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Abstract

Event Causality Identification (ECI) aims to detect causal relations between events in unstructured texts. This
task is challenged by the lack of data and explicit causal clues. Some methods incorporate explicit knowledge
from external knowledge graphs (KGs) into Pre-trained Language Models (PLMs) to tackle these issues, achieving
certain accomplishments. However, they ignore that existing KGs usually contain trivial knowledge which may
prejudice the performance. Moreover, they simply integrate the concept triplets, underutilizing the deep interaction
between the text and external graph. In this paper, we propose an effective pipeline DFP, i.e., Distill, Fuse and
Pre-train, to build a commonsense-aware pre-trained model which integrates reliable task-specific knowledge from
commonsense graphs. This pipeline works as follows: (1) To leverage the reliable knowledge, commonsense
graph distillation is proposed to distill commonsense graphs and obtain the meta-graph which contain credible
task-oriented knowledge. (2) To model the deep interaction between the text and external graph, heterogeneous
information fusion is proposed to fuse them through a commonsense-aware memory network. (3) Continual
pre-training is proposed to further align and fuse the text and the commonsense meta-graph with three continual
pre-training tasks. Through extensive experiments on two benchmarks, we demonstrate the validity of our pipeline.

Keywords: event causality identification, commonsense graph, continual pre-training

1. Introduction

Event causality identification (ECI) is an impor-
tant natural language processing task, which aims
to identify causal relations of events in texts.
As shown in Figure 1, an ECI model should
identify the causalities between the mentioned
events: (1) quake=**“;tsunami in S1; (2) earth-
quake~"***stsunami in S2. ECI can support
many NLP applications, including event forecast-
ing (Hashimoto et al., 2014; Radinsky et al., 2012),
why-question answering (Oh et al., 2016) and
machine reading comprehension (Berant et al.,
2014).

This task is often challenged by the lack of ex-
plicit causal clues. For example in Figure 1, there
is no clue indicating the causality between “earth-
quake” and “tsunami” in S2, whereas causal clue
words “triggered” explicitly indicate the causal-
ity existence in S1. Albeit that ECI models can
use large amounts of annotated data to learn in-
formative causal expressions, existing datasets
are small (e.g., the largest ECI dataset only con-
tains 258 documents (Caselli and Vossen, 2017)).
Lately, pre-trained language models (PLMs) have
achieved remarkable success on the ECI task (Liu
et al., 2020a; Zuo et al., 2021a). They allow the
model to learn useful information (i.e., seman-
tic correlation in the latent space) from textual
datasets, compensating the data lacking issue to
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Figure 1: Examples of different causalities. S1
contains explicit causality between quake and
tsunami. S2 contains implicit causality but it can
leverage external knowledge from commonsense
metagraph for inference.

some extent. However, knowledge from PLMs has
inherent weakness of noisy and lacking in task re-
lated knowledge.

Recently, several studies have shown that com-
monsense knowledge from knowledge graphs
like ConceptNet (Speer et al., 2017) can ben-
efit the PLMs-based ECI methods (Cao et al.,
2021; Liu et al.,, 2023). For example in Fig-
ure 1, the one-hop definitions associated with

earthquake include ean‘hquakeﬂmatural disas-
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ter, seaquake%ean‘hquake and so on, which
can help the model understand the mentioned
event. Besides, the three-hop path between two
mentioned events through concept “seabed fault-
age” can provide ample evidence for judging the
causality. Despite achieving certain accomplish-
ments, current methods are still not effective due
to the following two issues: (1) They ignore that ex-
isting commonsense graphs are not constructed
for this task. These commonsense graphs usu-
ally contain trivial concept triplets, which may prej-
udice the ECI performance. (2) They only intro-
duce the concept triplet information through sim-
ply token concatenation or attention mechanism,
underutilizing the informative relational knowledge
contained in concept graphs and the deep interac-
tions between the text and the external graph.

In view of this, we propose an effective pipeline,
i.e., distill, fuse and pre-train (DFP) to build a
commonsense-aware continual pre-trained model
for ECI, tackling the aforementioned issues with
the following three modules.

