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Abstract
Traditional automated metrics for evaluating conditional natural language generation rely on pairwise comparisons
between a single generated text and the best-matching gold-standard reference. This method is effective when
ground truth data diversity can be attributed to noise, however, it falls short when diversity in references holds valuable
contextual information, as in visual description or summarization, as it does not evaluate the ability of a model to
generate text matching the diversity of the ground truth samples. In this paper, we challenge the adequacy of existing
metrics in such semantically diverse contexts and introduce a novel approach for evaluating conditional language
generation models, leveraging a family of meta-metrics that build on existing pairwise distance functions. These
meta-metrics assess not just single-samples, but distributions of reference and model-generated captions using small
sample sets. We demonstrate our approach through a case study of visual description in the English language which
reveals not only how current models prioritize single-description quality over diversity, but further sheds light on the
impact of sampling methods and temperature settings on description quality and diversity.
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1. Introduction

Recent models for conditional language generation,
particularly in the field of visual description, have
shown dramatic improvements in both fluency and
the ability to ground generated language in context
(Liu et al., 2021; Zhou et al., 2020; Mokady et al.,
2021; Chen et al., 2018). Standard metrics for
these tasks such as BLEU, ROUGE, METEOR, and
CIDEr, compare a generated text with a reference
set of texts and compute some measure of quality
for the generated text. By construction of these
metrics, a model will achieve the best performance
by generating a single high-scoring text. In contrast,
it has been widely observed that large language
models such as GPT-3 (Brown et al., 2020) or
LAMDA (Thoppilan et al., 2022) generate the
most realistic texts at temperatures close to one,
where the set of potential texts generated is often
very diverse. More significantly, if we look at an
example of an image from MS-COCO and its set
of reference captions (Figure 1), we notice that
each (human-generated) reference contains a
unique subset of the overall information in the image:

“A woman in a red robe is sitting at a dining table.”
“A woman in a red flowered shawl sits at a table while a man
wearing jeans is in the kitchen looking at her.”
“A person sits at a table and another person stands in the kitchen.”
“A woman is sitting at a table wearing a robe while a man is cooking.”
“Man and woman in a kitchen looking in the same direction.”

Important features like the red robe, the man, the
gaze of the two people etc, are mentioned only in
one or a few captions. Metrics that encourage gen-

Figure 1: Samples from these two models achieve similar
BLEU scores, however, the samples from a SOTA model
(VLP) lie near a center of the distribution, and fail to capture
the dispersion of natural language in the ground truths,
while the samples from an ideal model better match the
ground truthdistribution. In thiswork, we introducemetrics
which better measure deviations between samples from
candidate and reference distributions, compared to single-
sample pairwise metrics.
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erating information from only one of these captions
will generally fail to capture much of the important
detail in the image. This holds for more than just
image description. For many conditional language
generation tasks such as video captioning, abstrac-
tive summarization, translation, and open-ended
question-answering, it is often beneficial to be able
to sample from a diverse distribution of generated
outputs. If we compute a maximum-likelihood gen-
erated caption from a state-of-the-art model (Zhou
et al., 2020) we get:

“A woman sitting in a kitchen next to a man.”

In this description, we see that only information
common to most or all of the reference captions is
preserved. This is intuitive, since including more
information runs the risk that no reference caption
contains that information, leading to a low score. It
seems the designers of metrics such as BLEU are
already aware that direct use of shortest distance to
a reference caption favors generated captions which
are even shorter and more impoverished, and thus,
the BLEU score, and many others, also include a
term encouraging longer texts. However, the (log-)
text length heuristic in standard metrics is intuitively
a poor proxy for actual diversity. Thus, since models
optimize for standard measures, drawing multiple
maximum-likelihood samples using beam search
from SOTA models only produce repetitions, or slight
variations of the above caption.

Thus, we encounter an issue in the evaluation
of conditional text generation models with multiple
available references. With multiple references, typ-
ically the metric score is based on the maximum
score over a set of ground truths (e.g. max pairwise
score for a particular n-gram as in BLEU), leading
measures to erroneously incentivize the production
of text minimizing the expected pairwise distance to
the reference set, i.e. near a strong mode in the train-
ing text distribution, causing the issues discussed
above. Changing the metric aggregation method
(e.g. sum as in ROUGE) does not substantially alter
this situation, as the model still strives to produce
a high-scoring output that is close to nearby refer-
ences which will be maximized at a smoothed mode
in the training text distribution (Caglayan et al., 2020;
Yeh et al., 2021).

An over-reliance on simple aggregations for multi-
ple candidates and references has, over time, com-
pounded into several issues: The first, discussed
further in section 3, is that, as observed in visual
description by Chan et al. (2022) and dialog gener-
ation by Caglayan et al. (2020), human-generated
captions tend to receive lower scores than model-
generated captions using automated measures,
even though they actually receive higher scores
under human evaluation. The second, discussed
in section 2, is that diversity of candidate texts is
largely relegated to reference-unaware measures,

encouraging models to diverge from ground truth
distributions to hit diversity targets.

In this work, we aim to solve these problems by
introducing several novel automated ways of mea-
suring the performance of conditional text genera-
tion models. Our measures encourages models to
not only to generate samples at the locus of a distri-
bution but also with sufficient variance, since they
are designed computing the divergence between
candidate and reference distributions. While some
recent methods have been designed to closely mea-
sure the divergence between full distributions of text
data in the unconditional case (Pillutla et al., 2021),
no such methods exist for conditional generation,
which often operates on the level of 10s of refer-
ence samples and candidates. Our contributions
are summarized as follows:

1. We demonstrate that existing automatic met-
rics that use simple aggregations of candidate
and reference distributions are insufficient, and
we introduce a new paradigm that instead in-
volves sampling from these distributions, and
comparing the samples.

2. We introduce two new families of metrics which
extend existing semantic distances: triangle-
rank metrics, and kernel-based metrics, de-
signed to measure the divergence between
small text samples from candidate and refer-
ence distributions.

3. We explore how our new metrics behave in the
context of visual description (both image and
video description) and show that by measuring
distributional effects, we can capture nuances
in the data that existing metrics cannot explore.

