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Abstract

This paper presents novel techniques for enhancing the performance of knowledge tracing (KT) models by focusing
on the crucial factor of question and concept difficulty level. Despite the acknowledged significance of difficulty,
previous KT research has yet to exploit its potential for model optimization and has struggled to predict difficulty from
unseen data. To address these problems, we propose a difficulty-centered contrastive learning method for KT models
and a Large Language Model (LLM)-based framework for difficulty prediction. These innovative methods seek to
improve the performance of KT models and provide accurate difficulty estimates for unseen data. Our ablation study
demonstrates the efficacy of these techniques by demonstrating enhanced KT model performance. Nonetheless, the
complex relationship between language and difficulty merits further investigation.

Keywords: Knowledge tracing, large language model, contrastive learning

1. Introduction

Knowledge tracing (KT) is a field of research that
aims to predict student learning progress by analyz-
ing their past interactions with question items within
an educational context (Abdelrahman et al., 2023;
Corbett and Anderson, 1994). Difficulty estima-
tion plays a crucial role in understanding dynamic
student learning progress (Minn et al., 2018). Ac-
cordingly, developing embeddings adapting item
response theory (IRT) models such as the Rasch
model has been used to calculate item difficulty
(Ghosh et al., 2020). Other studies adapted clas-
sical test theory (CTT) to estimate difficulty (Lee
et al., 2022b).

In addition, contrastive learning has emerged as
an effective framework in various research areas,
including computer vision, representation learn-
ing, as well as KT (Chen et al., 2020a; Wang and
Isola, 2020; Lee et al., 2022b). Contrastive learn-
ing learns representations by comparing positive
and negative samples (Wang and Isola, 2020; Le-
Khac et al., 2020). While there is some previous
research on contrastive learning applied to KT, few
studies have focused on incorporating the difficulty
information to improve model performance.
Moreover, the textual features of questions in ed-
ucational contexts contain valuable information
about the required skills, question difficulty, and
student interaction with questions. According to Ab-
delrahman, Wang, and Nunes (2023), Deep learn-
ing KT models have utilized these textual charac-
teristics to acquire an understanding of question
patterns and monitor the levels of knowledge in
students. However, the potential role of natural
language in KT is not yet fully understood.

The current study aims to address these gaps by
proposing a new model, called Difficulty-Focused
Contrastive Learning for Knowledge Tracing with
a Large Language Model (DCL4KT+ LLM). The
model utilizes CTT to calculate concept difficulty
and question difficulty and incorporates the con-
trastive learning framework to enhance the perfor-
mance of the model. Furthermore, it leverages the
textual features of questions to improve the accu-
racy of knowledge tracing. The architecture of the
proposed model consists of embedding layers, en-
coder blocks based on the MonaCoBERT model,
and a contrastive learning framework. In this study,
we tested DCL4KT + LLM using the benchmark
datasets and compared its performance using AUC
and RMSE. Additionally, an ablation study was con-
ducted to examine the effect of difficulty-focused
contrastive learning and difficulty prediction using
LLM, and the effect of the data augmentation.

2. Background

2.1. Difficulty in Knowledge Tracing

The difficulty has a significant impact on student
learning practices.(Minn et al., 2018). Previous
research in education has explored methods to
calculate difficulty in questions or concepts. CTT
and IRT are popular methods to calculate difficulty.
IRT depicts the relationship between an individ-
ual’s response to an item and their level on the
scale’s underlying construct. (Edelen and Reeve,
2007). Attentive knowledge tracing (AKT) (Ghosh
et al., 2020) used the Rasch embedding strategy
to represent difficulties of question and concept,
inspired by the Rasch model of item response
theory. Other studies have adapted CTT as it

4891

LREC-COLING 2024, pages 4891-4900
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0



#1 Text-Diff Fine-tuning #2 Predict Unseen Data Difficulty

i Train | Valid/Test
P N PP S TN

P
az / ot /
{ {
.o \ '\
\ \
\ \

DQtn

)