(1) Distill: We propose a commonsense graph dis-
tillation module. It includes commonsense graph
pruning which prunes unreliable triplets from a
given graph, and metagraph induction which ex-
tracts the task related knowledge, obtaining a
event centered commonsense metagraph. In this
way, trivial knowledge in the original common-
sense graphs can be removed, and informative
task specific knowledge ia retained. The first is-
sue could be addressed through this module.

(2) Fuse: We propose a heterogeneous informa-
tion fusion module. It introduces a commonsense-
aware memory network which associates the
representation spaces of the text and meta-
graph through memory read and write operations.
Through this module, the relational knowledge
contained in the metagraph, not just the discrete
triplet knowledge could be fused with the text
knowledge. The deep interactions between the
text and the external graph could be captured. The
second issue is alleviated.

(3) Pre-train: We introduce a continual pre-training
module and design three pre-training tasks to fur-
ther fuse the text and the graph, including the
masked language model and concept triplet com-
pletion tasks to improve the understanding of
events in the text and triplet correlations in the
metagraph, respectively, and the text-metagraph
contrastive learning task to align and unify the rep-
resentations of text and graph. Through this mod-
ule, knowledge from the text and metagraph can
further boost each other to achieve a better ECI
performance.

Our contributions are summarized as follows:

» We propose an effective pipeline named DFP
for ECI, which follows distill, fuse and pre-

train, to build a commonsense-aware pre-
trained model which incorporates reliable
task-specific knowledge from existing com-
monsense graphs.

* We design a commonsense graph distilla-
tion module. It distills a credible task-
specific metagraph through commonsense
graph pruning and metagraph induction.

* We devise a commonsense-aware memory
network and three continual pre-training tasks
to capture the information interactions be-
tween the text and the external commonsense
metagraph, which are heterogeneous.

» Extensive experimental results demonstrate
that the proposed DFP can achieve a new
state-of-the-art (SOTA) performance.

2. Related Work

Studies related to our work are mainly discussed
from the following two aspecis.

2.1. Event Causality Identification

ECI has attracted much attention to date. Early
studies usually rely on predefined patterns or lin-
guistic rules to identify causal relations. For ex-
ample, some studies utilize linguistic and syntac-
tic features tailored for causal expressions (Riaz
and Girju, 2013, 2014). Some incorporate explicit
causal markers or clues (Riaz and Girju, 2010;
Do et al.,, 2011). And some others pay attention to
statistical information (Hashimoto et al., 2014).
Later, several ECI datasets are released,
e.g., Causal-TimeBank (Mirza et al.,, 2014),
EventStoryLine (Caselli and Vossen, 2017), BE-
CAUSE (Dunietz et al., 2017) and CNC (Tan et al.,
2022). Based on these benchmarks, supervised
learning methods are applied and achieve the
better performance (Kruengkrai et al., 2017; Hu
et al., 2017, 2023). However, the scale of these
datasets is relatively small. To ease this issue,
some studies utilize weakly supervised methods
to generate labeled training data (Hashimoto,
2019; Zuo et al., 2020). Some recent methods
introduce external knowledge graphs to enhance
the abilities of the ECI models (Zuo et al., 2021b;
Cao et al., 2021).

Recently, PLMs-based ECI methods have
achieved the better performance, as PLMs can
generate high-quality text representations (Kad-
owaki et al., 2019; Zuo et al., 2021a; Shen et al.,
2022). Although PLMs can capture the asso-
ciations among tokens in the texts, the implicit
associations between events hinder the perfor-
mance. To empower PLMs with the task-specific
knowledge, we propose a commonsense-aware
pre-trained model, which thoughtfully incorporates
reliable commonsense knowledge.
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Figure 2: Overview of DFP pipeline. (1) Commonsense graph distillation to distill a reliable task-specific
commonsense metagraph. (2) Heterogeneous information fusion to fuse the heterogeneous information
from the external graph and the text. (3) Continual pre-training and fine-tuning to further fuse the text

and metagraph, and make final predictions.