2. Related Work

This work is not the first to notice the shortcomings
of traditional metrics for the automated evaluation of
conditional language generation models. In visual
dialog, Caglayan et al. (2020) find that a number of
the automated metrics proposed for visual dialog
do not match well with human judgment, while in
visual description, Chan et al. (2022) find that cur-
rent automated metrics do not assign high scores to
human-generated descriptions. This work not only
quantifies such issues but proposes a method for
addressing these cases without developing novel
metrics for measuring text semantic distance. In this
section, we review related works, roughly divided
into three groups; methods for evaluating text quality,
text diversity and distribution aware metrics.
Measuring the Quality of Generated Text The
evaluation of machine-generated text has long been
an active area of research, which has continuously
evolved to keep pace with accelerating advances
in text generation. As a consequence of the tools
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available and the state of early text generation ap-
proaches, classical measures have primarily fo-
cusedonevaluating thequalityofgenerated textwith
respect to ground truth references using surface-
level text statistics. Most notably, these include n-
gram matching based metrics like BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004), and CIDEr (Vedantam et al.,
2015). More recently, the rapid progress enabled
by large-scale language models has motivated new
evaluation techniques which go beyond superficial
n-gram statistics and toward measures that aim to
capture the underlying semantics of language (Shi-
manaka et al., 2018; Clark et al., 2019; Zhang et al.,
2020b; Sellam et al., 2020). These approaches
leverage high dimensional representations of gener-
ated and reference text provided by a state-of-the-art
language model, such as BERT (Devlin et al., 2019)
in the case of BERTScore (Zhang et al., 2020b) and
BLEURT (Sellam et al., 2020). While such methods
are focused on measuring the semantic distance
between two pairs of natural language texts, the
evaluation of the diversity of the generated captions
has largely been done independently of quality.
Measuring the Diversity of Generated Text Until
recently, measures of diversity for generated text
have been largely secondary to measures of quality,
since the pursuit of human-like generated text has
been the primary focus of the field. In fact, many di-
versity measures quantify surface-level statistics of
the generated text (van Miltenburg et al., 2018), such
as metrics based on the number of unique tokens,
unique sentences, or unigram frequency statistics,
such as Zipf coefficients (Holtzman et al., 2020).
Similarly, n-gram-based diversity measures such
as self-BLEU (Zhu et al., 2018), compute scores
between samples from a model. Unfortunately,
these approaches do not consider the diversity of
a model’s outputs with respect to the diversity of
human references, and are primarily focused on the
diversity of the vocabulary, rather than the aggre-
gate semantic diversity, factors that our proposed
work aims to address.
Distribution Aware Measures of Generated Text
MAUVE,proposedbyPillutlaetal. (2021), measures
the divergence between multi-candidate samples
and multiple ground truths using density estimates
in a text embedding space. This approach mea-
sures both text dispersion and quality simultane-
ously, however, MAUVE is designed for uncondi-
tional text generation with many thousands of can-
didate and ground truth samples available. While
MAUVE works well in these scenarios, it does not
work well when only a few references are available
(due to the K-means approximation) (see appendix
B.4). Such a low-reference scenario is common
in conditional NLG, making MAUVE unsuitable for
manypotential applications, andmotivating theneed

for more sensitive measures.

3. Methods

In this section, we introduce our two primary contri-
butions. First, we introduce and demonstrate the
need for a paradigm for multiple candidate evalua-
tion for conditional language generation, and sec-
ond, we introduce several simple augmentations to
existing pairwise metrics, designed to alleviate the
sensitivity issues induced by evaluating conditional
language generation models with only a single can-
didate text. Our family of augmented metrics, which
we call Triangle-Rank Metrics (TRMs), represents
the first step towards optimizing metrics that force
models not only to generate samples at the locus of
a distribution but also with sufficient variance, hope-
fully alleviating the field-wide issues that optimizing
standard pairwise-metrics can induce.

3.1. Multi Candidate/Reference
Evaluation

Traditionally, most methods for conditional language
generation have been designed to sample a single
candidate example using beam search, designed to
be a maximum likelihood sample of the data. This
single candidate is compared against the reference
data. Unfortunately, as discussed in section 1, mod-
els can easily exploit such aggregations. For exam-
ple, when the best score amongst the ground truths
is chosen (the “min-distance” aggregate), models
generate texts optimizing the expected minimum
distance to the reference distribution. Such a text
is, by definition, the mode of the distribution. This
mode likely represents some amount of central ten-
dency, as we observe such captions to be bland and
uninformative (See B.5, (Chan et al., 2022; Yang
et al., 2019)).

Thus, a single candidate may not be sufficient to
understand if the model has learned to approximate
the reference distribution. Consequently, we aim
to develop methods that can sample several suit-
able candidate texts, each with high accuracy, while
matching the diversity of the ground truth distribution.
In this work, to extend methods to multiple candidate
generation, we leverage temperature-based sam-
pling or nucleus sampling (as indicated) to produce
multiple candidates from each model’s distribution.
While beam search can generate multiple candi-
dates, Vijayakumar et al. (2016) showed diversity
among beams is relatively poor, leading to sam-
ples that diverge from the model distribution. This
gives us a model which generates multiple candidate
samples, and requires an evaluation metric which
compares multiple candidate samples to multiple
reference samples.
Extending Existing Metrics for Multi-Candidate
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Figure 2: Intuition for TRMs. For samples from differ-
ent distributions (top), in-distribution edges will often be
short, but for identical distributions (bottom), edge rank-
distributions will be more uniform.

Evaluation Currently, no standard pairwise met-
rics (Papineni et al., 2002; Agarwal and Lavie, 2008;
Lin, 2004; Vedantam et al., 2015; Zhang et al.,
2020b) support a comparison between multiple can-
didates and multiple references, and the most effi-
cient extension of existing metrics to multi-candidate,
multi-reference situations is a non-trivial task. In this
work, we naively extend the existing pairwise met-
rics to multiple candidates through the use of mean
aggregation. Thus, for a standard pairwise score
S, set of candidates (c1,...,cn)=C and a set of ref-
erences (r1,...,rm)=R, we assign the output score
Sagg as:

Sagg=
1

N

N∑
i=1

S(ci,R) (1)

3.2. Triangle-Rank Metrics (TRMs)

While existing metrics for semantic similarity are
powerful for determining the pairwise semantic dis-
tances between two utterances (Papineni et al.,
2002; Agarwal and Lavie, 2008; Lin, 2004; Vedan-
tam et al., 2015; Anderson et al., 2016), these mea-
sures cannot accurately measure the distance be-
tween distributions. How, then, can we leverage
already strong pairwise tools in a multiple candi-
date scenario? Unfortunately, many statistical tech-
niques for measuring the distances between sam-
ples require points to lie in ametric space (Basseville,
2013) - however, most text distances neither respect
symmetry nor triangle inequality.

We propose a novel answer based on an applica-
tion of the triangle-rank statistic for statistical testing
proposed by Liu and Modarres (2011). The triangle-
rank statistic has several promising properties: it
neither requires symmetry nor the triangle inequality
in the metric space (it only requires d(x,x)=0), and
it is computed using only pairwise distances, mean-
ing that we can easily reuse existing text semantic
distance functions when computing the statistic.

