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Abstract
State-of-the-art NLP models have demonstrated exceptional performance across various tasks, including sentiment
analysis. However, concerns have been raised about their robustness and susceptibility to systematic biases in both
training and test data, which may lead to performance challenges when these models encounter out-of-distribution
data in real-world applications. Although various data augmentation and adversarial perturbation techniques have
shown promise in tackling these issues, prior methods such as word embedding perturbation or synonymous
sentence expansion have failed to mitigate the spurious association problem inherent in the original data. Recent
counterfactual augmentation methods have attempted to tackle this issue, but they have been limited by rigid
rules, resulting in inconsistent context and disrupted semantics. In response to these challenges, we introduce a
diffusion-based counterfactual data augmentation (DCA) framework. It utilizes an antonymous paradigm to guide
the continuous diffusion model and employs reinforcement learning in combination with contrastive learning to
optimize algorithms for generating counterfactual samples with high diversity and quality. Furthermore, we use
a dual sentiment classifier to validate the generated antonymous samples and subsequently perform sentiment
classification. Our experiments on four benchmark datasets demonstrate that DCA achieves state-of-the-art
performance in sentiment classification tasks.

Keywords: counterfactual data augmentation, spurious association, continuous diffusion

1. Introduction

Sentiment analysis aims to identify and under-
stand the emotion or sentiment expressed in text,
which could include documents, sentences, or
tweets. It is a foundational task in natural language
processing (NLP) and has surged in popularity
in recent years, due to its wide-ranging practical
applications (Kertkeidkachorn and Shirai, 2023;
Nzeyimana, 2023). In recent years, deep learn-
ing technology has experienced significant growth
and achieved remarkable success in the field of
sentiment analysis (Zhang et al., 2015; Yadav and
Vishwakarma, 2020). However, the inherent com-
plexity of human sentiments (Bravo-Marquez et al.,
2014) presents an ongoing challenge in practical
sentiment analysis, resulting in issues such as
overfitting. This challenge leads to model failures
when confronted with minor modifications in real-
world examples (Zhang et al., 2020; Xing et al.,
2020). Researchers have attempted to tackle
these challenges by employing data augmentation
and adversarial perturbation, such as augment-
ing training data by generating synonymous sen-
tences (Xu et al., 2019) and introducing random
noise during the word embedding phase (Croce
et al., 2020). However, these methods still cannot
fully resolve the problem of spurious associations
(Gardner et al., 2020).
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Figure 1: An Illustration of spurious association
in SA Tasks, where represents positive senti-
ment, and represents negative sentiment. If the
model is trained using the first five examples, it
will learn the spurious association between neu-
ral word “movie” and positive sentiment. Conse-
quently, it might inaccurately classify the sentiment
of the last example as positive.

Taking the word “movie” in Figure 1 as an exam-
ple, the frequent co-occurrence of the neutral word
“movie” with positive sentiment in the data distribu-
tion leads the model to learn a spurious associa-
tion between “movie” and positive sentiment, re-
sulting in inaccurate predictions. The issue of spu-
rious patterns impacts the out-of-domain (OOD)
generalization of models trained on independent
and identically distributed (IID) data, causing a de-
cline in performance when there is a shift in dis-
tribution (Sugiyama and Kawanabe, 2012; Snoek
et al., 2019).
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To address the issue of spurious association
in sentiment analysis (SA), researchers have ex-
plored counterfactual data augmentation to aid
models in understanding the true causal relation-
ships between sentiment data samples and their
corresponding labels (Kaushik et al., 2020; Xing
et al., 2020; Wang and Culotta, 2021; Raedt et al.,
2022; Wu et al., 2021; Ou et al., 2022). An es-
sential aspect of counterfactual data augmenta-
tion is generating samples with sentiments oppo-
site to the original ones. Nevertheless, current
counterfactual methods have several limitations:
(i) Most studies rely on fixed rules or known nega-
tion words, synonyms, and antonyms from Word-
Net to create antonymous samples, limiting the di-
versity and semantic consistency of the generated
samples. (ii) The generated antonymous samples
are merged with the original samples during train-
ing without considering their correspondence. (iii)
Data generation and classification are often han-
dled as distinct tasks, trained sequentially, leading
to issues such as error accumulation.