2.2. Knowledge Graph Enhanced PLMs

Knowledge graph enhanced PLMs (KG-PLMs)
leverage the rich structured knowledge of a knowl-
edge graph (KG) and integrate it with PLMs to
enhance the performance of natural language
understanding tasks. Existing KG-PLMs can
be grouped by the forms of knowledge incorpo-
rated from KG, i.e., semantic triplets and knowl-
edge subgraphs. To incorporate semantic triplets
from KG, K-BERT (Liu et al., 2020b) and ERNIE
3.0 (Sun et al., 2021) turn to append these triplets
to the specific position in the text. Liu et al.
(2022) directly concatenate triplets embeddings
with text embeddings. Recently, some studies
turn to integrate more sophisticated knowledge,
i.e., knowledge subgraphs. QA-GNN (Yasunaga
et al., 2021) designs interaction nodes to inte-
grate knowledge from the subgraph space and
the text space. GreaselLM (Zhang et al., 2022)
introduces a fusion layer to fuse the information
from different modalities. In this work, we first
distill metagraphs through graph pruning and in-
duction, which is task-specific subgraphs from ex-
isting commonsense graphs. Then we construct
a commonsense-aware memory network to asso-
ciate the text space and the subgraph space, inte-
grating knowledge from them through the memory
network and continual pre-training.

3. Approach

We formulate ECI as a binary classification prob-
lem. For a pair of events (ej, e3) in a sentence S,
we predict whether a causal relation holds. Fig-
ure 2 schematically visualizes our approach DFP,
which are elaborated by the following subsections.

3.1. Commonsense Graph Distillation

In this paper, we harness ConceptNet (Speer
etal., 2017) as the external commonsense graph,
which contains abundant background knowledge.

Directly introducing ConceptNet is unsuitable, as it
contains trivial triplets and some knowledge might
not be useful. In view of this, we adopt a pipeline
of commonsense graph pruning and metagraph
induction to obtain the task-oriented knowledge,
forming a commonsense metagraph G,,,ctq-

3.1.1. Commonsense Graph Pruning

Given a commonsense graph G, where the nodes
correspond to concepts, and edges correspond to
semantic relations, we harness TransE (Bordes
et al., 2013) to measure the confidence of a given
triplet (n;, 7, n;) in G. Intuitively, TransE models la-
tent knowledge distribution in a graph, allowing it
to distinguish valuable knowledge from less infor-
mative knowledge. We first calculate the distance
between two linked concepts as follows:

D(ma”j):m (1)
i (ALY J

where n and r are the TransE embeddings of con-
cept and relation. We regard triplets with small dis-
tance values as informative ones.

Then, given each node n; in G, we keep the top-K
neighboring nodes N (n;):

K
N(n;)= U {nf}, whereD(n;, nf) < D(n;,n**)

J
k=1
(2)
Thus, the pruned commonsense graph G is:
G ={(ni,r,n;)In; € N(ni)} 3)

3.1.2. Metagraph Induction

Given each event pair (e1,e2), the aim of meta-
graph induction is to construct a corresponding
task-oriented commonsense metagraph from G.
To obtain the definition knowledge, we first match
the event mention of ey, e, with concept tokens
in G through matching rules, i.e., soft matching
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and stop word filtering. Then we search the one-
hop definitions of the matched concepts from the
pruned graph G.

To obtain the relational knowledge, we perform
Breadth First Search to discover the multi-hop
path between the matched concept pairs of ¢; and
es from G. Note that we only keep the shortest
relational path that might be the most informative,
as the shorter path between two nodes indicates
a stronger relevance of intermediate nodes on the
path. Moreover, if there are multiple shortest rela-
tional paths, we randomly choose one of them.
Finally, the metagraph G, is built with the one-
hop definitions of e;, e5 and the multi-hop path dis-
covered between e; and e;. Figure 1 shows an ex-
ample of the metagraph, which contains rich back-
ground knowledge of two events, and prior infor-
mation of the relevance between them.

3.2. Heterogeneous Information Fusion

After obtaining G,,cta, we propose a
commonsense-aware memory network to deeply
fuse the explicit knowledge in G, With the
text knowledge. In what follows, we first present
the base models for encoding the text and the
metagraph.  Then we introduce the devised
commonsense-aware memory network.