A/

-
i
i
i
i
i
i
i
|
i
i
i
i
i
i
i

Positive Emb

BERTIoss | D [ cLios
Negative Emb
ositive
imilai

e |0 o ][7] pe—
e | e |
e T =
o ] [esear] (o ] (e e
X [-] ]
[ MonaCoBERT ] [ MonaCoBERT MonaCoBERT MonaCoBERT ]
0 [ 1=

) (
t
G ) o)

[}
Masking

Hard Negative

Figure 1: Architectures of DCL4KT+LLM. Left: LLM-based difficulty prediction framework in KT. Right:

Whole architecture of DCL4KT+LLM

is much simpler and thus easier to interpret the
results. (Petrillo et al., 2015). In fact, various
KT models use CTT to calculate difficulty; bidirec-
tional encoder representation of knowledge tracing
(BEKT) (Tiana et al., 2021), monotonic attention-
based ConvBERT for knowledge tracing (Mona-
CoBERT) (Lee et al., 2022a), and contrastive learn-
ing for knowledge tracing (CL4KT) model (Lee et al.,
2022b). Meanwhile, the Graph Neural Network
(GNN)-based model in KT used a representation
of difficulty by using the relationship of questions
(concepts) and students’ responses (Song et al.,
2022; Luo et al., 2022).

In this research, we used CTT to calculate difficulty
and included a concept called 'hard negative diffi-
culty’ to empower the performance of our model.

2.2. Contrastive Learning in Knowledge
Tracing

Recently, contrastive learning-based models have
achieved better performance in a lot of research
areas, such as computer vision, natural language
processing, and recommendation systems. Con-
trastive learning is a method that learns the repre-
sentation by comparing the positive samples with
the negative samples (Wang and Isola, 2020; Le-
Khac et al., 2020). Momentum Contrast for Unsu-
pervised Visual Representation Learning (MOCO)
(He et al., 2020) proposed a dynamic dictionary
using a queue and moving-averaged encoder,
which improved the performance in unsupervised
visual representation tasks. SimCLR (Chen et al.,
2020a,b) achieved better performance by using
data augmentation for contrastive learning. Yet,
there have been few KT studies that have utilized
the contrastive learning framework. CL4KT (Lee
et al., 2022b) employed contrastive learning in
KT by using reversed answer data as negative
samples and suggested several data augmenta-
tion techniques. In addition, there have been at-
tempts to combine contrastive learning and GNN
(Song et al., 2022; Wu and Ling, 2023; Dai et al.,
2022). Nonetheless, there are only a few con-

trastive learning-based KT studies that have ex-
plored the role of difficulty in enhancing model per-
formance.

2.3. Knowledge Tracing with Natural
Language Dataset

The text of a question can contain a great wealth
of information, such as the skills required by the
question, the difficulty of the question, and the rela-
tionships between questions. Several deep learn-
ing KT models have leveraged the textual features
of question texts to learn question representations
and track students’ knowledge states (Abdelrah-
man et al., 2023).

Relation-aware self-attention for knowledge tracing
(RKT) and hierarchical graph knowledge tracing
(HGKT) also extract features from the textual in-
formation of questions to learn question represen-
tations in their models. Exercise-enhanced recur-
rent neural network (EERNN) and exercise-aware
knowledge tracing (EKT) extended from EERNN
proposed a framework that considers both exercis-
ing records and the texts of exercises for predicting
student performance (Su et al., 2018; Liu et al.,
2019). Adaptable knowledge tracing (AdaptKT),
which transfers knowledge from the source domain
to the target one, and In Exercise Hierarchical Fea-
ture Enhanced Knowledge Tracing utilize Bert has
been proposed (Cheng et al., 2022; Tong et al.,
2020). QuesNet is also an unsupervised learning
method that leverages a large corpus of unlabelled
questions (Yin et al., 2019).