For the purpose of explanation, it can be helpful
to think of texts as points on an arbitrary manifold
(based on the selected text distance function). To
compute the triangle-rank statistic for a given dis-
tance S, a set of candidates (c1,...,cn) = C and a
set of references (r1,...,rm)=R, we first extract all
directed triangles (t1,...) = T , such that one point
lies in C and two points lie in R. We refer to the
edge between points from the same distribution as
eIN
ti and the other two edges as eE0

ti and eE1
ti . We

then compute the score for each of the edges. For
(a,b)=e...ti , let

d(e...ti )=S(a,b) (2)

We then compute indicators I0,I1,I2 for each triangle
ti as follows:

I0(ti)=1ifd(eIN
ti )≤d(eE0

ti ),d(eE1
ti )else0

I1(ti)=1ifd(eE0
ti )≤d(eIN

ti )≤d(eE1
ti )or

d(eE1
ti )≤d(eIN

ti )≤d(eE0
ti )else0

I2(ti)=1ifd(eE0
ti ),d(eE1

ti )≤d(eIN
ti )else0

(3)

These indicators represent the rank of the same-
sample edge (if it is the smallest, largest, or middle-
sized edge). The directed statistic for the sample
(C,R), Q(C,R) is then computed as:

Q(C,R)=

∣∣∣∣
∑

ti∈T I0(ti)

|T |
− 1

3

∣∣∣∣+∣∣∣∣
∑

ti∈T I1(ti)

|T |
− 1

3

∣∣∣∣+∣∣∣∣
∑

ti∈T I2(ti)

|T |
− 1

3

∣∣∣∣
(4)

For the experiments in this paper, we use an exten-
sion of the directed statistic, the undirected statistic,
TRM(C,R)=Q(C,R)+Q(R,C), which increases
the sensitivity of the metric by taking into account
rank statistics of both within-candidate and within-
reference edges.

An intuition for how this statistic measures diver-
gence between distributions is given in Figure 2. If
the in-distribution edges are always short compared
to the cross-distribution edges, this suggests that
either the distance between the candidate and ref-
erence distributions is high (different locus), or the
spread of the candidates in the semantic space is
significantly less than that of the references (differ-
ent spread). If the in-distribution edge is always
the longest edge, it suggests that the spread or
dispersion of the candidate samples is higher than
the dispersion of the reference samples. Because
this statistic takes into account the full distribution
through triplets of samples, it does not suffer from the
issues with aggregation discussed in section 1 and
earlier in this section. Not only does it solve these
issues, but TRMs build on existing pairwise metrics,
allowing us to increase sensitivity while retaining
existing semantic distance measure and intuitions.
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Notably, Q(C,R) does not distinguish between
situations where I0 = 1 and I2 = 1. Intuitively, a
model that can generate a candidate that is closer
to two references than the references are to each
other (I0=1) seems to be better than another model
where the candidate is far apart from one (or both)
of the references (I2=1), however this is not always
a desirable situation (in fact, it is often a situation
we wish to avoid). Consider the situation where the
“mean” of all reference captions is generated by the
candidate set. This caption is closer to any individual
caption than any reference caption may be to other
reference captions, however as seen in Figure 1,
and discussed in prior work (Caglayan et al., 2020;
Yeh et al., 2021; Chan et al., 2022), such captions
capture only mutual information in the references,
and fail to match the full distribution.

It is worth mentioning that the axes of diversity and
locality are not separated numerically: a low score
could indicate that either the scores are not diverse
enough or the captions are factually incorrect. This
is both a strength, in that it gives a single omnibus
measure with which both axes can be measured, but
can also be less directly interpretable, as it could be
unclear how to improve any specific sample. To that
end, it still remains a valuable approach to augment
the proposed measures with existing pairwise mea-
sures. By doing so, it becomes easier to determine
when the correctness of the generated candidates
is poor (i.e. the content of the generated captions is
different from the content of the reference captions)
vs. when the coverage is poor. For example, one
could consider the minimum/maximum of the pair-
wise distances across the candidate set to bound
the content distance.

3.3. Kernel-Based Metrics
While TRMs represent one method of augmenting
existing pairwise metrics, a second possible ap-
proach relies on representing utterances as points in
the embedding space of a model, particularly a large
pre-trained model such as BERT (Devlin et al., 2019)
or GPT (Brown et al., 2020). Evaluating the distance
between two distributions based on representative
samples on a Euclidean manifold is relatively well
studied in GAN literature. One option, MAUVE, in-
troduced by Pillutla et al. (2021), uses a K-Means
density estimator to estimate the distribution of the
points on this manifold and then computes a fixed
divergence (such as Kullbeck-Libeller) between the
two density estimates. Unfortuantely, MAUVE can-
not correctly estimate the density when there are
few samples, such as in the case of conditional lan-
guage generation, as the K-means density estimator
requires at least K (usually at least 50) samples. In
this work, we introduce several possible extensions
to MAUVE as an alternative family of distribution-
aware metrics, which we dub “Kernel-Based Metrics”

(KBMs):

• FID-BERT (A.6): The Frechet Inception Dis-
tance (Salimans et al., 2016) represents the
squared Wasserstein distance between mul-
tidimensional Gaussian distributions fitted to
the components of the input. In the FID-BERT
metric, we replace Inception embeddings with
those from a pre-trained BERT model (Devlin
et al., 2019).

• MMD-BERT (A.7): A related metric is the max-
imum mean discrepancy distance function (Li
et al., 2017), which leveragesadensityestimate
of the data, and computes the maximum mean
discrepancy between the density estimates for
each sample. In our case, we leverage a Gaus-
sian kernel estimate over the embeddings gen-
erated by a pre-trained BERT model (Devlin
et al., 2019).

While we primarily explore BERT-based embed-
dings for KBMs, we explore additional text embed-
ding methods in Appendix B.1.

4. Case Study: Visual Description

Visual description is a challenging task where a
model must generate natural language descriptions
of visual scenes. Datasets for visual description
often set themselves apart from other datasets for
conditional natural language generation (such as
those for translation and summarization), as they
contain more than one ground truth sample, making
it possible to evaluate multi-reference measures. In
this set of experiments, we look at two datasets for
visual description: MSCOCO (image description)
(Lin et al., 2014) and MSR-VTT (Xu et al., 2016)
(video-description) (full dataset details in appendix
A.2). We demonstrate first that current metrics are
not sensitive enough to evaluate the performance
of existing approaches, and then show quantita-
tively how a multi-candidate evaluation paradigm
can close this gap, and how a distributionally sensi-
tive metric, such as TRMs, can provide new insights.

Single caption evaluation is insufficient A nat-
ural first question to ask when evaluating the perfor-
mance of a metric is, “given the data, is the metric
sensitive enough to distinguish between captions
from a model and caption from a reference distri-
bution?” To answer this question, we evaluated
the p-values using a permutation-test for each mea-
sure under the null hypothesis that the candidate
and reference samples come from the same caption
distribution. The p-values represent the probabil-
ity of obtaining the observed result under the null
hypothesis: a higher p-value means that it is im-
manently possible the results obtained are due to
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Table 1: The p-value (lower is better) produced by mea-
suring standard metrics under the null hypothesis that
the candidate distribution is the same as the reference
distribution (using single-image/video tests aggregated
with HMP (Wilson, 2019)). With a single candidate text,
the metrics are unable to make a statistically significant
distinction (p<0.05) between ground truth and candidate
samples, motivating the need for multi-candidate evalua-
tion. BERT refers to the BERT-Score (Zhang et al., 2020b).
Additional experimental detail in A.5.