In this paper, we present a Diffusion-based
Counterfactual Augmentation (DCA) framework
aimed at mitigating spurious association in senti-
ment analysis (SA). Our approach excels in gener-
ating counterfactual samples with exceptional di-
versity and fluency, distinguishing it from previous
research. The framework combines a generator,
a discriminator, and a dual sentiment classifica-
tion model, all integrated into a framework that
leverages reinforcement learning and contrastive
learning techniques. In the generation phase, we
start by using multi-label learning to craft opti-
mal antonymous paradigms for the original sam-
ples. Next, we utilize contrastive learning between
antonymous paradigms and original samples to in-
struct the diffusion model sampling process. By in-
corporating the reward from the discriminator, we
generate diverse antonymous samples with con-
trollable sentiment label and coherent semantics.
In the sentiment classification phase, we estab-
lish a dual sentiment classifier, comprising both an
original sample predictor and an antonymous sam-
ple predictor. It leverages training from the discrim-
inator and ultimately serves as the final sentiment
classifier.

The main contributions of this study can be sum-
marized as follows:

• We propose a novel diffusion-based coun-
terfactual data augmentation framework for
sentiment generation. It guides the diffu-
sion model in generating antonymous sam-
ples from an antonymous paradigm and col-
laborates with the dual sentiment classifier for
sentiment analysis.

• We leverage reinforcement learning and con-

trastive learning to jointly optimize both the
generator and the discriminator, improving the
quality and diversity of the generated sam-
ples.

• We conduct experiments on four sentiment
analysis (SA) benchmark datasets, demon-
strating that our model outperforms state-of-
the-art methods. Additionally, qualitative anal-
ysis shows that the counterfactual samples
we generate exhibit high fluency and diversity.

2. Related Work

In recent years, the advent of deep learning has
significantly enhanced the performance of natural
language processing, including sentiment analysis
(Devlin et al., 2019; Qian et al., 2023; Fan et al.,
2022). Nevertheless, challenges in generalization
persist when dealing with out-of-distribution (OOD)
data (Xing et al., 2020; Huang et al., 2017; Ren
et al., 2019; Zhang et al., 2020). To address these
challenges,some research is dedicated to enhanc-
ing the robustness of neural networks. These stud-
ies primarily fall into three categories: adversar-
ial training, causal inference, and data augmenta-
tion. The adversarial training approach introduces
adversarial noise during the training process to
assist the model in producing consistent output,
even when faced with data perturbations (Croce
et al., 2020; Miyato et al., 2017). Causal infer-
ence methods aim to improve a model’s robust-
ness by identifying the factors in the text that truly
impact the sentiment. Paul (2017) emphasized es-
tablishing causal relationships between word fea-
tures and sentiment labels. The primary idea be-
hind data augmentation is to improve a model’s
generalization by generating more training data. In
Zhang et al. (2015); Kobayashi (2018); Xu et al.
(2019), synonym-based augmentation is achieved
by randomly replacing synonyms, hypernyms, or
hyponyms in the original samples. However, syn-
onym augmentation methods cannot address the
problem of spurious association. To this end,
Kaushik et al. (2020); Srivastava et al. (2020) intro-
duced minimal modifications to the training data,
employing human annotators to perform label in-
version. However, this manual approach is costly
and time-consuming. Furthermore, Wang and Cu-
lotta (2021); Chen et al. (2021); Yang et al. (2021)
utilized automated techniques, such as rules for
antonym replacement, to generate antonymous
samples.