3.2.1. Text Encoder

We use BERT (Devlin et al., 2019) as PLMs to
encode the input sentence S = {t1,ts,...,11}.
Specifically, PLMs first map the tokens into cor-
responding embeddings. Then a stack of Trans-
former layers encodes the embeddings to gen-
erate the I-th layer token representations H") =

l l l
(" nd iy,

3.2.2. Metagraph Encoder

We harness the graph attention network
(GAT) (Velickovic et al., 2018) to encode the
commonsense metagraph. Given G,,¢, With
N nodes, GAT first initializes the node embed-
dings by TransE, obtaining a set of embeddings
{n1,ny,...,ny}. Then the node representation is
updated as:

K
(1+1) Eywg(® w0

n; = o( ¥ o W.'n; 4
! kﬂl (jeNi MWy @)

where ngl“) is the representation of node n; in the

[ + 1 layer, || represents the concatenation opera-
tion, N; is the neighbor set of node i in G 14, K is
the number of attention heads, afj is the attention

value of node i to j in attention head & and W](f) is
a learnable weight matrix.

3.2.3. Commonsense-aware Memory
Network

To deeply aggregate the text and metagraph, we

design k£ memory networks between the last £ lay-
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Figure 3: An illustration of the commonsense-
aware memory network.

Encoder

ers of PLMs and GAT. They allow the text knowl-
edge and the commonsense knowledge to inter-
act and mutually boost each other. The illustration
of our devised commonsense-aware memory net-
work is shown in Figure 3.

Specifically, given the concept triplets (n;,r,n;) in
G meta, We regard the concept n; and the relation
r as the key, and the concept n; as the value.
The representations of n; and n; are from the
metagraph encoder. The relation representations
are initialized from TransE and will be optimized
through continual pre-training. Thus the represen-
tation matrices of keys and values are:

KO = {[n! ;ri],[nl;ra], ... [nl 5]} (5)
VO = {nl nl .. onl} (6)

Memory Read Operation reads important prior in-
formation within the commonsense-aware mem-
ory to update the token representations from the
text encoder. Specifically, we first calculate multi-
head similarity matrices S; between tokens and
keys:

S; = HOWSKO' (7)

where S; is the similarity of head i, and Wf is a
learnable matrix. We aggregate values to update
the token representations as:

HO =HO4 [0, VO: 0oV, VOIWT  (8)
«; = softmax(S;) (9)

where «; is the attention score distribution along
the key dimension and W" is a learnable matrix.
Through this, the token representations can be
enriched by the concept representations from the
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metagraph. Later, the updated token representa-
tions H() are fed into the next layer of PLMs.
Memory Write Operation updates the node rep-
resentations from the metagraph encoder. Given
the similarity matrices S;, we aggregate the token
representations as:

VO = [3HO; BHO; . g, HOW»
fB; = softmax(S]) (11)

where (; is the attention score distribution along
the token dimension and WY is a learnable matrix.
Then we design a gate to update the value repre-
sentations:

g = O_(V(l)wnew + V(l)wold)
VO — VO 4 (1 — gV

(12)
(13)

where W™ and W°"* are learnable matrices. The
gate mechanism allows for selective information
flow from the original node representations and the
updated ones. The updated node representations
are later fed into the next layer of GAT.

3.3. Continual Pre-training and
Fine-tuning
3.3.1. Continual Pre-training
We design the following three continual pre-
training tasks to further enhance and fuse the text
and the commonsense metagraph.
Masked Language Model (MLM). The event texts
contain a number of event mentions and argu-
ments, which may facilitate the understanding of
event relations. Thus, we follow the masking
mechanism in Devlin et al. (2019) and harness the
MLM task to learn task-related semantic informa-
tion at the lexical and sentence levels. The ob-
jective is to predict the masked tokens with cross-
entropy loss.
Concept Triplet Completion (CTC). In the com-
monsense metagraph, the semantic correlations
within concept triplets contributes to the under-
standing of event causalities. Thus, we design
the concept triplet completion task. Given a triplet
(ni,7,n;) IN Gera, the objective is:

Lere=max(y+d(n;+r,n;)—d(n;+r',n;)) (14)

where v > 0 is the margin, d(x, x) denotes the eu-
clidean distance and r’ is the sampled negative re-
lation embedding.

