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Abstract
While detecting offensive language in online spaces remains an important societal issue, there is still a significant
gap in existing research and practial datasets specific to chatbots. Furthermore, many of the current efforts by
service providers to automatically filter offensive language are vulnerable to users’ deliberate text manipulation
tactics, such as misspelling words. In this study, we analyze offensive language patterns in real logs of 6,254,261
chat utterance pairs from the commercial chat service Simsimi, which cover a variety of conversation topics. Based
on the observed patterns, we introduce a novel offensive language detection method—a contrastive learning model
that embeds chat content with a random masking strategy. We show that this model outperforms existing models
in detecting offensive language in open-domain chat conversations while also demonstrating robustness against
users’ deliberate text manipulation tactics when using offensive language. We release our curated chatbot dataset
to foster research on offensive language detection in open-domain conversations and share lessons learned from

mitigating offensive language on a live platform.
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Disclaimer: Examples of offensive chat in this
study may include slang, sexually explicit lan-
guage, profanity, and hate speech.

1. Introduction

Chatbots are computer programs that interact with
humans using natural language (Bae Brandtzaeg
et al., 2021). Since Weizenbaum introduced the
ELIZA chatbot in the 1960s (Weizenbaum, 1966),
conversational agents have evolved from simple
rule-based algorithms to advanced deep neural
networks. Recently, with the emergence of large
language model applications like OpenAl Chat-
GPT, Google Bard, and Microsoft Bing, chatbot
usage has skyrocketed worldwide.

Some research suggests that conversations with
chatbots have fewer barriers than interacting with
humans, as users can enjoy the benefits of
anonymity and privacy (Bae Brandtzeeg et al.,
2021). Some people even perceive the service as
a "safe zone” where they can freely express them-
selves and discuss any topic without fear of be-
ing judged (Ta et al., 2020). Therefore, due to the
anonymity they provide, chatbots are seen as po-
tentially advantageous for individuals who are vul-
nerable, including those dealing with mental health
issues (Lucas et al., 2017).

Although chatbots offer many potential benefits,
there are worries that user anonymity may lead
to an increased use of harmful language com-
pared to interactions with other people. Accord-
ing to Hill et al. (2015), the level of profanity

in human—chatbot conversations is nearly 30-fold
more prevalent on average compared to human-
human conversations. Studies have found that
toxic language, including sexually explicit expres-
sion, accounts for a significant (e.g., 10-44%)
portion of human—chatbot interaction (Angeli and
Brahnam, 2008; Veletsianos et al., 2008).

If not addressed, offensive language towards chat-
bots may become unintentionally accepted, po-
tentially spreading to human-human conversa-
tions (Lima et al., 2020; Chin et al., 2020). Further-
more, it can harm the chat system itself as Chin
et al. (2020) pointed out that misuse and abuse
of chatbots will exacerbate negative user experi-
ences on the platform. Chatbots may also learn
offensive behavior from training data and respond
to users with toxic content.

As a result, extensive efforts are being made to
address the problem of regulating toxic behavior
in text generation (Kwak et al., 2022; Gehman
et al., 2020). Nevertheless, identifying toxic con-
tent within generated sentences or training data
remains a huge challenge. This is because there
are many different types of toxic content, such as
speech that contains hurtful, derogatory, obscene,
offensive, profane, or hateful content, and they are
topic- and context- dependent.

In addition, there is a gap in existing research
and practical datasets dedicated to chatbots. In
one study (Khatri et al., 2018), offensive con-
tent in chatbot-human interactions was catego-
rized into different labels, including inappropri-
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ate, insulting, profane, and sexual language (Ram
et al., 2018). This dataset comprises 1,517 man-
ually annotated utterances. In another investiga-
tion, the ConvAbuse corpus was introduced, con-
taining 20,000 annotated utterances and offering
a detailed breakdown of various types of abusive
language (Cercas Curry et al., 2021).