Recently, diffusion models have been applied
to controlled text generation (Li et al., 2022; Lin
et al., 2023; Gong et al., 2023). Compared to tra-
ditional methods like GANs, diffusion models of-
ten exhibit a more stable training process and the
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Figure 2: The architecture of diffusion-based counterfactual augmentation (DCA) framework.

ability to generate diverse content without requir-
ing retraining. This feature is particularly valuable
for content control and enhancing diversity. Build-
ing upon prior research, we propose a diffusion-
based counterfactual augmentation (DCA) frame-
work for sentiment analysis. It’s essential to em-
phasize the significant differences between our
model and the one proposed by Chen et al. (2021).
The rule-based substitution they used may restrict
the diversity and fluency of generated samples.
Hence, we have chosen to utilize a counterfactual
enhancement framework based on the diffusion
model to encourage the generation of antonymous
samples.

3. Methodology

The overall structure of our proposed Diffusion-
based Counterfactual Augmentation (DCA) frame-
work is shown in Figure 2, which comprises four
parts: (i) diffusion based counterfactual genera-
tor, (ii) antonymous discriminator, (iii) contrastive
learning, and (iv) dual sentiment prediction.
3.1. Diffusion based Counterfactual

Generator
Antonymous Paradigm In this study, we focus
on the sentence-level sentiment analysis (SA) task.
Each sentence from the dataset is designated
as the original sample. Taking inspiration from
previous methods, we apply three rules to build
the antonymous sentence through a combination
of word substitution and a multi-label classifica-
tion algorithm, designating it as the antonymous
paradigm. These learned paradigms serve as
guides for the diffusion model in generating se-
mantic antonymous samples. First, we retain stop

words unrelated to sentiment to prevent the intru-
sion of irrelevant information. Next, we replace
adjectives, adverbs, and verbs that impact the
sentiment of sentences with their corresponding
antonyms from WordNet. Lastly, for words that do
not adhere to the aforementioned rules, we substi-
tute them with their corresponding synonyms.

Given a sequence of original samples with a
length of n, denoted as wo = {w1, w2, . . . , wn},
and a vocabulary with size m, for each token wk,
we perform a supervised multi-label classification
to determine whether the j-th word in the vocabu-
lary can be a substitution for it. The substitution
probabilities can be defined as:

p
(
yjk | wk

)
=

1

1 + exp (Wjhk + bj)
, j ∈ [1,m]

(1)
where hk is the hidden representation for token wk,
Wj is weight matrix and bj is the bias.

Subsequently, we re-normalize the obtained
probabilities by setting the probabilities of words
with low likelihood and those not included in Word-
Net to zero.

Pk = normalize
(
{p(y1k) = 1, . . . , p(ymk ) = 1}

)
(2)

Consequently, we have a multinomial normalized
distribution denoted as wk ∼ Multinomial(Pk).

Finally, we derive the antonymous paradigm
(wg, s̄) from the original sample (wo, s) to guide the
diffusion generation, with s representing the senti-
ment label of the original sample wo, s̄ is the oppo-
site sentiment label.

Generator Utilizing the reference antonymous
paradigm, we train a generator to generate addi-
tional antonymous samples. When compared to
traditional generative models, such as Generative
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Adversarial Networks (GANs) (Goodfellow et al.,
2014), diffusion models have emerged as a novel
paradigm for generative models. They come with
several potential advantages, particularly in the
generation of high-quality text and images. Typ-
ically, a diffusion model includes both a forward
and a reverse diffusion process. Let x represent
the latent representations of the original sample
(wo). At the initial step of the forward noise-adding
process, we follow the Diffusion-LM proposed by
Li et al. (2022) to map the discrete sample wo

into a continuous space. Specifically, we concate-
nate the original sample wo and the antonymous
paradigm wg to embed them into a continuous fea-
ture space, denoted as Emb(wo⊕g).

qϕ
(
x0 | wo⊕g

)
= N

(
Emb

(
wo⊕g

)
, β0I

)
(3)

where β0 refers to the of noise added in the time
step, and I is an identity matrix.