Text-Metagraph Contrastive Learning (CL). To
further unify the representations of the texts and
metagraphs, we adopt contrastive learning to
bring those of the same event pairs together while
separating the negatives samples. We use in-
batch negatives and the training objective is:

exp(f(hs; ng,)/r)
% cap(7he, e, )/7)
i#]

Lo, = —log (15)

where S; and G; denote the text and metagraph
of an event pair, hg, is the [CLS] token represen-
tation of S;, n¢, is the mean pooling of the node
representations of G;, f(¢) denotes the cosine sim-
ilarity and 7 is the temperature hyperparameter.

We conduct continual pre-training on the BE-
CAUSE corpus (Dunietz et al., 2017). The con-
tinual pre-training loss is Ly;pa + Lere + Leor -

3.3.2. Knowledge-enhanced Fine-tuning

We concatenate the representations of [CLS] to-
ken, e; and e, as the contextual representation of
the given event pairs:

Fr=hs®h., &h,, (16)

We concatenate the corresponding node repre-
sentations of e¢; and es in G, @s the common-
sense enhanced event pair representation:

Fc=n., @&n,, (17)

Then we make the final prediction through binary
classification:

Pler.cs) = SOftmax(W, (Fr @ Fc) +b,)  (18)

where W, and b, are learnable parameters.
We use cross-entropy loss to fine-tune our pre-
trained DFP model:

LDFP(@) =—-X ¥
s ej,e;€EF,

eisﬁej

y(eme‘7)|09(p(el,e2)) (1 9)

where O is the parameter set, s ranges over each
sentence in the training set and ¢;, e; range over
events in s.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluate DFP model on two bench-
mark datasets, including EventStoryLine v0.9
(ESC) (Caselli and Vossen, 2017), which contains
258 documents, 4,316 sentences, 5,334 events in
total, and 1,770 of 7,805 event pairs are causally
related; Causal-TimeBank (CTB) (Mirza et al.,
2014), which contains 184 documents, 6,813
events, and 318 of 7,608 event pairs are causally
related. Same as previous work (Shen et al.,
2022; Zuo et al., 2021a), we set the last two topics
of ESC as the development set for two datasets.
Notably, CNC (Tan et al., 2022) is a corpus of
annotating event sentences instead of event pairs
in sentences with causal labels, for which the task
format is inconsistent with our setting. As a result,
we do not consider it during experiments.

To ensure fairness, we conduct 5-fold and 10-fold
cross-validation on ESC and CTB, respectively.
Models are evaluated by Precision (P), Recall (R),
and macro-F1 (F1). All the results are the average
of three independent experiments.
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Methods P R F1

LSTM 340 415 374
Seq 327 449 378
ILP 374 558 447
BERT-base 369 56.0 445
KnowDis  39.7 66.5 497
LearnDA 422 69.8 526
CauSeRL 419 69.0 52.1
LSIN 479 581 525
KEPT 50.0 68.8 57.9
SemSIn 50.5 63.0 56.1
DFP 559 69.8 62.1°

Table 1: Experimental results on ESC (%).

4.2. Implementation Details

Our implementation uses HuggingFace Trans-
formers ' (Wolf et al., 2020) and PyTorch (Paszke
et al., 2019). We harness ConceptNet 5.0° as
the external commonsense graph. When pruning
the commonsense graph, we perform grid search
for K € [500, 1000, 2000, 4000] and set it to 1000.
We use uncased BERT-base (Devlin et al., 2019)
as the text encoder. For the metagraph encoder
GAT, we set the number of layers, attention heads
and hidden states to 6, 12 and 64, respectively.
For the commonsense-aware memory network,
we search k € [1,2,3,4,5] and set it to 2. In the
continual pre-training stage, we pre-train the pa-
rameters with a total of 32 batch size for 200 steps.
The max length of input sequences is set to 512.
We use AdamW (Loshchilov and Hutter, 2019) op-
timizer and learning rate is set to 2e-4. During fine-
tuning stage, we use AdamW with the same set-
ting as pre-training. The batch size is set to 32,
and the learning rate is set to 3e-5.