Our research expands on prior efforts by specif-
ically addressing offensive language within chat-
bots, using a large dataset of 6,254,261 utterance
pairs from real conversations. For this, we col-
laborated with SimSimi (https://simsimi.com/),
an open-domain chat platform running in 81 lan-
guages that has been one of the world’s longest-
running chatbot services since 2002. Based on
the logs, we examined which topics incur a higher
prevalence of offensive language and identified
frequent attempts by users to circumvent the auto-
mated filters when employing offensive language.
For instance, users intentionally misspelled offen-
sive words, such as “cOward” instead of “coward”,
to bypass the filters, which diminished the perfor-
mance of dictionary-based detection methods.
Based on the frequent misspelling practice, we
devised a contrastive learning-based approach
to train a context-aware offensive language de-
tection model by random masking. Experiments
demonstrate that the proposed loss design indi-
cates marked improvement over baseline mod-
els in detecting offensive language in unstructured
chat conversations. In terms of conversational
topics related to offensive language, our data anal-
ysis also reveals that certain topics, such as sex,
exhibit higher frequencies of offensive language
than other topics, such as politics.

Our main contributions are as follows:

* We present a large-scale analysis on the
use of offensive language in a real-world,
open-domain chatbot, leveraging a vast
dataset comprising 6,254,261 pairs of user
utterances and responses.

+ We propose a novel masking-based con-
trastive learning detection model tailored to
learning the offensive contexts embedded in
open-domain chat conversation texts. The
proposed model is designed to be resilient
to users’ intentional misspelling tactics of
offensive words.

* We release the code (https://github.com/
hyun78/coling2024_simmask) and dataset
' publicly to foster community collaboration
and subsequent research.

'Link to request the chatbot dataset at https://
blog.naver.com/simsimi_official/222833955785

2. Related Work

Efforts to detect offensive language Offensive
language is defined as hurtful, derogatory, or ob-
scene comments (Wiegand et al., 2018). Scholars
have taken various approaches to address offen-
sive usage in online user-generated content. For
example, regarding studies on offensive language
online, various platforms have been examined, in-
cluding social media in general (MacAvaney et al.,
2019), Facebook posts (Kumar et al., 2018), Twit-
ter tweets (Zampieri et al., 2019; Rosenthal et al.,
2021; Mand! et al., 2019), and Wikipedia com-
ments section.

Regarding detection methods, a variety of clas-
sifiers have been applied for identifying offen-
sive language, and these automated detection ap-
proaches have demonstrated promising results.
For example, several studies have suggested de-
tection models utilizing various techniques such
as linear classifiers (Malmasi and Zampieri, 2017),
deep neural networks (Aluru et al., 2021), transfer
learning (Wiedemann et al., 2020), and pre-trained
language models (Liu et al., 2019). A recent study
even proposed the use of large language mod-
els to identify hateful content (Wang and Chang,
2022).

As chatbot agents like ChatGPT become more
popular, researchers have been paying increasing
attention to the problem of offensive language de-
tection in chatbots. For instance, some of this re-
search has focused on how to control the genera-
tive models to prevent them from producing offen-
sive language (Kwak et al., 2022; Gehman et al.,
2020). Others try to use large language models
for detecting offensive languages (Li et al., 2023;
Nguyen et al., 2023). Our research aligns with de-
tecting offensive language while we focus on large
amounts of user-chatbot conversations.

Contrastive learning Contrastive learning is
a popular representation learning method that
brings positive pair embeddings closer together
while pushing negative pair embeddings apart. It
has been successful in computer vision (Chen
et al., 2020; He et al., 2020; Grill et al., 2020; Chen
and He, 2021) and has extended its application
across several domains. Many studies have at-
tempted to enhance the universal sentence-level
semantics of their representations by pretrain-
ing language models such as BERT (Kenton and
Toutanova, 2019) on the sentence level using con-
trastive learning (Fang et al., 2020; Giorgi et al.,
2021). There also exist some studies that utilize
contrastive learning in a multi-modal manner to de-
tect offensive content (Gonzalez-Pizarro and Zan-
nettou, 2023; Shome and Kar, 2021). Recently,
SimCSE (Gao et al., 2021) introduced an effective
text augmentation method that generates positive
samples by sending the same input through the
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encoder twice, utilizing a random dropout mask
in the encoder. DiffCSE (Chuang et al., 2022)
demonstrated that exploiting the property of the
masked language model can be helpful in repre-
sentation learning. Kim et al. (2022) proposed
a contrastive learning-based generalizable hate
speech detection method, which implies the con-
trastive approach can be effective in generalizable
and robust detection. As another example, Lu
et al. (2023) proposed contrastive-learning-based
hate speech detection method, which uses simple
dropout noise to make positive pairs. However,
it's worth mentioning that these offensive language
detection methods based on contrastive learning
may not effectively identify offensive language that
has been intentionally misspelled to bypass exist-
ing filters. Therefore, we introduce a contrastive
learning-based model for detecting offensive lan-
guage, specifically engineered to exhibit greater
resilience in the face of intentional misspelling.