Yet, previous research has not considered much
about the latent representation of the textual fea-
tures in the questions and concepts. Text-aware
KT models are motivated by leveraging the textual
features of questions and concepts to enhance per-
formance in tackling KT tasks.

3. Methodology

3.1. Problem Statement

By analyzing the sequence of interaction data col-
lected from a learning management system (LMS)
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or intelligent tutoring system (ITS), KT attempts to
predict the likelihood of a student answering ac-
curately. Student interactions can be represented
as x1,...,x;. Each interaction in KT consists of
three components: the query id, the related ed-
ucational concept, and the student’s response.
x¢ = (e, g1, ) describes the t-th interaction. ¢; rep-
resents the educational concept associated with
the ¢-th inquiry in this equation. The ¢, variable
represents the question’s identifier. r; represents
the student’s response to the t-th query, where r;
in 0,1, where 0 denotes an incorrect response and
1 denotes a correct response. Difficulties can be di-
vided into two; concept difficulties ¢d; and question
difficulties ¢d;. The difficulty was set to an integer
value ranging from 0 to 100. Based on classical test
theory (CTT), The formula for calculating difficulty
is the number of students who got the question
(concept) correct divided by the total number of
questions (concepts).

3.2. Proposed Model Architecture

3.2.1. Embedding Layers

DCL4KT uses a positive embedding layer block and
a negative embedding layer. The positive embed-
ding layer E,,sitive CONsists of element-wise em-
bedding layers; questions E,, concepts E., ques-
tion difficulties E,q, concept difficulties E.; and
students’ response E,. In addition, position em-
bedding E, also contained the positive embedding
block. The formulation of the positive embedding
layer is below.

Epositive = Eq + Ec + Eqd + Ecd + Er -+ Ep (1)

The negative embedding layer E,,cgqtive CONSisted
of element-wise embedding layers; questions E,,
concepts E., hard negative question difficulties
E,qq, hard negative concept difficulties E,,.; and
hard negative students’ response E,,,.. The formu-
lation of the negative embedding layer is

Enegative = Eq + Ec + Enqd + Encd + Enr + Ep (2)

The position embedding E,, also contained the neg-
ative embedding block. The details of the negative
embedding are shown in section 3.3.2.

3.2.2. Encoder Architecture

In this research, we used MonaCoBERT (Lee et al.,
2022a) as an encoder block. MonaCoBERT is a
transformer-based model which changes the atten-
tion module by combining with span-based dynamic
convolution (SDC) and monotonic attention (MA),
which model can represent students’ response se-
quence locally and globally while representing the
students’ forgetness. DCL4KT uses four Monca-
CoBERT encoder modules where each module

used four transformer layers Tr. Three encoder
modules are used for the contrastive learning frame-
work. One encoder calculates binary cross en-
tropy (BCE) loss, and three encoders calculate
contrastive learning loss.

3.3. Contrastive Learning Framework

3.3.1. Loss Function

The loss function of DCL4KT is calculated by sum-
ming the BCE loss L;.. and contrastive loss L
(Lee et al., 2022b). The ratio between BCE loss
and contrastive loss is controlled by the hyper-
parameter ). which ranges from [0, 1]. The whole
loss function is formulated as

L= (1 - Ac) X ['bce + Ac X £cl7 (3)

BCE loss L. is a binary cross entropy loss be-
tween prediction 7, and real students’ response 7,
defined as

Loce = Y —(rilog i+ (1 —ry)log (1= #)) (4)

t

Contrastive loss £, is a concatenate of concept
similarity sim. and question similarity sim,

Lo = concat(sime, simg) (5)

When positive concept pair ¢}, c/, is passed
through the encoder layer ir, the result is
ez, ezt = tr(cl, ¢fy). When positive and negative
concept pair c;}, c;, is passed through the encoder
layer tr, the resultis cz;, cz,, = tr(c;, c;5). Thus,
the concept similarity is defined as

esim(czﬁ,cz&)

esim(cz:rl,cz:rz) + > sim (cz;’i’ czé)