Model BERT CIDEr BLEU METEOR ROUGE
(Video) MSR-VTT Test Set p-values

TVT 0.658 0.409 0.781 0.457 0.477
O2NA 0.645 0.457 0.795 0.564 0.593
Human 0.515 0.531 0.829 0.530 0.566

(Images) MS-COCO Karpathy Test Set p-values
CLIPCap 0.558 0.822 0.878 0.748 0.798
VLP 0.592 0.742 0.859 0.664 0.770
Human 0.640 0.668 0.874 0.635 0.684

chance rather than any signal in the underlying ex-
periment. It is important to highlight that in this paper,
when we compare p-values, we are evaluating the
sensitivity of the measures on a single experiment
and not comparing p-values between experiments.
It is generally not the case that lower p-values cor-
respond to better captions, rather, lower p-values
when comparing two differing distributions indicate
a more sensitive measure.

The results, shown in Table 1 demonstrate
that under all existing measures, using a single
description for the candidate dataset does not
have sufficient sensitivity (p<0.05) to tell different
distributions apart, motivating a transition to a
paradigm with significantly more sensitivity. This
result confirms observations made in Yeh et al.
(2021) and Liu et al. (2016): most metrics are
unable to produce statistically significant results.
Thus, even for standard metrics, it makes sense to
sample more than one ideal candidate description
and aggregate the metric score across these
candidate descriptions. Such a sampling approach
for evaluation does not preclude efforts toward
generating single “omnibus” captions capturing
details from several diverse captions. However,
such captions will be much longer than typical
human captions, and will score poorly under the
standard metrics, as they would differ greatly from
individual reference captions.

TRM and KBM metrics are more sensitive than
naive aggregation In section 3, we proposed
several new metrics which can be leveraged by
switching to multi-candidate evaluation. Figure 3
shows the sensitivity of both the newly introduced
metrics and existing metrics using the naive
aggregation schemes discussed in section 3, as
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Figure 3: Plots showing the log p-values for the existing
and proposed metrics as we increase the number of sam-
pled candidate descriptions from the models. TRMMETEOR
achieves a 162% increase in sensitivity over METEOR,
whileTRMCIDEr representsa49.3% increaseoverCIDEr-D
for O2NA evaluated on the MSR-VTT dataset. Additional
experimental details are given in A.5.

we increase the number of candidate samples from
the model. While the sensitivity increases for all
models to significance, our proposed metrics are
much more sensitive with fewer candidate and
reference descriptions. As an additional check,
when tested on human captions, our metrics do not
consider the two distributions significantly different
(p > 0.05, see B.3). Our proposed metrics do not
alter the manifold: so, for example, TRMMETEOR and
METEOR measure the same underlying intuitive
divergences (n-gram recall with some additional
synonym matching), however, our TRM method
increases the sensitivity of the test, allowing us to
measure the full distribution divergence, instead of
using naive aggregates. For a practitioner, comput-
ing the full p-value of the data is unnecessary; we
need only sample enough candidates to be sure of
the statistical significance.

Multi-candidate evaluation illustrates a diversity
vs. likelihood trade-off A metric’s sensitivity
to the full distribution can give us novel insights
into the visual description task. Consider the
two models, VLP (Zhou et al., 2020), a standard
transformer-based model pre-trained on large-scale
vision and language data, and CLIPCap (Mokady
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The cows are grazing in a field.
The cows are grazing in a field.
The cows are grazing in a field.
The cows are grazing in a field.
…

Animals grazing on grass in an enclosed area.
Several cows grazing in a field with trees in the background.
Cows grazing in a large green pasture in a distant scene.
A grassy field overlooking cows in a pasture.
…
Cows grazing in a pasture ringed with trees.
Polaroid-looking photograph of cows in a green pasture.
A herd of animals grazing on a lush green field.
The cows are grazing in a field.

Candidate Set 1
METEOR (↑): 1.0

TRM-METEOR (↓): 0.574

METEOR (↑): 0.393
TRM-METEOR (↓): 0.069

References

Candidate Set 2

MSCOCO Image 134074

Figure 4: A qualitative sample from CLIPcap. Candidate set one uses beam search (8 beams), while candidate set two
uses nucleus sampling (with temperature one, top-k of 20 and top-p of 0.9). As the diversity increases, the TRMMETEOR
divergence decreases, but METEOR fails to correctly capture the diversity/correctness trade-off, leading to decreased
scores for more complete caption sets that are still relatively high quality. Additional qualitative examples are provided
in B.6.

et al., 2021), a transformer-based model which is
initialized with a large language model, and uses
prefix-tuning with CLIP (Radford et al., 2021a)
embeddings (Additional details in A.3). Figure 5
illustrates that TRMMETEOR captures a subtlety in the
model comparisons that METEOR does not capture
alone: while VLP produces better descriptions at
low temperatures, it becomes less fluent (likelihood)
on average as we introduce diversity, leading to
worse captions when sampling at high diversities.
CLIPcap retains better fluency at high sampling
temperatures, leading to improved performance in
diverse captioning tasks. While TRMMETEOR demon-
strates this, METEOR monotonically decreases,
giving little insight into this problem. The sensitivity
of the TRM measure is also visible in qualitative
samples, given in Figure 4, where we see TRM
metrics are sensitive to both diversity and likelihood.
These results confirm observations made by Zhang
et al. (2021a) for open-ended language generation
tasks such as storytelling and dialogue: a fair com-
parison of approaches must not only compare at the
same level of entropy but at a range of entropy levels.

Sampling algorithms matter Not only does
the temperature of the generation process matter
when correctly trading off between diversity and
description correctness (as seen in the previous
discussion), but the sampling process itself matters.
Figure 6 shows the performance at different
temperatures of the Nucleus sampling method
(Holtzman et al., 2020) vs. standard sampling,
beam search, and greedy, approaches. While
maximum-likelihood methods achieve the best
METEOR scores, they have relatively high diver-
gence, as they sample only a single description.
Further, Figure 6 shows that TRMMETEOR illustrates
how Nucleus sampling allows models to achieve
higher temperatures than standard sampling
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Figure 5: Plots indicating the impact of temperature on
the metric scores. Top: TRMMETEOR (↓) for CLIPcap and
VLP. Bottom: Standard METEOR Score (↑) for CLIPcap
and VLP.

without diverging significantly from the distribution.
METEOR alone does not indicate such an effect
and only monotonically decreases.

TRM Measures correlate with human judge-
ments It has long been known that humans are
relatively poor at measuring the semantic distance
between two sets of objects, particularly in the pres-
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Table 2: Method evaluation efficiency on the MS-COCO dataset with 5 references and 10 candidates.

METEOR TRMMETEOR CIDEr TRMCIDEr MMD-BERT FID-BERT MAUVE
Samples/Sec 298.4 ± 18.3 161.18 ± 21.2 131.23 ± 12.6 97.54 ± 9.1 53.76 ± 38.7 17.45 ± 4.6 2.29 ± 0.78
Wall Time (Min) 2.26 4.18 5.14 6.92 12.55 38.68 294.78
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Figure 6: Plots indicating the impact of search tech-
nique on divergences. Top: TRMMETEOR (↓) for TVT on
MSR-VTT. Bottom: METEOR Score (↑). See A.8 for
experimental details.

Table 3: Pearson Correlation with human judgement,
N=794.