4.3. Baselines

We compare DFP with two types of SOTA meth-
ods, i.e., feature-based ones and PLMs-based
ones. For ESC, we select: LSTM (Cheng and
Miyao, 2017) is a sequential model based on
the dependency path; Seq (Choubey and Huang,
2017) is a sequential model with handcrafted fea-
tures; ILP (Gao et al., 2019) models causal struc-
tures with integer linear programming. For CTB,
we choose: RULE (Mirza and Tonelli, 2014) is
a rule-based framework; DD (Mirza and Tonelli,
2014) is a data driven supervised model; Ver-
bRule (Mirza, 2016) enhances ECI with verb rule
and gold causal signals.

we also compare with methods based on PLMs:
BERT-base (Zuo et al., 2021b) is a BERT- based
baseline with a linear classifier; KnowDis (Zuo
et al.,, 2020) is a distantly supervised data

"https://huggingface.co/transformers/
2https://github.com/commonsense/conceptnet5

Methods P R F1

RULE 36.8 123 184
DD 67.3 22.6 33.9
VerbRule 69.0 315 432
BERT-base 38.8 44.1 413
KnowDis 42.3 60.5 4938
LearnDA 419 68.0 51.9
CauSeRL 43.6 681 53.2
LSIN 515 56.2 537
KEPT 48.2 60.0 53.5
SemSin 52.3 658 583
DFP 53.7 64.2 58.5

Table 2: Experimental results on CTB (%).

augmentation method; LearnDA (Zuo et al.,
2021b) is a knowledge-guided data augmenta-
tion model; CauSeRL (Zuo et al.,, 2021a) is a
self-supervised framework which learns context-
specific causal patterns; LSIN (Cao et al., 2021)
is a knowledge-enriched latent structure induction
model; KEPT (Liu et al., 2023) is a knowledge
enhanced model which converts external triples
into textual descriptions; SemSiIn (Hu et al., 2023)
leverage semantic structures in the context.

We directly adopt the best parameter setup re-
ported in papers that originally introduced the
methods listed. « denotes a paired t-test at a sig-
nificance level of 0.05.

4.4. Main Results

Table 1 and Table 2 show the results of ECI on
ESC and CTB datasets, respectively. From these
results, we can find that:

(1) Overall, our method significantly or comparably
outperforms all baselines in terms of the F1-score
on both datasets. Compared with these methods,
DFP achieves at least 4.2% and 0.2% F1-score im-
provements on the ESC and CTB datasets. This
demonstrates the effectiveness of DFP. Moreover,
the usage of PLMs boosts the performance. On
both datasets, PLMs-based baselines comparably
or consistently outperform feature-based ones.
(2) The experimental results of KnowDis,
LearnDA, LSIN and KEPT show that the in-
troduction of different external knowledge and the
method of introducing external knowledge can
affect the performance of the ECI model. We
note that the performance of DFP is higher than
those of other knowledge-enhanced methods.
It indicates that DFP is more advantageous in
leveraging external knowledge for the ECI task,
by deeply integrating external knowledge graphs
into PLMs.

(3) DFP significantly outperforms KEPT which uti-
lizes descriptive and relational information from
ConceptNet. The reason may be that KEPT sim-
ply utilizes the knowledge of concept triplets for

5034



Methods P R F1

w/o. graph pruning 55.0 69.7 61.5(06)
w/o. one-hop definition 54,5 68.5 60.7(-1.4)
w/o. multi-hop path 52.3 629 57.1(5.0)
w/0. memory network 48.9 65.0 55.8(6.3)
w/o. continual pre-training 51.5 66.9 58.2 (:3.9)
w/o. MLM 53.4 67.9 59.8(23
w/o. CTC 549 68.6 61.0¢1.1)
w/o. CL 544 68.2 60.516)
DFP 55.9 69.8 62.1

Table 3: Ablation results on ESC (%).

event causality inference, neglecting the informa-
tion interaction between the text and the exter-
nal graph. Whereas our DFP deeply fuses the
heterogeneous information with commonsense-
aware memory network and continual pre-training,
obtaining more informative event pair embeddings
for causality inference.