(6)
When positive question pair ¢/}, ¢/, is passed
through the encoder layer t¢r, the result is
qzi,qzh = tr(ql, ¢f). When positive and neg-
ative concept pair ¢;, q;, is passed through the en-
coder layer tr, the result is ¢z, q2;5 = t7(q;, 42),
such that

stm. = — log

esim(qz:rl,qz:;)

) Y i (g 02)
(7)

simg = — log

3.3.2. Embedding with Hard Negative

The novel implementation of the contrastive learn-
ing framework in CL4KT (Lee et al., 2022b) in-
cluded negative embedding for student responses.
Our research expands hard negative embedding
to question and concept difficulty. The positive and
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negative embeddings are depicted on the right Fig-
ure 1.

The positive embedding is a composition of ques-
tion components E,, concepts E., question diffi-
culty E,4, conceptual difficulty E.q, and student re-
sponses E,.. Negative embedding, on the other
hand, integrates element-wise combinations of
question components £, concepts E., hard nega-
tive of question E,, 44, concept difficulty E,,.q, and
hard negative student responses F,,,.

To provide additional clarity, the hard negatives are
derived in a particular manner. For example, if a stu-
dent’s answer is correct, i.e. 1, the corresponding
hard negative becomes 0. In contrast, if a student’s
response is incorrect i.e. 0, the hard negative is
marked as 1. Similarly, concerning difficulty, if the
difficulty of a query or a concept is rated at 0.75,
then its hard negative equivalent would be 0.25. If
the difficulty rating is 0.25, the corresponding nega-
tive value is 0.75. This can be summarized as

Enqd = 1_Eqd7Encd = 1_Ecd7Enr = 1_E'ra (8)
where Eqd, E.q, E,, Enqd; FErca, Enr is [O, 1]

3.4. LLM-based Difficulty Prediction
Framework

In KT, when we calculate difficulty from questions
and concepts, it is not possible to calculate the diffi-
culty of the dataset, which is contained in the valida-
tion and test dataset but not in the training dataset,
due to data splitting. Previous KT Model with diffi-
culty used human-selected hyper-parameters (Lee
et al., 2022a) or used representations of Question
and Concept (Ghosh et al., 2020; Lee et al., 2022b).
However, this approach is not stable in realistic
educational Intelligent Tutoring Systems (ITS) or
online learning platforms, which consistently add
new questions or concepts to the e-learning sys-
tem. This need led to the creation of a new ap-
proach to predict the difficulty of unseen questions
or concepts which are not contained in the training
dataset.

We present an LLM-based difficulty prediction
framework to calculate difficulty, which is contained
in the validation and test datasets but not in the
training dataset, using the text of questions and
concepts. The left side of Figure 1 shows the LLM-
based difficulty prediction framework.

We define the notation to formulate the LLM-based
difficulty prediction framework.

» D: a dataset of students’ responses in knowl-
edge tracing.

* Dirains Dyatids Diest: SUbsets of D represent-
ing the training, validation, and test sets, re-
spectively.

* d(q, ¢): difficulty score for a question ¢ and a
concept c.

* B,,: apre-trained BERT model.
* By afine-tuned BERT model.

First, the dataset D consists

D = (i ciy7i)iy (9)
where g¢; is the i-th question, ¢; is the ith concept,
and r; is the i-th response. And we split the dataset
into training, validation, and testing sets as

Dtraz'n, Dvalid7 Dyiest = Spllt(D, ratio) (1 0)

where Split is a function that divides the dataset
based on a specific ratio.

Then, we calculate the difficulty CalDif f scores
from the training set, not the validation and test set
as

d(gi, ;) = CalDif f(Dtrain) (11)
Using the d(g;, c;), we execute fine-tune, F'T, the
pre-trained BERT model, which is trained by text
corpus. In this research, we used pre-trained
KoBERT ' downloaded from Huggingface 2, be-
cause our dataset contained Korean text, not En-
glish. The formulation is below.