3. Open Chat Data

3.1. SimSimi Platform

SimSimi is an open-domain chatbot platform
launched in 2002 with the primary goal of engag-
ing in small talk with users. SimSimi is a world-
wide service servicing millions of users. SimSimi
has relied on crowdsourcing to accumulate con-
versational knowledge since the beginning of the
service. This service provides a teaching feature
that allows users to input pairs of conversational
exchanges, with each pair consisting of a ques-
tion and its corresponding answer. Figure 1 shows
an example of the teaching feature. SimSimi re-
sponds to user utterances by selecting the most
appropriate chat answer from 141.6 million pairs of
conversations taught by their users based on text
similarity and internal context embeddings. Un-
der research collaboration, the authors accessed
a collection of random chat utterances on SimSimi.
Please see our ethical statement on preserving
users’ privacy protection.

Data types For topical consistency, we prepared
two datasets in English that span a similar period
between 2019 and 2021 for analysis (Table 1).

* The Teach dataset is conversation pairs that
use the "Teach” function, having crowd-
sourced labels, where SimSimi explicitly asks
users how to respond to a question. This
Teach dataset is also labeled by crowdsourc-
ing, determining whether the conversation
pairs contain offensive language, promote vi-
olence, or promote hatred. Labeling was only
available to users who passed the attention
check questions.

* The Live dataset is conversation pairs that

< SimSimi Teach eee

If somebody says this

Knock, knock

SimSimi may respond with this

Who's there?

TEACH

Figure 1: Teaching example on Simsimi. Users
can instruct the chatbot on how to respond to a
specific query. SimSimi also asks users if a given
sentence is offensive. In return, users receive ser-
vice credit. These crowdsourced labels are used
in this research.

Data Count Q.Len A.Len Users
Teach 40,152 15.30 23.80 19,825
Live 6,254,261 1553 17.84 168,305

Table 1: Data statistics for the number of utter-
ance pairs, average query length (Q.Len) and av-
erage answer length (A.Len) each utterance, and
the number of unique chat participants.

naturally arise between SimSimi and its users.
This dataset contains no labels.

SimSimi Inc. was granted a worldwide license
(the "IP License”) to use IP Content posted by
SimSimi users through "Terms and Conditions.”?
The data provided to researchers does not contain
any personally identifiable information (PIl) such
as names, gender, age, address, phone numbers,
locations, and social security numbers. SimSimi
does not collect or store PIl and has an internal
logic that protects user privacy by filtering out PII
revealed during chat conversations.

3.2. Data Processing

Offensiveness annotation To evaluate the of-
fensiveness of their data, Simsimi Inc. employs
data annotation methods that involve voluntary
contributions from Simsimi users. The criteria for
the offensiveness labels are outlined in the terms
of the SimSimi Policy on Rights and Responsibil-
ities (see section 2.1.1 through 2.1.7 of the policy
document) These criteria are in the same context
as the definition of offensive language we had de-
scribed earlier.

’http://bit.1y/3QT327n.
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Figure 2: Crowd label distribution on the toxic-
ity of randomly selected chat utterances of Teach
dataset. Scores represent the responses of non-
toxic labels out of ten labelers.

The annotation was performed within the applica-
tion. First, annotating users were given a detailed
explanation of the labeling criteria. Next, the users
labeled a set of five data samples as either offen-
sive or not offensive. Each set included two atten-
tion check samples, which SimSimi confirmed as
true positives and negatives. Using these atten-
tion check samples, the server rejected users who
provided incorrect answers to maintain annotation
quality. At the end of the annotation, participants
received rewards that could be spent on the ap-
plication in return. Each utterance was labeled by
ten users.

We defined the 'normal score’ for each sentence
as the count of times it was labeled 'non-offensive’
by a sample of ten users. Figure 2 presents
the crowdsourced label distribution from the Teach
dataset. The distribution of the obtained class la-
bels is 74.62% normal (non-offensive) and 25.38%
offensive, with the normal score threshold as 5.

