph model with strong discrete
reasoning capabilities to tackle QA challenge over
visually-rich table-text documents in the form of
TAT-DQA, which models the differences and corre-
lations of various elements (i.e., quantities, dates,
question, and document blocks) in the input with
hierarchical graphs. We experimentally validate
that our model can beat previous state-of-the-art
by large margins. In the future, we would like to
explore more advanced methods to handle the
challenging multi-page documents, even very long
ones like financial statements with over 100 pages.

Limitations

Despite the impressive performance on TAT-
DQA (Zhu et al., 2022), our model still has much
room for future improvement, as shown in error
analysis in Section 3.3. Also, the Document Trans-
formation technique that we have developed for pre-
processing multi-page documents is simple, and
more effective methods are desired. For example,
our model may not be applicable to the documents
with a large number of pages (e.g., >50 pages). In
addition, our model is designed for the documents
that contain different kinds of elements, such as
numerical values and dates. This means it may
have limited advantages over those with unique
elements like pure textual documents.

Furthermore, our model has two major limitations
on its discrete reasoning capabilities. First, the
model is trained on TAT-DQA that is constructed
with financial statements in the finance domain,
which may result in limited applicability in other do-
mains. Second, the types of discrete reasoning
supported are restricted to those in the benchmark,
which currently includes operations such as addi-
tion, subtraction, multiplication, division, counting,
comparison, sorting, and combinations.

Ethics Statement

In this work, we present a new model to boost the
performance of discrete reasoning over visually-
rich table-text documents. Our model is developed
on open-source tools and datasets to assist human-
being in process . Thus, we do not anticipate any
negative social impacts.
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