(4) DFP significantly outperforms SemSIn by 6%
F1-score on the ESC dataset, which only 0.2% on
the CTB dataset. The reason may be that ESC is
an event story line dataset, in which sentences are
higher related than CTB which is from news. Sem-
Sin digs the information contained in the indepen-
dent sentence with the AMR parser, which may be
less effective for ESC than our model. Compara-
tively, the enhanced PLMs of DFP might be more
effective for the ESC dataset which contains texts
with a certain degree of causal continuity.

4.5. Ablation Experiment

To elucidate the effect of main components, we
set up ablation experiments and design eight inter-
nal baselines: w/o. graph pruning removes the
commonsense graph pruning process and directly
induces metagraph from ConceptNet; w/o. one-
hop definition removes one-hop definition knowl-
edge of the event pair from the original common-
sense metagraph; w/o. multi-hop path removes
multi-hop relational path knowledge of the event
pair from the original commonsense metagraph;
w/o. memory network removes commonsense-
aware memory network module and directly con-
catenates event pair representations from the
PLMs and the GAT for fine-tuning and inference;
w/o. continual pre-training removes all continual
pre-training tasks and only conducts knowledge-
enhanced fine-tuning; w/o. MLM, w/o. CTC and
w/o. CL remove masked language model, con-
cept triplet completion and text-metagraph con-
trastive learning tasks respectively.

Results of internal baselines on the ESC dataset
are shown in Table 3. As seen:

(1) DFP significantly outperforms all internal base-
lines on ESC. Compared to DFP, w/o. graph prun-
ing drops 0.6% F1-score. The reason may be that
the original commonsense graph exists noisy data

65 —e—DFP

60 —8— w/o0. memory network

55 ¢ w/o. continual pre-training
50
45

40

35

30 \

25 \
»

20

F1 scores on EventStoryLine

100% 50% 25% 12.50% 6.75%

Size of training samples

Figure 4: Effect of varying training sample size on
ESC.

which may affect the performance.

(2) Experimental results of w/o. one-hop defini-
tion and w/o. multi-hop path demonstrate that, af-
ter removing either definition knowledge or rela-
tional path knowledge, the F1-scores go down. It
indicates that these two kinds of knowledge both
contribute to our model. Simultaneously using
two kinds of knowledge further improves the over-
all performance, which reveals that the external
structured knowledge in the commonsense graphs
is effective for causality inference.

(3) w/o. memory network shows huge perfor-
mance drop, with a decrease of 6.3% F1-score on
ESC. This result demonstrates that the deep infor-
mation interaction between the text and the graph
contributes to more informative event representa-
tions, impelling better event pair relation inference.
(4) When the continual pre-training is removed, the
F1-score decreases, indicating the significance of
designing continual pre-training tasks to further in-
ject task-specific knowledge into the PLMs. Be-
sides, removing MLM task also results in a large
performance drop, since it further injects knowl-
edge of events into our model.

4.6. Analysis of Training Data

To validate the reliability of DFP under the data
lacking scenarios, we test DFP, w/o. memory net-
work and w/o. continual pre-training on randomly
sub-sampled labeled data of ESC training set. As
shown in Figure 4, the performance of three mod-
els drops with the decline of training sample size.
However, our full model performs consistently bet-
ter than two internal baselines. Moreover, we ob-
serve from the vertical line that the degree of per-
formance drop of the full model is less than that of
the other two internal baselines. In sum, the above
observations demonstrate that DFP is capable of
leveraging the data more effectively with the help
of the commonsense-aware memory network and
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w/o. w/o.
Samples memory | continual pre- | SemSin | DFP
network | training
1) Iraq said it invaded Kuwait because of disputes over oil ... v v v v
2) The fights erupted in Flatbush, and 46 were arrested at o v J J
Wednesday ...
3) more traditional groups are also opening new chapters, thanks in v o " J
part to their ability to use new technologies ...

Figure 5: Results of case study where bold denotes target events, and underlined words indicate causal

clues.

continual pre-training tasks.