Method Coverage Correctness
Human 0.2247 (p<0.001) 0.2247 (p<0.001)
TRM-Meteor 0.1278 (p<0.001) 0.1082 (p<0.001)
TRM-BLEU 0.1271 (p<0.001) 0.1510 (p<0.001)
MMD-BERT 0.1288 (p<0.001) 0.1243 (p<0.001)
FID-BERT 0.0807 (p=0.011) 0.0978 (p<0.001)
METEOR 0.0162 (p=0.3978) 0.0057 (p=0.7650)
BLEU-4 0.0044 (p=0.8157) 0.0026 (p=0.8884)
ROUGE 0.0110 (p=0.5631) 0.0381 (p=0.1845)
CIDEr 0.0037 (p=0.8445) 0.0261 (p=0.1725)

ence of distractors (Durga, 1980). While this is the
case, we still find that proposed measures corre-
late with human judgement significantly more than
existing measures, which we show in Table 3. To
demonstrate the correlation of distributional mea-
sures with human judgement of distributional dis-
tance, humans were presented with two candidate
caption sets (two image captioning models, OFA

(Wang et al., 2022) and BLIP (Li et al., 2022) using
different temperatures), and asked which candidate
caption set correlated better with a reference caption
set on two measures: how much they overlapped
factually (correctness), and how much information
they provided about the references (coverage). Ad-
ditional experimental details are available in A.9.

Clearly, distributional measures correlate more,
and with significantly less information than exist-
ing measures aggregated using the max function.
Notably, despite evidence that existing decoding
methods optimize for fooling humans over correct-
ness (Ippolito et al., 2020), our method is the only
approach which correlates at all with human judge-
ment, suggesting that we have accomplished our
goals of being distribution aware, improving the sen-
sitivity of the base measures to human preferences.

5. Discussion and Limitations

Kernel-Based Metrics (KBMs) vs. Triangle-Rank
Metrics (TRMs) A natural question to ask is:
“which metric should practitioners choose when
evaluating conditional language models?” KBMs
have one major, distinct, advantage over the TRMs
in that they are naturally differentiable, yet KBMs
also have downsides. The first is that, unlike the
TRMs, they require both a pre-trained BERT model
and a kernel-density estimator which both have
complex behavior affecting the performance of
the model. The TRMs, however, can be specified
on top of existing natural language distance
functions, improving the ability of the user to intuit
the model performance. Additionally, TRMs are
bounded and have p-values that can be computed
analytically. Finally, because the TRMs do not need
a density estimate, they can be more sensitive
with small sample sizes (see Figure 3), which
is essential for conditional language generation
where we have only a few gold-standard samples.
Table 2 demonstrates another key benefit of TRMs:
efficiency. The time per sample to compute TRMs,
while higher than single metric standards, is lower
than KBMs on average.

Perplexity We acknowledge that perplexity
(likelihood of the test distribution) is another alterna-
tive metric to proposed methods. While methods
should report the perplexity of their models, it is not
standard practice, and it has been shown by Theis
et al. (2016) that perplexity suffers from several
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major issues when evaluating generative models.
For example, a lookup table storing sufficiently
many training examples will produce convincing
results but have poor perplexity on the test data.
On the other hand, van den Oord and Dambre
(2015) demonstrate that even when perplexity is
low, models may not generate high-quality test
samples.

Reference-Free Metrics Some metrics, such
as CLIP-score (Hessel et al., 2021) for visual de-
scription, are immune to ground truth aggregation
effects as they are computed in a reference-free
way, and focus on pre-trained models’ ability to
ground vision and language information. Unfortu-
nately, such large, black-box, models represent a
liability as a metric as their capabilities are largely
unknown, and untested (Floridi and Chiriatti, 2020;
Caglayan et al., 2020). Further, the metric is
only as good as the model, and CLIP has been
known to suffer from numerous issues including
counting, attribute-association, and spatial rea-
soning (Blattmann et al., 2022; Ramesh et al., 2022).

Multi-Candidate Data Availability/Efficiency
While multi-candidate evaluation of conditional lan-
guage generation models represents a significantly
more robust paradigm, it still has several drawbacks.
One of the core drawbacks is the availability of
multi-reference data. Outside the field of visual
description, it is often not a standard practice to
collect more than one gold-standard reference
(even in fields such as summarization, where it
makes sense to do so). While the availability of
multi-reference data may be a bottleneck for the
approach, fortunately, many canonical datasets in
the image/video captioning domain (MS-COCO,
Flickr-30K, MSR-VTT, VATEX, YouCook II) do
contain more than one gold-standard reference, so
the methods proposed in this work are immediately
applicable to many popular datasets (and domains).
Additionally, multi-candidate evaluation is less
efficient than existing evaluation techniques,
which may encourage an unintended reduction
in evaluation. Further, such multi-candidate eval-
uation methods are somewhat less interpretable
than single caption metrics, as they incorporate
several axes at once, whereas existing pairwise
metrics describe only a single axes of semantic
similarity at any time. Still, existing metrics are
often used as a “single number” for determining the
quality of a model, a task that is better ascribed to
multi-candidate metrics.

English-Language Experiments While in theory
the TRMs and KBMs introduced in this work are
transferable to other languages asides from English,

it it important to acknowledge that our experiments
were conducted on only English-language data.
Transitioning to other languages my require
additional work, for instance, languages with
rich morphological structures, such as Finnish or
Turkish, may require adjustments in kernel density
estimations or the tuning of natural language
distance (beyond METEOR or BLEU) functions
within TRMs to accurately reflect the intricacies of
these languages. Additionally, the availability of
pre-trained models like BERT, which serve as the
backbone for KBMs, is predominantly focused on
English, with limited coverage and performance on
low-resource languages. This gap necessitates
the development or enhancement of multilingual or
language-specific models to ensure the applicability
and effectiveness of these metrics across diverse
linguistic datasets.

6. Conclusion

In this work, we introduce a robust framework for
multi-candidate evaluation of conditional language
generation models, show that existing metrics for se-
mantic similarity can be seamlessly extended to this
framework, and demonstrate that multi-candidate
evaluation paired with more sensitive distribution-
aware metrics can provide novel insights into ex-
isting models and methods. This work is only the
beginning. It is necessary for future work to explore
how a wider range of existing generation techniques
and models perform under this new paradigm, and
to understand the implications of distribution-aware
evaluation in fields beyond visual description.
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Appendix

A. Additional Experimental Details

In this section, we discuss additional experimental details for interested readers.

A.1. Code
We make all code/data publicly available for use at https://github.com/CannyLab/vdtk. We hope
that releasing our code will help inspire further research and examination into the evaluation of models for
visual description.

A.2. Datasets
MSR-VTT Dataset: The MSR-VTT dataset (Xu et al., 2016) is a dataset for video description consisting of
10,000 videos, with 20 reference ground truth descriptions for each video. It was collected by downloading
118 videos for each of 257 queries from a popular video sharing website. MSR-VTT contains 41.2 hours
of video, with an average clip length lying between 10 to 30 seconds. It has a vocabulary size of 21,913.
For more details about the diversity of the language present in the dataset, we refer readers to Chan et al.
(2022).