3.3. Topic Distribution and Offensive
Language in Chat Conversations

To determine the representative conversation top-
ics to observe the use of offensive language
across topics, we examined utterances in the Live
dataset, which are from a natural chat environ-
ment. We define sessions as the consecutive con-
versations between a user and SimSimi. A ses-
sion s with length NV is a set of consecutive pairs
of utterances(p) for a user i (s = {p'}",). The
maximum time gap between two utterances in a
session, p} and p’, ,, is set as 30 minutes, after
which the conversation is considered a new ses-
sion. A total of 262,629 sessions were found.

Next, we define context session to account for
topic shifts within a session. If the word or
n-gram w' of topic ¢t occurred in a sentence
pair p; in session s, we defined context session
C = {pj—ksPj—k+1, " s Pj=1,Pj: Pjt1s " s Dj+k}
with window size k. Then, if two consecutive
context sessions contained the same topics, they

were merged. Setting the window size k to 5, a
context session contained an average of 18.3 ut-
terance pairs. A total of 561,878 context sessions
were retrieved.

We started with 12 topics: sports, food, sci&tech,
business, health, fashion, entertainment, politics,
news, music, books, and COVID-19. Keywords for
extracting chats by topics were compiled from the
literature (Hong and Davison, 2010; Alvarez-Melis
and Saveski, 2021; Nguyen and Shirai, 2015;
Hsieh et al., 2012; Abbar et al., 2015; Vidal et al.,
2015; Mao et al., 2011; Yang et al., 2014; Paul
and Dredze, 2014; Zhao and Min, 2019; Ma et al.,
2019; Al-Rawi, 2019). We augmented this list by
adding two additional topics that were prevalent
from observing the top-200 n-grams for n=1 to 4:
sexually-explicit and small talk with SimSimi. For
example, utterances like “How old are you?” and
“What do you like?” were labeled as the small talk
category.

Having identified topically coherent chats as con-
text sessions, we could see that the distribution
was skewed across topics: sex-related talk (ac-
counting for 47.9% of all context sessions), small
talk with SimSimi (20.5%), food (9.8%), music
(8.1%), sports, science & technology, business,
health, fashion, entertainment, politics, news,
books, and COVID-19. Interestingly, this find-
ing aligns with previous studies demonstrating the
prevalence of sexual topics in online conversa-
tion with social agents (Angeli and Brahnam, 2008;
Veletsianos et al., 2008).

The Live dataset includes offensive language.
Three types of offensive language, 1) insults (in-
cluding swear words), 2) hate speech, and 3) sex-
ually explicit language, were dominant in SimSimi
conversations. Each type is defined as below.

* Insulting: Language that disrespects and de-
nies an individual’s normal attributes and abil-
ities (Chin et al., 2020) (Query: “You idiot!”,
Answer: “Lol”).

* Hate speech: Language that attacks, deni-
grates, or incites violence or hatred against
specific groups based on characteristics (For-
tuna and Nunes, 2018) (Query: “N*gga” An-
swer: “You black not me”).

» Sexually Explicit: Language that contains ref-
erences to sexual acts, body parts, or other
obscene content® (Query: “fck yeah daddy ”
Answer: “any time sweet @ss”)

In these offensive sessions, sexually explicit top-
ics, where users initiate role-playing in a sex-
ual context, were the most prevalent. Based on

3https://developers.perspectiveapi.com/s/
about-the-api-attributes-and-languages
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manual inspection, we learned that certain topics
(sexually-explicit, fashion, and health) are associ-
ated more with offensive language.

3.4. Intentional Misspelling Behavior

We also found that misspellings, coded words,
and intentional typos are frequent in the studied
open domain chatbot, which may be challenging
for dictionary-based detection algorithms. Here,
we use the term attack query to describe instances
where users intentionally misspell or introduce ty-
pos in an attempt to circumvent the automatic of-
fensive language detection algorithm.

From the 262,629 sessions with 6,254,261 conver-
sation pairs, we try to find such attempts by the fol-
lowing process. First, we found 319,059 conversa-
tion pairs (5.1%) with attack query and avoidance
answer (i.e., “I will not answer that sentence”),
where the chatbot tries to avoid the conversation
based on SimSimi Inc. policy when facing inap-
propriate text. These attack queries are identified
by rule-based answers. Second, we collect up to 3
consecutive queries after the avoidance response
and measure the edit distance (Levenshtein et al.,
1966) of the original attack query (i.e., suck) and
modified queries (i.e. s(ck). Lastly, we mea-
sure the attack success rates if the chatbot replied
with any other meaningful answer rather than rule-
based avoidance, while the modified queries have
a smaller edit distance than 3.