By = FT(Bpy, d(gi ¢i)), (12)
where FT is a function that updates the model
parameters using the training dataset and the cal-
culated difficulties.

The fine-tuned BERT model is used to predict the
difficulties of questions and concepts in the valida-
tion/test sets,

d(qj,c;) = Byi(gj. ¢5) (13)

V(Qja Cj) € Dvn,lid U Dtesta V(Qja Cj) ¢ Dtrm'n

R (14)
where d(g, ¢) is the predicted difficulty of questions
and concepts in the validation/test sets which are

not contained in the training sets.

3.4.1. Data Augmentation

Referencing the previous research in KT and NLP,
we developed and applied eleven data augmenta-
tion strategies for DCL4KT. To control the proba-
bility of application, we set the probability hyper-
parameter to each augmentation strategy. If the
hyper-parameter ..., is 0.2, then the probability
of application crop is 20%. All of the data augmen-
tation strategies are applied to the training session,
not the validating or testing session.

"https://huggingface.co/beomi/kobert
2https://huggingface.co/
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» Token cutoff, span cutoff (Shen et al., 2020):
The token cutoff is a simple augmentation tech-
nique that removes random data portions from
an input sentence to produce limited perspec-
tives. As a variant of the cutoff procedure, span
cutoff removes a continuous segment of text.

» Concept and question mask (Lee et al.,
2022b): This method masks the concept or
question randomly. The probability is the same
as the original BERT. Note that the Mona-
CoBERT encoder already uses the students’
correctness mask.

» Crop (Lee et al., 2022b): A method which
crops the parts of the sequence.

+ Summarize: Maintains the order of the se-
quence and extracts some elements in the
sequence.

* Reverse: Reverses the order of elements in
the sequence.

» permute (Lee et al., 2022b; Yang et al., 2019):
Permutes the order of elements in the se-
quence randomly.

+ Segment permute: Makes segments, then
permutes those segments.

* Replace higher and lower difficulty (Lee
et al., 2022b): Replaces questions or con-
cepts up to the difficulty.

+ Concatenate sequence: Concatenates two
sequences to make new sequences.

3.5. Experiment Setting

3.5.1. Datasets

+ ASSISTment09: The ASSISTment datasets
were collected from the ASSISTment intelli-
gent tutoring system (ITS), predominantly from
middle schools in the U.S., with participants
randomly assigned (Heffernan and Heffernan,
2014). We used ASSISTments09 and ignored
ASSISTments15 which does not contain ques-
tion information3.

» Algebra05, 06: The algebra datasets, pro-
vided by the KDD Cup 2010 Educational Data
Mining Challenge, were collected from Cogni-
tive Tutor. This ITS, developed by Carnegie
Learning, focuses on middle school students
(Ritter et al., 2007)%.

Shttps://sites.google.com/site/assistmentsdata/home
*https://pslcdatashop.web.cmu.edu/KDDCup

» EdNet: Ednet dataset is provided by an edtech
company in South Korea named Santa with
a primary focus on the English test TOEIC
presented by ETS. It consists of a total of
131,441,538 interactions, accumulated from
784,309 students since 2017, primarily target-
ing adult learners who need to certify their En-
glish competency (Choi et al., 2020)°. We ex-
tracted 5,000 interaction data from the original
dataset.

* Homerun20: The open-source data in KT
were not contained full of text about questions
and concepts. Because of that, we used the
homerun20 dataset, which is not published.
This dataset is owned by i-Scream Edu which
is an edTech company in South Korea. We
used 351,425 responses from 201 elementary
school students who used i-Scream Homerun®
math education service in 2020. We erased all
personal identity information (PIl) before using
this dataset. We used de-identified user id,
questions and concepts id, the text of ques-
tions and concepts, and timestamp.

3.5.2. Evaluation Metrics and Validation

We employed AUC and RMSE as performance
metrics. In addition, we utilized a five-fold cross-
validation in our evaluation.