MS-COCO Dataset: The MS-COCO dataset (Lin et al., 2014) is a large-scale dataset for image description,
object detection and segmentation. MS-COCO contains 328K images, each with 5 ground truth descriptions
generated by human AMT workers. For more details about the diversity of the language present in the
dataset, we refer readers to Chan et al. (2022). MS-COCO is licensed under a Creative Commons Attribution
4.0 license.

A.3. Models
This paper explores the performance of our metrics over several models: two video captioning models, and
two image captioning models.

TVT The Two-View Transformer (Chen et al., 2018) is a baseline method for video description, which
consists of a transformer encoder/decoder structure. While we did not have access to the original code, we
trained our own version of the model on the MSR-VTT dataset (standard splits), leveraging features from
Perez-Martin et al. (2021). The model was trained for 300 epochs, with a batch size of 64, model hidden
dimension of 512, 4 transformer encoder and decoder layers with 8 heads each, and dropout of 0.5. For
optimization, we leveraged the Adam optimizer with a learning rate of 3e−4 and weight decay of 1e−5 with
exponential learning rate decay with gamma 0.99. This model achieves a CIDEr score of 56.39 on the test
dataset. The model was trained using a Titan RTX-8000 GPU over the course of several hours.

O2NA O2NA (Liu et al., 2021) is a recent approach for non-auto-regressive generation of video captions.
While the method had available code and checkpoints which we used for this experiment, the method is not
designed to sample more than one candidate caption at any given time. To adjust the model to sample
multiple candidate captions, we made several adjustments. First, the model was modified to sample a
length according to a softmax distribution over the length likelihoods (instead of using a greedy choice
of length, or beam search over lengths, as proposed in the paper). Second, the model was modified to
sample tokens at each non-autoregressive step from a temperature-adjusted softmax distribution instead
of greedily sampling tokens. We make our modified code available as a patch to the original repository, in
the hopes that other users will continue to build on these alterations.

CLIPCap CLIPCap (Mokady et al., 2021) is a recent model for image description based on using the CLIP
(Radford et al., 2021a) model for large vision and language pre-training as a feature encoder, and GPT (Brown
et al., 2020) as a natural language decoder. CLIPCap code and MS-COCO trained model checkpoints are
publicly available from the authors, however we made some alterations to support temperature-based and

https://github.com/CannyLab/vdtk
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nucleus sampling. We make our modified code available as a patch to the original repository, in the hopes
that other users will continue to build on these alterations. CLIPCap is licensed under the MIT license.

VLP VLP (Zhou et al., 2020) is a unified vision and language pre-training model, designed to perform both
image captioning and visual question answering. The model is pre-trained on the Conceptual Captions
(Sharma et al., 2018) dataset, and fine-tuned on the MS-COCO captions dataset for image description. The
authors make code and pre-trained models publicly available, however we modified the code somewhat
to support additional sampling methods. We make our modified code available as a patch to the original
repository, in the hopes that other users will continue to build on these alterations. VLP is licensed under
the Apache License 2.0.

A.4. Distance Metrics
In this paper, we explore three base semantic metrics as distance underlying our TRM methods, CIDEr-D
(Vedantam et al., 2015), METEOR (Agarwal and Lavie, 2008), and BERT Distance (Zhang et al., 2020b).

CIDEr-D CIDEr-D (Vedantam et al., 2015) is a n-gram-based metric designed for visual description, and
based on the idea that common words are less useful in practice than uncommon words. In practice, this
takes the form of a cosine similarity between TF-IDF weighted vectors representing the sentences. Because
CIDEr-D is a score, and not a distance, we create a distance function: d(c,r)=10−C(c,r), which works as
CIDEr-D is bounded by 10. Note that because CIDEr-D is 10 if and only if and only if the two sentences are
equal, this fulfills the TRM requirements.

METEOR METEOR (Agarwal and Lavie, 2008) is a score which evaluates the semantic distance between
two text utterances based on one-to-one matches between tokens in the candidate and reference text. The
score first computes an alignment between the reference and candidate, and computes a score based on
the quality of the alignment. Because METEOR is a score, and not a distance function, we use the distance
d(c,r)=1−M(c,r), where M is the METEOR score of the reference. Because METEOR is bounded at 1 if
and only if the two utterances are identical, this simple transformation satisfies the requirements of the TRM
adjustment. While we could explore other ways of deriving a distance from METEOR, we found that this
simple approach was sufficient to demonstrate the performance of our methods.

BERT Distance A recent method for determining the semantic distance between two samples is to
leverage a pre-trained BERT embedding model to create a semantic embedding of the text, and computing
the cosine distance between the test samples. In our work, we leverage the MiniLM-L6-v2 model from
the sentence-transformers package by Reimers and Gurevych (2019) to embed our descriptions. Because
cosine distance is already a distance function, no additional transformation is necessary.

A.5. P-value Computations
For our experiments, our null hypothesis is that the candidate samples and the ground truth samples are
drawn from the same distribution. Because most of the methods do not have an analytical way to compute
the p-values (in fact, the TRMs are the only method which has an analytic p-value computation given in Liu
and Modarres (2011)), we instead must compute the p-values though sampling. We thus enumerate the
value of the statistic across all of the possible candidate/reference partitions given the joint set of candidates
and references, and determine the probability of observing the sampled value, or some value more extreme.

The values in Table 1 represent the p-value obtained with a single candidate sentence, and 4 ground
truth candidates for MS-COCO, or 19 ground truth candidates for MSR-VTT. We reserve one gorund truth
description in both datasets to serve as the “Human" performance description. For TVT, CLIPCap and VLP,
we sample the descriptions using beam search with 16 beams. For O2NA, which is a non-autoregressive
model, we sample according to the method suggested in the original work (see Liu et al. (2021)). Because
there are several thousand videos per dataset, computing all possible combinations across the dataset
would be far from tractable. Thus, the p-values were computed on a per-visual-input basis, and then
aggregated across videos using the harmonic mean, as suggested by Wilson (2019). Such an aggregation
method is valid when the experiments are not independent (which they are not), unlike Fischer’s method
(Fisher, 1992).

Figure 3 demonstrates the log p-values for the proposed methods across several candidate samples. For
MS-COCO, we use all five reference captions, and between one and ten candidate captions sampled from
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CLIPCap using Nucleus Sampling (Holtzman et al., 2020) with a temperature of 1.0, top-p of 0.9 and top-k of
20. The caption set is generated once, meaning that the two-candidate set consists of the one-candidate set
and one more additional caption. For MSR-VTT, we use 10 reference captions, and between one and seven
candidate captions sampled from O2NA as described in appendix A.3 with a temperature of 1.0 for both the
length and token samples. We do not go to the full 10 candidate captions for MSR-VTT due to tractability
concerns, since adding an additional caption forces twice the number of partitions to be evaluated when
computing p-values.

The above experiments were performed on several n2d-standard-32 cloud GCP instances, containing
32vCPUs and 128GB of RAM.