Beginning with x0 drawn from qϕ(x), we obtain
a sequence of latent variables, x1, . . . , xT , repre-
senting the intermediate steps in the process of
diffusion. These variables are generated through
a forward process, progressively introducing small
amounts of Gaussian noise into the sample:

q (xt | xt−1) = N
(

xt;
√
1− βtxt−1, βtI

)
(4)

In contrast to conventional diffusion models, which
perturb xt in its entirety, we introduce partial noise
solely to wg

t . This is a crucial aspect for en-
abling the diffusion model to conduct conditional
language modeling.

In the reverse conditional denoising process, the
objective is to recover the initial x0 from the partially
Gaussian-noised xT :

pθ (xt−1 | xt, t) = N (xt−1;µθ (xt, t) ,Σθ (xt, t))
(5)

where µθ(·) and Σθ(·) are parameters of Gaus-
sian distribution, learned during the training pro-
cess. We replace wo

t−1 in xt−1 with wo
0. In each

diffusion sampling step, we apply a rounding oper-
ation to the reparameterized xt to project it back
into the word embedding space. It can be inferred
that the core of our generation process is learn-
ing the data distribution between the original sam-
ples and antonymous paradigms, rather than con-
trolling them through numerous classifiers. Build-
ing on this strategy, our model autonomously sim-
ulates the semantic relationship between wo and
wg by connecting the embeddings of the original
sequence and the paradigm sequence, thereby
jointly training over two distinct feature spaces. We
compute the variational lower bound following the

original diffusion process:
Lvlb = Eq [DKL (q (xT | x0) ∥pθ (xT ))

+

T∑
t=2

DKL (q (xt−1 | xt, x0) ∥pθ (xt−1 | xt, t))

+DKL
(
qϕ

(
x0 | wo⊕g

)
∥pθ (x0 | x1)

)
− log pθ

(
wo⊕g | x0

)]
(6)

where Eq represents the expectation over the joint
distribution q(x0:T ), and the last term, denoted as
Lround, corresponds to the rounding operation illus-
trated in Figure 2. Utilizing the aforementioned
method, we generate the final antonymous sam-
ple (wa, s̄) based on (wo, s) and (wg, s̄).

3.2. Antonymous Discriminator
In order to evaluate the quality of the generated
antonymous sample, we construct a dual discrimi-
nator, in which the original sample set Do is used to
train the original predictor Co, and the antonymous
sample set Da is to train the antonymous predictor
Ca. The antonymous sample wa is input to both Co

and Ca. They generate their respective represen-
tations through softmax layers, denoted as ho and
ha, to make dual sentiment predictions. We uti-
lize LSTM, Bert-base, and Bert-large(Devlin et al.,
2019) as our text encoders.

pori(s | wa) = softmax (Woriho + bori)

pant(s | wa) = softmax (Wantha + bant)
(7)

where Wori and bori represent the parameters of Co,
while Want and bant correspond to Ca. The param-
eters of Ca change during the generation process
of antonymous samples, however, we prevent up-
dates to the parameters of the original predictor by
blocking gradient backpropagation.

We optimize the generator by providing reward
to the generated antonymous samples through the
discriminator. The predictive reward is derived
from both Co and Ca:

r(wa) = αpant(s̄ | wa) + γ (s− pori(s | wa)) (8)
where α and γ are two inversely related trade-off
parameters, and the sum of them is 1. In the cold-
start phase of Ca, the value of α incrementally in-
creases from 0 to 1 as the performance of Ca im-
proves. To ensure the quality of the generated
samples, we employ a policy gradient-based ap-
proach similar to that of Chen et al. (2021). We
sample M antonymous sentences for each origi-
nal sample and calculate the average reward as
the baseline reward, denoted as ravg. We encour-
age the generator G to produce antonymous sam-
ples when r(wa) exceeds the average reward ravg,
the loss of the discriminator can be computed as
follows:

Lr = − log(r(wa)− ravg)PG(wa | wo) (9)
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3.3. Contrastive Learning
To encourage the generator to produce antony-
mous samples that are closer to the antonymous
paradigm and ensure antonymous semantics be-
tween the original sample and the antonymous
paradigm, we employ a contrastive learning strat-
egy. The antonymous paradigm wg serves as the
anchor, wa is the generated antonymous sample,
and wo is the original sample.