3.5.3. Baseline Models

We compared DCL4KT and DCL4KT-A to the base-
line models, such as DKT (Piech et al., 2015),
DKVMN (Zhang et al., 2017), SAKT (Pandey and
Karypis, 2019), and the latest models, such as AKT
(Ghosh et al., 2020), CL4KT (Lee et al., 2022b) and
MonaCoBERT (Lee et al., 2022a).

3.5.4. Large Language Models

While developing DCL4KT, we used KoBERT. In
ablation studies, we used three LLMs; KoBERT, Ko-
Electra and KoBigbird. These models are trained by
Korean corpus. We fine-tune these models using
Huggingface transformers to predict the difficulties
of unseen data.

3.5.5. Hyperparameters for Experiments
To compare each model, we used the same param-
eters for the model training.

» Batch size: The batch size was 512. Owing
to a limitation of resources, we also used a
gradient accumulation.

+ Early stop: The early stop parameter was 10.
For example, if the validation score was not
successively increased during the ten itera-
tions, the training session was stopped.

Shttps://github.com/riiid/ednet
®https://www.home-learn.co.kr/main/Index.do
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Dataset Metrics DKT DKVMN AKT CL4KT MCB-C DCL4KT DCL4KT-A
AUC 0.7285 0.7271 0.7449 0.7600 0.8059 0.8111 0.8153
ASSISTments09

RMSE 0.4328 0.4348 0.4413 0.4337 0.4063 0.4068 0.4034
AUC 0.8088 0.8146 0.7673 0.7871 0.8201 0.8288 0.8295

Algebra05
RMSE 0.3703 0.3687 0.3918 0.3824 0.3584 0.3657 0.3644
AUC 0.7939 0.7961 0.7505 0.7789 0.8064 0.8258 0.8278

Algebra06
RMSE 0.3666 0.3661 0.3986 0.3863 0.3672 0.3522 0.3504
EdNet AUC 0.6609 0.6602 0.6687 0.6651 0.7336  0.7392 0.7403
RMSE 0.4598 0.4597 0.4783 0.4750 0.4516  0.4505 0.4500
AUC 0.7619 0.7543 0.5903 0.6014 0.7659 0.7766 0.7808

Homerun20

RMSE 0.4092 0.4212 0.4745 0.4631 0.4880 0.4042 0.4014

Table 1: Overall performance of KT models based on four benchmark datasets and one custom dataset.
The best performance is denoted in bold, and the second is underlined. DCL4KT-A indicates DCL4KT
that used augmentation strategies. We can see that DCL4KT-A achieved the best results, and DCL4KT

was second for most of the benchmark datasets.

+ Training, validation, test ratio: The training
ratio was 80% of the entire dataset, and the
test ratio was 20%. The valid ratio was 10%
of the training ratio.

* Learning rate and optimizer: The learning
rate was 0.001, and Adam was used as the
optimizer.

+ embedding size: The embedding size was
512.

» Contrastive learning ratio: We used a con-
trastive learning ratio as 0.1.

» Augmentation setting: For augmentation, we
set the probability option to control the applica-
tion of augmentation. Mask-prob is 0.2, crop-
prob is 0.1, summarize-prob is 0.2, reverse-
prob is 0.1, permute-prob is 0.1, segment-
permute-prob is 0.1, replace-higher-diff-prob
is 0.1, replace-lower-diff-prob is 0.1, concat-
seqg-prob 0.1. Also, we used cut-off, not span-
cut-off, and the cut-off-prob is 0.03.

» Others: We used eight attention heads. The
max sequence length was 100, and the en-
coder number was 4. Models used for com-
parison, such as AKT” and CL4KT?®, used the
default settings.