A.6. Frechet BERT Distance
The Frechet Inception Distance, originally proposed in Salimans et al. (2016), has often been used for the
evaluation of the distance between samples of images generated by GANs. Images are first embedded in a
latent space using a pre-trained inception network, and then the Frechet distance between the generated
samples and the reference samples is computed. In our work, we replace the images with text, and the
inception network with a pre-trained BERT embedding network (Devlin et al., 2019). For a set of candidate
samples (c1, ... ,cn) = C, a set of reference samples (r1, ... ,rm) ∈ R, and a BERT embedding function
ϕBERT :C∪R→Rk, we compute the Frechet BERT Distance as:

d2=

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

ϕBERT (ci)−
1

m

n∑
i=1

ϕBERT (ri)

∣∣∣∣∣
∣∣∣∣∣

+Tr
(
CC+CR−2

√
CCCR

) (5)

where CC andCR are the covariance matrices of the C and R sets embedded with ϕBERT respectively.
To get the BERT embedding, we leverage the CLS token of a large pre-trained model, in this case, the

MiniLM-L6-v2 model from the sentence-transformers package by Reimers and Gurevych (2019).
The computation of p-values for the Frechet-BERT distance is largely bottle-necked by the slow perfor-

mance of the sqrtm function, which, because the matrices are not symmetric, has no efficient algorithm
for computation. Additionally, unlike the feature computation, this operation must occur for every partition,
leading to significantly reduced efficiency compared to the other measures presented in this paper.

A.7. MMD-BERT
Another common metric in the GAN literature is the computation of a maximum-mean discrepancy between
kernel-estimates of the samples introduced by Li et al. (2017). For a set of candidate samples (c1,...,cn)=C,
a set of reference samples (r1,...,rm)∈R, and a BERT embedding function ϕBERT :C∪R→Rk, we compute
the MMD-BERT distance as:

ˆMMD=

N∑
i=1

N∑
j=1

K(ϕBERT(ci),ϕBERT(cj))

+

M∑
i=1

M∑
j=1

K(ϕBERT(ri),ϕBERT(rj))

+

N∑
i=1

M∑
j=1

K(ϕBERT(ci),ϕBERT(rj))

(6)

where K is a kernel function. In our experiments, we use an RBF kernel function with σ equal to the median
distance pairwise distance divided by two.

A.8. Search Techniques
In section 3, Figure 6, we explore the performance of several different search techniques for our two-view
transformer model on the MSR-VTT dataset. In this figure, we explore four decoding search techniques:
Greedy Search, Beam Search, Temperature-Based Sampling, and Nucleus Sampling. For each method,
and for each video in the test set, we sample 10 descriptions. For Greedy Search, we sample 10 repeated
sentences. For beam search we sample the top beam search candidate, and repeat this ten times. While
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we did explore using the top 10 results from a larger beam search, we found that a smaller beam search
and repeated values produced better METEOR scores, so we chose to compare against this. Wider beam
searches did produce higher TRMMETEOR scores, but because optimizing for METEOR would be the current
paradigm, we decided to include that in the referenced figure. For standard temperature based sampling, we
sampled 10 results at each temperature. For Nucleus sampling, we sample 10 results at each temperature,
however we freeze they hyper-paramters of top-p at 0.9 and top-k at 20, as we found these values to generate
the best scores under the standard pairwise metrics. It remains relevant future work to perform a deep-dive
into the different generative methods with respect to TRMs, as there are likely many interesting lessons that
can be learned.

A.9. Correlation with Human Judgement
In our work, we run a human correlation experiment to determine how well human ratings correlate with our
metric’s judgements. The following study was granted exception by the University of California IRB, Protocol
Number 2022-11-15846. A screenshot of our evaluation tool for mean opinion scores is given in Figure 7.
In each HIT, raters from Mechanical Turk were presented with the reference captions, along with two sets of
candidate captions. These candidate captions were sampled from two models: OFA (Wang et al., 2022)
and BLIP (Li et al., 2022), at 11 different temperate settings: 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0. We
then query the subjects with two questions, both of which can be evaluated on a scale of {−2,2}, with 0
indicating a tie:

• Which group of candidate captions (as a whole) provides more useful information about the reference
group for a person who cannot see the reference group?

• Which group of candidate captions (as a whole) matches best to the reference group factually?

Subjects are linked to the data collection interface on our server developed by us in a frame directly from
an Amazon Mechanical Turk internal HIT using the ExternalQuestion API which allows external web content
to be displayed within the internal HIT. No third-party software is used with the HITs and no reviewing data is
collected by Amazon or any third-parties with the use of this API. The subjects are shown a consent form on
the Amazon Mechanical Turk HIT prior to entering our data collection interface. Subjects are then required
to click the “I Accept” button to confirm their agreement with the consent information of the study. They are
then redirected to the data collection interface. For each image, users are presented with an image, and an
associated image description. Images are drawn from the MSCOCO dataset (Lin et al., 2014). Human
generated captions are drawn from the references collected by the authors of (Lin et al., 2014).

After completing all of the tasks in the session, users are given a randomly generated code, which is
entered in the Amazon MTurk HIT page, and links the user’s survey results to the Amazon worker ID. We
collect these linkings to perform analysis on inter-rater agreement, as while the session itself is anonymous,
users may complete multiple sessions, and some method is required to maintain identity between the
sessions.

After each of these sessions, subjects will be given a brief survey regarding the task difficulty (Select
from the options: “Very Easy”, “Easy”, “Normal”, “Hard”, “Very Hard”) and prompted for any additional
comments on the session in general for each session in an (optional) open-response format. Users are
also encouraged to protect their privacy with the prompt: "After submitting your responses, you can protect
your privacy by clearing your browser’s history, cache, cookies, and other browsing data. (Warning: This
will log you out of online services.)" Subjects were compensated with $0.18 USD per session (based on the
recommended Amazon wage (federal minimum wage, $7.25/Hr), with an expected completion time of 1.5
minutes per session), and should be able to complete the session in under one and half minutes (based on
several pilot examples). Subjects can participate in the task a maximum of 100 times. The maximum time
commitment for each subject over two months of our study is 2 hours.

We analyze the experiments by first collecting all human ratings, and taking the mean of each score per
image. We collect 5 ratings each for 794 images in the dataset, using 397 unique Mechanical Turk workers.
We then compute the Pearson correlation for the standard max-aggregate scores, and for each of our
methods against the mean of the human ratings. To compute the human-human correlation, we compute
first the leave-one-out mean for each human rating, and compute the correlation of the leave-one-out mean
with the existing images.
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Figure 7: A screenshot of our human rating interface.
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B. Additional Results

In this section we present several additional interesting results to augment those in the main discussion.

B.1. Embedding Methods for KBMs
In the main work, we primarily explore a BERT-based embedding method for the kernel-based methods.
Such an exploration does not preclude the use of other embedding methods, each of which has different
trade-offs, when looking at the quality of the resulting metric, what the resulting metric measures, the time
required to compute the embedding, and the performance when the reference distribution is limited to small
numbers of human samples (such as happens in practice). Figure Figure 8 shows a quick look at several
possible choices for embedding methods in the MMD-* family, including Bag of words (with a 5K vocab),
GLoVe (Pennington et al., 2014), FastText (Bojanowski et al., 2017), and CLIP (Radford et al., 2021b).