4.7. Case Study

We conduct a case study to further visually
demonstrate the effectiveness of DFP. Figure 5
shows three instances as well as the identification
results of DFP, two internal baselines and previ-
ous SOTA method SemSin. Instance 1 is a sim-
ple sample of explicit causality, and all methods
can make correct predictions. Instance 2 is an im-
plicit sample without any clue. However, there is

a relational path between two events in the com-

. . HasSubevent
monsense graph, i.e., fight —>>"“"""s hurt some-

oneLesSubevent, not arrested.  Methods with the

memory network can elicit relational knowledge to
make correct predictions. Ininstance 3, there is no
explicit semantic relationship between two events,
and the clue word “thanks” did not appear in the
training set. Nonetheless, methods with continual
pre-training can correctly identify it, indicating that
the continual pre-training can elicit PLMs’ ability to
identify causal clues.

4.8. Compared with In-Context Learning

To illustrate that ECI task is still not well-solved in
the era of Large Language Models (LLMs), we set
such baseline instructing LLMs to identify event
causalities by the means of in-context learning
(ICL). In this work, we adopt ChatGPT (gpt-3.5-
turbo-0301) provided by OpenAl APIs 3 for in-
context learning. We design the prompt to sim-
ulate the chatting history between the user and
the model. Specifically, it contains three parts: (1)
the instruction telling LLMs the task purposes and
the output format, (2) the demonstration giving an
input-output pair to teach LLMs and (3) some test
instances. We feed the prompt into LLMs and ex-
pect them to generate answers.

Figure 6 presents two examples which have been
correctly identified by DFP. In instance 2, Chat-
GPT is confused and wrongly identifies the causal
relation between “escaped” and “fransporting”, be-
cause if the inmate was not transported, he would

3https://platform.openai.com/docs/api-reference

Instruction

User Assume you are an event causality
classifier. Given a sentence and event pairs, you
need to classify their causality type. The possible
event causality types are listed as below: causal,
non-causal.

ChatGPT Yes, | understand.

User Please note that your annotation results
must follow such format: “Answer: ([Event_1],
[Event_2], [Causality_1]) <SEP> ([Event_3],
[Event_4], [Causality_2]) <SEP>...".

ChatGPT No problem. Let'’s start!

Demonstration

User Instance: Kimani Gray, a young man who
likes football, was killed in a police attack shortly
after a tight match. (killed, attack)

ChatGPT Answer: (killed, attack, causal)

Question

User Instance1: Iraq said it invaded Kuwait

because of disputes over oil. (invaded, disputes)
ChatGPT Answer: (invaded, disputes, causal) V
User Instance2: A Texas inmate escaped from a
prison van near Houston after pulling a gun on two
guards who were transporting him between

prisons. (escaped, transporting)

ChatGPT Answer: (escaped, transporting, causaI)X

Figure 6: The instruction, demonstration and test
questions of in-context learning.

not have a chance to escape. However, in this
context, “fransporting” does not directly lead to
“escape”. From the test instances, we find that
even a powerful tool like ChatGPT still face chal-
lenges in dealing with some ambiguous causal-
ities. A series of recent work (Jin et al., 2023;
Kiciman et al., 2023) observe the similar results
as ours, that off-the-shelf LLMs perform poorly
on inferring causation from correlation. More-
over, it is important to consider that ChatGPT re-
lies on large-scale corpora and high-performance
hardwares, while for most research environments,
such conditions are almost impossible. In con-
trast, DFP requires relatively fewer conditions, is
easier to implement, and is more reliable in deal-
ing with some ambiguous causalities.
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5. Conclusion

In this paper, we propose an effective pipeline, i.e.,
distill, fuse and pre-train (DFP) to integrate reli-
able task-specific knowledge from existing com-
monsense graph for ECI task. DFP includes
a commonsense graph distillation module which
aims to distill task-oriented metagraph, a hetero-
geneous information fusion module which adopts
commonsense-aware memory network to fuse the
text and metagraph, and a continual pre-training
module which further injects task-specific knowl-
edge into the model. Extensive experiments
demonstrate the effectiveness of DFP over exist-
ing baselines.
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