4. Result and Discussion

4.1. Overall Performance

We estimated the overall performance of KT models
based on four benchmark datasets and one custom

https://github.com/arghosh/AKT
8https://github.com/UpstageAl/cl4kt

dataset. Table 1 show the performance of each
model. Except for the algebra05 (RMSE), DCL4KT-
A achieved the highest performance in all of the
benchmark datasets. DCL4KT-A is the version
where the augmentation strategies are applied to
DCL4KT (The hyper-parameter setting of DCL4KT-
A can see the Ablation Studies - Effect of Data
Augmentation). The performance of DCL4KT also
followed DCL4KT-A.

4.2. Ablation Studies

4.2.1. Effect of Difficulty-focused Contrastive
Learning

To investigate the effect of difficulty-focused con-
trastive learning, we compared the performance
of two cases; 1) non-difficulty-focused contrastive
learning (Non-Diff-CL), 2) difficulty-focused con-
trastive learning (Diff-CL). For the Non-Diff-CL case,
the difficulty level of 0.75 is applied to all unseen
data in both positive and negative embeddings.
Meanwhile, for the Diff-CL case, the difficulty level is
at 0.75 for positive embedding and 0.25 for negative
embedding. As a result, Diff-CL achieved higher
performance on all of the benchmark datasets. The
result is summarized in Table 2.

4.2.2. Difficulty Prediction using LLM

Using the RMSE metric, we compared two hyper-
parameters and three LLMs to determine whether
LLMs are capable of predicting difficulty. The two
hyper-parameters we selected were 0.75 and 0.25,
respectively, representing the average difficulty. Us-
ing 0.75 as the hyper-parameter in DCL4KT, the
model performed optimally based on our provided
data. In contrast, the performance was at its lowest
when the hyper-parameter was set to 0.25. Con-
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Figure 2: Left: Concept difficulty prediction. Center: Question difficulty prediction between LLMs. The
Xx-axis is training step and y-axis means RMSE score. The RMSE score of LLMs are lower than hyper-
parameter 0.75. That means LLMs can predict difficulty by using text data of questions and concepts.
Right: Relationship between contrastive learning ratio (x-axis) and model’s AUC score (y-axis).

sequently, if the LLM prediction score is near the
hyper-parameter value of 0.75, the LLM can ef-
fectively replace the use of hyper-parameters and
heuristics. KoOBERT, KoElectra, and KoBigbird were
each trained on a Korean corpus to align with our
Korean text dataset, and subsequently evaluated
for use in our experiment.

As a result, the left plot in Figure 2 shows the con-
cept difficulty prediction. The hyperparameter 0.75
scores 9.8455 and 0.25 scores 44.0410. Mean-
while, KoBERT scores 7.4140, Koelectra scores
8.4801, and KoBigbird scores 7.4923. The center
plot in Figure 2 shows the question difficulty predic-
tion. The hyperparameter 0.75 scores 16.3373 and
0.25 scores 44.0410. The LLMs also score better
than the hyperparameter 0.75. KoBERT scores
15.1846, Koelectra scores 15.4034, and KoBigbird
scores 16.1202. These indicate that LLMs can
predict difficulty and our proposed LLM-based dif-
ficulty prediction framework works effectively on
real data. Moreover, we can assume the corpus
of problems or concepts has information related to
the difficulties, and difficulty can be represented by
the corpus.

4.2.3. Contrastive Learning Loss Ratio

We experiment how the contrastive learning frame-
work affects the performance of the model (AUC).
We used DCL4KT, a model to which augmenta-
tion strategies have not been applied, and the AS-
SISTments09 dataset for comparison. The right
plot in Figure 2 right shows the relationship be-
tween contrastive learning loss ratio (x-axis) and
the model’s performance (y-axis). When the con-
trastive learning loss ratio is 0.1, the performance is
best (0.8111). Meanwhile the contrastive learning
loss ratio is 0.8, the performance is worst (0.8045).