While we can see that some of the methods are more sensitive to deviations in the image distributions,
such methods come with additional trade-offs. CLIP-style embeddings are the most sensitive to human
versus generated captions with fewer captions created, but are significantly slower to evaluate at test time
(almost 4x slower) than MMD-BERT, and also produce a higher p-value when computing the leave-one
scores on the human captions (which is less desirable, as the human captions are drawn from the same
distribution).

B.2. Unique vs. Correct Descriptions
In Figure 9, we explicitly demonstrate how TRMs enable evaluation of both caption diversity and quality. We
artificially generate candidates for the MSR-VTT dataset by mixing human-generated exact descriptions with
human-generated descriptions from other videos. On one axis we have the number of unique descriptions
and on the other axis we have the number of correct (exactly-matching) descriptions. Clearly, unlike
METEOR alone, TRMMETEOR scores are affected by both correctness and diversity.

Each experiment consisted of 10 candidate captions from the MSR-VTT dataset, and 10 reference
captions from the MSR-VTT dataset. We first split the 20 MSR-VTT reference captions into two sets of 10.
One set of 10 captions formed the references. To select the candidate captions, we first sampled k unique
captions from the remaining reference set (which formed the “correct pool"), and k unique captions from
other videos in the dataset at random (forming the “incorrect pool"). We then selected m correct captions,
from the correct pool (at random) and 10−m captions from the incorrect pool (at random). This was then
plotted with m on the x-axis, and k on the y-axis, as a heat-map, where lighter colors represent better scores
(higher METEOR, or lower TRM-METEOR), and darker colors represent poor scores.

We also explored the performance of the CIDEr metric across the same axes, the results of which
are shown in Figure 10. We can see that they are largely similar to those from the METEOR metric,
suggesting that regardless of the underlying metric, we are still making similar trade-offs between diversity
and correctness.
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Sensitivity and performance on Human-Generated Captions

Method Log-P Samples/Sec
TRM-CIDEr -1.596 88.93
MMD-BERT -1.786 56.68
MMD-CLIP -1.887 14.41
MMD-GLoVe -1.952 54.8
MMD-FastText -1.954 57.45
MMD-BOW -2.022 49.41

Figure 8: Performance of several different embedding functions for the MMD-* family of metrics. Left:
Sensitivity when evaluated on the MSR-VTT dataset with ten reference captions and between one and
seven candidate captions generated by O2NA. Right: Sensitivity and speed when evaluated on human
reference samples with 5 references and 5 candidates.
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Figure 9: Plots showing how TRMs evaluate both diversity and quality. Left: TRMMETEOR, Right: METEOR.
Lighter colors represent better scores. While TRMMETEOR trades off between diversity and quality, METEOR
focuses only on quality not diversity.

Figure 10: Plots showing diversity vs. quality tradeoffs. Left: TRMCIDEr, Right: CIDEr. Lighter colors
represent better scores. While TRMCIDEr trades off between diversity and quality, CIDEr focuses only on
quality not diversity.

METEOR TRMMETEOR CIDEr TRMCIDEr BERT TRMBERT MMD-BERT
MSCOCO -0.6303 -0.5941 -0.5957 -0.4742 -0.6230 -0.5633 -0.6550
MSR-VTT -1.0046 -0.9613 -1.0224 -0.9777 -1.0172 -1.040 -1.0374

Table 4: Log P-Values on human leave-one our samples. We can see that, surprisingly, none of the methods
(even the standard aggregations) produce statistically signficant differences. That being said, TRMs often
produce higher p-values, indicating that they may be more robust to noise in human caption sets. We do not
compute the Frechet-BERT values for humans here, as it was prohibitively expensive.

B.3. Human p-values
Strong metrics for distributional comparison will have high sensitivity to samples coming from distinct
distributions, and will produce high p-values for samples which come from the same distribution. To check
that such a relationship holds, we also perform leave-one-out experiments using human-generated captions
from the reference set for both MSR-VTT and MS-COCO. For MSR-VTT, we split the reference data into
sets of 10 candidate samples and 10 reference samples, and compute the deviations using this partitioning.
For MS-COCO, we leverage the c40 split which has 40 reference descriptions for 5000 samples of the
ground truth. We partition the references for each video into groups of ten descriptions, and compute the
p-values from pairs of these partitions. Table 4 gives the performance of the metrics on this human data.
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Dataset MAUVE Log p-value METEOR Log p-value
MSR-VTT (O2NA) -0.4414 -1.7881
MSR-VTT (Human Captions) -0.1441 -0.6037
MS-COCO (CLIPCap) -0.3980 -2.5585
MS-COCO (VLP) -0.3234 -2.8609
MS-COCO (Human Captions) -0.2189 -0.7233

Table 5: Log p-value estimates for MAUVE using five candidates, five references, and 100 samples (at
nucleus sampling temperature 1.0 for O2NA, CLIPCap and VLP models). We can see that Log p-values for
MSR-VTT and MS-COCO are signficantly worse than METEOR even with aggregation, likely due to the
method using k-means to approximate the text distributions with only 5 samples.

B.4. MAUVE performance
In the main work, we found that MAUVE was prohibitively slow to use to compute p-values for the training data.
Because our p-values were computed with 10 reference sentences, and up to 10 candidate sentences, at the
existing rate, it could take several years to compute the MAUVE p-values for the 50,000 sample MS-COCO
dataset. In Table 5, we present several high-variance estimates of the MAUVE p-values (computed using
only 100 samples).
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Figure 11: Qualitative example of “central" captions. The caption marked with arrows is the ground truth
caption which minimizes the expected METEOR distance to the other reference captions.

B.5. Visualizing Central Descriptions
We have found that descriptions which minimize the expected distance to the ground truth distribution
are relatively sparse in detail compared to other descriptions. Figures 11, 12, 13 and 14 show qualitative
examples of such descriptions for the MS-COCO dataset. Each plot shows qualitative examples of “central"
captions. The caption marked with arrows is the ground truth caption which minimizes the expected
METEOR distance to the other reference captions, and the other captions are the additional references in
the MS-COCO dataset. Images are selected at random, and do not represent cherry-picked samples from
MS-COCO.

Figure 12: Qualitative example of “central" captions. The caption marked with arrows is the ground truth
caption which minimizes the expected METEOR distance to the other reference captions.
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Figure 13: Qualitative example of “central" captions. The caption marked with arrows is the ground truth
caption which minimizes the expected METEOR distance to the other reference captions.

Figure 14: Qualitative example of “central" captions. The caption marked with arrows is the ground truth
caption which minimizes the expected METEOR distance to the other reference captions.
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B.6. Additional Qualitative Samples

Figure 15: A qualitative sample from CLIPcap. Candidate set one uses beam search (8 beams), while
candidate set two uses nucleus sampling (with temperature one, top-k of 20 and top-p of 0.9).
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