Lc (wg,wa,wo) =
∑

w∈W
max

(
0, ∥f(wg)− f (wa)∥22

−∥f(wg)− f (wo)∥22 + ϵ
)

(10)
where the parameter ϵ serves as the safety margin.

In conclusion, we derive the overall objective
function by summing up the three components:

L = Lvlb + Lr + Lc (11)

3.4. Dual Sentiment Classification
We combine antonymous sample generation and
end-to-end dual sentiment classification with a
reinforcement learning and contrastive learning
framework. Specifically, using the original sample
wo and the generated antonymous sample wa, we
employ Co and Ca respectively to perform dual sen-
timent prediction.

p(s |wo) =

{
pori(s |wo), if > min (µ, pant(s |wa))

pant(s |wa), otherwise
(12)

where µ represents the confidence threshold.
When the confidence of the original predictor ex-
ceeds either that of the antonymous predictor or
the threshold µ, we adhere to the results of the orig-
inal predictor. In the opposite case, the sentiment
of the original sample wo should be regarded as
the sentiment opposite to wa.

4. Experiments

In this section, we conduct experiments to explore
the following research questions: (i) Does our pro-
posed data augmentation approach have the capa-
bility to substantially improve the sentiment anal-
ysis (SA) performance of the model? If so, how
does the enhancement achieved by our approach
compare to other baseline methods? (ii) Do the
individual components of our framework contribute
positively to the overall effectiveness of the model?
(iii) Is the proposed DCA framework effective in
addressing the problem of spurious association
and generating samples that exhibit both high qual-
ity and diversity?

4.1. Datasets
We evaluate the proposed DCA model on four
benchmark datasets for sentence-level sentiment
analysis (SA). SST-2 & SST-5 is Originating from
the Stanford Sentiment Treebank (Socher et al.,
2013), they categorize sentiments in movie re-
views into two sets of labels for binary and 5-class
classification tasks, respectively. RT is generated
from online movie reviews (Pang and Lee, 2005),
where sentiments are classified into two classes
for SA tasks. Yelp-5 is collected from the Yelp web-
site platform and classifies sentiments into five lev-
els, ranging from 0 to 4. We follow the data split
provided by Xu et al. (2019), using 100K samples
for the training set, 10K for the validation set, and
10K for the test set. We utilize the traditional clas-
sification accuracy (%) as our evaluation metric fol-
lowing previous study.

4.2. Experimental Settings
For the SST-2 & SST-5 and RT datasets, we estab-
lish a maximum sequence length of 50. However,
for the Yelp-5 dataset, the maximum sequence
length is extended to 200. For the diffusion gen-
erator, we set the embedding dimension d to 300.
We set the diffusion step T to 2000, following a
square-root noise schedule. Regarding the en-
coder LSTM, the batch size is configured as 16, the
sentence sampling times M as 32, and the learn-
ing rate as 1e−3. We set the confidence threshold
µ to 0.80 and 0.41 for binary and 5-class datasets,
respectively. When Bert is employed as the text
encoder, we modify the learning rate and batch
size, setting them to 2e−6 and 32, respectively.
Accordingly, µ is set to 0.52 and 0.22. The ex-
periments are executed using NVIDIA A100 Ten-
sor Core GPUs, and all parameters within our ex-
periments are optimized using the Adam optimizer
(Kingma and Ba, 2015).

4.3. Baselines
To conduct a comprehensive evaluation of the
DCA framework, we compare it against the follow-
ing state-of-the-art methods:

SynDA (Zhang et al., 2015) is a data augmenta-
tion method that is based on synonymy. It utilizes
an English thesaurus from WordNet to create new
samples by selectively replacing words in the orig-
inal samples with their corresponding synonyms.

Back-tran (Sennrich et al., 2016) leverages a
translation model to translate the original sample
into various languages and then back to the source
language to obtain synonymous samples.