4.2.4. Effect of Data Augmentation

We estimated AUC score of eleven augmentation
strategies, shown in (Figure 3), on the ASSIST-
ments09 dataset. Each augmentation strategy
is applied independently. The baseline is non-
augmented DCL4KT (0.8111). Some of the aug-
mentation strategies are higher than baseline; cut-

Dataset Metric  Non-Diff-CL  Diff-CL
AUC 0.8080 0.8111
ASSISTments09

RMSE 0.4070 0.4068
AUC 0.8223 0.8288

Algebra05
RMSE 0.3721 0.3657
AUC 0.8254 0.8258

Algebra06
RMSE 0.3525 0.3522
AUC 0.7357 0.7392

EdNet

RMSE 0.4598 0.4505

Table 2: Comparing performance of Non-Diff-CL
and Diff-CL. Non-Diff-CL is applied difficuty as 0.75
to all of the unseen data. Meanwhile, Non-Diff-
CL is applied up to positive embedding (0.75) and
negative embedding (0.25). The performance of
Diff-CL is better than the Non-Diff-CL.

off, span cutoff, replace higher difficulty. However,
when we estimate performance of mixed augmen-
tation, the probabilities are higher (0.8153) than
performance of each augmentation independently.
Our hyperparameter settings are as follows: mask-
prob is 0.2, crop-prob is 0.2, summarize-prob is 0.2,
reverse-prob is 0.2, permute-prob is 0.3, segment-
permute-prob is 0.2, replace-higher-diff-prob is 0.3,
replace-lower-diff-prob is 0.2, concat-seq-prob is
0.2. We used cutoff instead of span-cutoff, cutoff-
prob is 0.03. Note that this setting is not optimized,
and therefore, there is room to increase the perfor-
mance of the model.

4.3. Relationship between language and
difficulty

In the section titled Estimating Difficulty with
LLM, we demonstrated the predictive potential of
LLM based on text data. This indicates that the
language of text data contains inherent information
about its difficulty. To delve deeper into the relation-
ship between language and difficulty, we examined
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Figure 3: Comparing data augmentation strate-
gies. The x-axis is data augment probabilities and
y-axis means AUC score. The baseline is non-
augmented DCL4KT.
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Figure 4. Relationship between character length
and difficulty. x-axis is the character count of ques-
tions. y-axis left and blue histogram mean the num-
ber of character length in the dataset. y-axis right
mean difficulty. orange line is mean of correctness,
green line is median of correctness. When the char-
acter count is less than 120, we can see that the
students’ correctness decreases as the character
length increases.

the relationship between variables derived from text
data and difficulty.

Figure 4 displays the correlation between character
count and difficulty. The x-axis represents the char-
acter length of queries, whereas the y-axis left and
blue histogram represent the character count within
the dataset. The phrase y-axis right refers to ad-
versity. The orange line represents the mean level
of correctness, while the green line represents the
median level of correctness. Due to the relatively
small number of queries exceeding 120 characters,
we only considered instances where the charac-
ter count was less than 120. The graph depicts a
decline in students’ accuracy as character length in-
creases, which holds for both the mean and median
correctness.

The character count extracted from text data can be
regarded as one of the hidden variables influenc-
ing the text’s difficulty level. Nonetheless, a more
comprehensive examination with additional data
from various disciplines must confirm the above
findings.

5. Conclusion

The significance of difficulty level on student learn-
ing habits and the efficacy of the KT model is note-
worthy. However, previous KT research has yet to
exploit difficulty to improve performance fully and
has also struggled to calculate difficulty in unseen
data. In response to these obstacles, we have de-
veloped a difficulty-centered contrastive learning
technique for KT models and a Large Language
Model (LLM)-based difficulty prediction framework.
These novel techniques can optimize the perfor-
mance of the KT model and estimate the difficulty
level of unknown data. Our ablation investigation
confirmed the efficacy of these new techniques for
improving the KT model. Nonetheless, the rela-
tionship between language and difficulty requires
additional study. In subsequent research, we in-
tend to identify the linguistic characteristics that
possibly indicate difficulty level.
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