ConDA (Kobayashi, 2018) is a contextual data
augmentation technique that employs a bidirec-
tional language model to identify synonyms for in-
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dividual words. It generates adversarial samples
by randomly replacing words in original samples
with these model-predicted counterparts.

VAT (Miyato et al., 2017) is an adversarial train-
ing mechanism designed to enhance robustness
in text classification tasks. It achieves this by
strategically perturbing embeddings within recur-
rent neural structures to generate adversarial ex-
amples.

AGC (Wang and Culotta, 2021) utilizes Word-
Net to identify antonyms of the top N critical words
in a corpus and generates antonymous samples
through a word substitution strategy.

LexicalAT (Xu et al., 2019) employs a generator
to randomly replace words with their correspond-
ing synonyms, hyponyms, or hypernyms, gener-
ating new samples. Then, it utilizes adversarial
learning to jointly optimize both the generator and
discriminator.

RCDA (Chen et al., 2021) introduces an end-to-
end reinforcement learning framework for gener-
ating counterfactual data. It employs the antony-
mous word substitution strategy to generate coun-
terfactual data, addressing the problem of spuri-
ous association.

KATG (Shen et al., 2022) utilizes a generator-
discriminator architecture that leverages prior sen-
tences and keyword-bias sampling to generate ad-
versarial samples.

5. Results

5.1. Main Experimental Results
In table 1, we compare our model DCA using
LSTM, Bertbase, and Bertlarge as text encoders with
the baseline methods on four benchmark datasets.
As expected, DCA demonstrates a significant per-
formance advantage over the competitive base-
lines. Moreover, compared to the current most ad-
vanced counterfactual data augmentation method,
RCDA, our method has achieved comprehensive
leadership on four datasets. The increase in per-
formance is statistically significant according to the
paired t-test. Specifically, (i) for the LSTM text
encoder, DCA outperforms the LSTM baseline by
2.89% on SST-2, 2.66% on SST-5, 3.13% on RT,
and 0.93% on Yelp-5. DCA improves the baseline
methods SynDA, Back-tran, ConDA, VAT, AGC,
LexicalAT, KATG, and RCDA with significant accu-
racy improvements on all datasets. (ii) DCA con-
sistently outperforms all baseline methods when
using the Bertbase and Bertlarge text encoders in
combination with Back-tran, AGC, LexicalAT, and
RCDA across all datasets. The results presented
in Table 1 clearly illustrate the consistent superi-
ority of our DCA approach over baseline methods
across different text encoders and datasets, high-

lighting its effectiveness in enhancing sentiment
analysis performance.

Method SST-2 SST-5 RT Yelp-5
LSTM 80.28 39.97 76.03 61.79
+SynDA 80.30 40.20 / /
+Back-tran 80.77 39.59 76.32 61.76
+ConDA 80.10 40.55 / /
+VAT 81.16 37.38 75.94 59.69
+AGC 76.00 32.03 71.80 60.53
+LexicalAT 81.60 41.99 76.22 61.18
+KATG 81.90 / / /
+RCDA 82.97 42.35 78.87 62.44
+DCA 83.17 42.63 79.16 62.72
Method SST-2 SST-5 RT Yelp-5
Bertbase 91.52 53.66 87.14 66.17
+Back-tran 91.81 53.93 87.41 65.54
+AGC 89.51 52.76 85.30 65.54
+RCDA 91.18 54.02 88.23 66.57
+DCA 92.26 54.34 88.34 66.73
Method SST-2 SST-5 RT Yelp-5
Bertlarge 92.86 55.25 88.33 66.93
+Back-tran 92.96 54.70 88.21 66.84
+AGC 93.02 53.24 87.69 66.17
+LexicalAT 93.03 53.38 88.68 67.50
+RCDA 93.30 55.62 89.07 67.41
+DCA 93.68 56.33 89.16 67.76

Table 1: Comparison of accuracy (%) results be-
tween our DCA model and the baselines on four
SA benchmark datasets.

5.2. Ablation Study
We conduct ablation studies to validate the effec-
tiveness of each component in DCA. These stud-
ies cover Candidate words Selection (CS) for the
antonymous paradigm, the architecture of the Dual
Sentiment Classifier (DC), the embedding of the
Contrastive Learning (Cntr) strategy, and the Gen-
erator based on Diffusion (Diff). As presented
in Table 2, the “w/o CS” and “ w/o DC” indicate
that we randomly select candidate words to gen-
erate the antonymous paradigm and only use the
antonymous classifier for sentiment prediction, re-
spectively. We find that high-quality antonymous
paradigm plays a crucial role in the performance
of the diffusion model, and the removal of the dual
sentiment prediction structure results in a signifi-
cant decline in accuracy. In the case of “w/o Cntr”,
it means that we omit the contrastive learning
mechanism during diffusion generation. The ex-
perimental results highlight that contrastive learn-
ing effectively enhances sample quality. Further-
more, “w/o Diff” denotes that we do not utilize
the diffusion-based generator and instead gener-
ate samples directly using a word substitution strat-



4907

Figure 3: Sentiment polarity coefficients before and after integrating antonymous samples. “Before”
refers to the initial word coefficients, and “After” indicates the updated coefficients.

LSTM SST-2 SST-5 RT Yelp-5
w/o CS 76.86 38.23 74.32 60.94
w/o DC 81.31 40.46 77.34 61.52
w/o Cntr 82.96 42.17 78.92 62.44
w/o Diff 82.97 42.35 78.87 62.44
DCA 83.17 42.63 79.16 62.74
Bertbase SST-2 SST-5 RT Yelp-5
w/o CS 79.83 39.72 77.18 63.24
w/o DC 82.13 42.36 80.42 64.39
w/o Cntr 92.14 53.98 88.26 66.19
w/o Diff 91.98 54.02 88.23 66.57
DCA 92.26 54.34 88.34 66.73
Bertlarge SST-2 SST-5 RT Yelp-5
w/o CS 81.24 41.85 79.12 63.86
w/o DC 83.46 43.37 81.21 64.96
w/o Cntr 93.32 55.36 89.11 67.02
w/o Diff 93.30 55.62 89.07 67.41
DCA 93.68 56.33 89.16 67.76

Table 2: Ablation experimental results on four SA
benchmark datasets.

egy. This leads to a comprehensive drop in exper-
imental results. Based on this analysis, it’s clear
that the absence of any individual component re-
sults in a decline in DCA’s performance. When
considering the “w/o Cntr” scenario, it means the
exclusion of the contrastive learning mechanism
during the generation of diffused samples. The ex-
perimental results emphasize the effectiveness of
contrastive learning in improving the quality of gen-
erated samples. On the other hand, “w/o Diff” indi-
cates that the diffusion-based generator is not em-
ployed, and samples are generated directly using a
word substitution strategy. This omission results in
a significant reduction in the experimental results.
Based on this analysis, it is clear that the absence
of any individual component results in a decline in

Method
SST-2 SST-5

dis-1↑ dis-2↑ dis-1↑ dis-2↑
DSA 0.1134 0.5432 0.0937 0.5246
AGC 0.1215 0.5615 0.0984 0.1043

RCDA 0.1251 0.5677 0.1043 0.5541
DCA 0.1285 0.5812 0.1097 0.5628

Method
RT Yelp-5

dis-1↑ dis-2↑ dis-1↑ dis-2↑
DSA 0.0741 0.5202 0.0098 0.1342
AGC 0.0935 0.5437 0.0106 0.1386

RCDA 0.1052 0.5553 0.0114 0.1431
DCA 0.1130 0.5621 0.0109 0.1449

Table 3: Evaluation of antonymous sentence diver-
sity, where ↑ symbol signifies that a higher value
denotes greater diversity.

DCA’s performance. This shows the importance
of each component within the DCA framework in
enhancing sentiment analysis accuracy.

5.3. Qualitative Analysis
We employ distinct-N (Li et al., 2016), with N set to
1 and 2, to further assess the diversity of antony-
mous samples generated by different methods. As
shown in Table 3, our DCA method outperforms
the baseline methods, except for distinct-1 on Yelp-
5 compared to RCDA. It is demonstrated that
the diversity of antonymous samples produced by
DCA significantly outperforms most of the base-
line methods. Furthermore, both the antonymous
paradigm and the generated antonymous samples
are not unique, which are crucial for ensuring the
diversity of generated texts.

To further investigate whether our proposed
DCA method can identify intricate consistencies in
the text and produce contextually coherent antony-
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Example 1 Example 2

Original Sample The ring left me cold and wet like I
was out in the Seattle drizzle unpro-
tected. Negative

The dragons are the real stars of
reign of fire and you will not be dis-
appointed. Positive

Generated Sample
(word substitution)

The ring left me warm and dry like
I was out in the Seattle mizzle pro-
tected. Positive

The dragons are the unreal stars of
sovereignty of firing and you will be
disappointed. Negative

Generated Sample
(ours)

The ring made me warm and happy
like I was in the Seattle basking in the
sunshine with joy. Positive

The dragons are the fake roles of the
fire and you will become unsatisfied.
Negative

Table 4: Antonymous sentences generated by word substitution strategies and DCA model.

mous samples, we provide two training samples
with different sentiments in Table 4. In the first
negative sample, “wet” and “drizzle” are replaced
with “dry” and “mizzle” respectively. In the sec-
ond positive sample, phrases like “sovereignty of
firing” appear. While they do encompass the basic
antonymous operations, there are also unreason-
able replacements and non-standard expressions.
However, samples generated by the DCA method
not only capture sentiment-related features of sen-
tences but also exhibit superior expressiveness.

(a) The influence of the parameter µ on accuracy.

(b) The influence of the parameter ϵ on accuracy.

Figure 4: Results of parameter sensitivity analysis.

5.4. Data Visualization
To further investigate the effectiveness of our
method in addressing the issue of spurious associ-
ation, we selected nine words with neutral conno-

tations, as identified on Wikipedia. We conducted
this analysis using the SST-2 dataset and trained
logistic regression models before and after inte-
grating antonymous samples, respectively. The
sentiment polarity coefficient of each word in a sen-
tence ranges from -1 to 1. A coefficient close to 0
indicates a likely neutral word, around 1 conveys a
positive sentiment, and near -1 implies a negative
sentiment. Our observations revealed a significant
correction in the sentiment biases of these repre-
sentative words. As shown in Figure 3, the sen-
timent polarity of these representative words was
noticeably adjusted after data augmentation with
our method, which demonstrates the effectiveness
of our approach in mitigating the issue of spurious
association present in the original dataset.

5.5. Parameter Sensitivity Analysis

In Figure 4, we conduct a sensitivity analysis of
model parameters. We examine the variations in
classification accuracy under different parameter
values of µ in the dual sentiment classifier. The
results presented in Figure 4a indicate that config-
uring the confidence threshold µ at 0.22 for binary
tasks using Bertbase improves the model’s ability to
control prediction selection. Additionally, we con-
ducted an analysis on the parameter ϵ which repre-
sents the safety margin introduced in Section 3.3.
As shown in Figure 4b, the model exhibits optimal
classification performance when ϵ is set to 1.0. Fur-
thermore, for tasks that demand fine-grained dis-
crimination, a smaller value of ϵ helps the model
maintain more rigorous control over each category,
facilitating more precise classification.

6. Conclusion

In this article, we introduce a Diffusion-based
Counterfactual Augmentation (DCA) framework to
address spurious association in sentiment analy-
sis. DCA excels in generating diverse and fluent
counterfactual samples by combining a generator,
a discriminator, and a dual sentiment classification



4909

model. We conducted experiments on four bench-
mark datasets and evaluated our approach against
several state-of-the-art models. Experimental re-
sults indicate that DCA outperforms the baseline
methods. Through qualitative analysis and visu-
alization, we demonstrate that DCA improves the
quality and diversity of generated counterfactual
samples, effectively alleviating spurious associa-
tion.
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