There were 26,930 attack attempts (8.4%), and
attack success rates were 73.55%, indicating the
presence of intentional misspelling behavior in
chatbot conversations. In the next section, we
highlight this problem and suggest a framework
for learning the offensive context that users may
modify to circumvent the offensive language filters
of systems.

4. Detection Model

4.1. Contrastive Learning Loss Design

We present the Simple effective Masking frame-
work (SimMask) for detecting offensive lan-
guage (e.g., swear words, sexually explicit, and
hate symbols) leveraging the high representation
power of contrastive learning. The underlying con-
cept is derived from the observation that individ-
uals use typos or coded words to avoid censor-
ship (Magu and Luo, 2018). Such a simple trick
is effective at deceiving not only automatic detec-
tion filters but also deep neural networks (Gron-
dahl et al., 2018). We recognize that the offen-
sive nuance or tone of the entire sentence remains
unchanged even when the modified word may no
longer seem non-offensive. Thus, we anticipate
that an effective offensiveness detection model
should be able to learn the offensive nuance or
tone without explicit keywords.

To handle this, we employ random masking to gen-
erate positive samples without explicit keywords
and suggest three possible masking strategies
and corresponding experimental results in section
4.2. We expect this method can effectively detect
the offensive language used by the user side.

We use a contrastive learning framework to learn
offensive nuances or tones in a sentence. In gen-
eral, many contrastive learning frameworks de-
fine positive and negative samples to make suc-
cessful representations. To define a positive sam-
ple z+ for a given sentence x, we augment the
data with random masking, which masks words
in the original sentence. Let the given sentence
x = {wy,ws,- -+ ,wr} have length L and word to-
kens w;. Then, we randomly replace each word
with a special token [MASK] with probability r.
The masking ratio » can be a constant or varied
depending on the masking strategy tokenization
results. We use negative samples from the same
batch instances, which are unrelated to target in-
stance x (Figure 3b).

The sentence embedding z = h(f(z)) can be ob-
tained by using the encoder f and projection head
h, as shown in Figure 3a. The encoder can be
any architecture that can generate sentence em-
bedding, such as a BERT. Given a training batch
{z;}¥,, the contrastive loss is defined as follows:

6sim(zi,z:r)/'r

Leont = — lo -
con 9 Zj\le eSiM(zi,2;) /7’

where sim(, -) is the cosine similarity function, and
T is the temperature parameter. In addition, we
suggest jointly training with a supervised loss for
better prediction quality. The final objective is:

L= Ece + /\Lconh

where L is the cross entropy loss and X is the
hyperparameter to adjust two objectives. For the
cross-entropy loss, our model has a separate lin-
ear layer that inputs sentence embedding and out-
puts the number of classes (Figure 3).

4.2. Masking strategies

Masking enables the model to learn context more
effectively. The masking process teaches the
model to learn the behavior of coded words, inten-
tional typos, or indirect speech. We present three
possible masking word selection strategies:

« Strategy 1. Mask offensive words. We
mask potentially offensive words. Various al-
gorithms or existing dictionaries may be used
to predefine the offensive words. The mask-
ing probability is set to r for offensive words,
while other words are not masked.
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Figure 3: Overview of SimMask framework and contrastive loss. 3a: Original text(x) and its label used
to calculating L g loss, while its masked version(z™) is used to calculate £.,,;. 3b: Contrastive loss
maximize the agreement of original text(z) and positive sample(z*) while minimize agreement of negative

samples(z ™).

» Strategy 2. Mask non-offensive words.
Similar to Strategy 1, we predefine the non-
offensive words and mask them with the prob-
ability. In detail, the probability of masking
non-offensive words is set to » while other
words are not masked.

+ Strategy 3. Mask all words. In this strategy,
all words in a given sentence have the mask-
ing probability r.

In contrastive learning, the model learns input fea-
tures that are invariant to the transformation. For
instance, the rotated, flipped, or cropped images
have the same semantic features. Maximizing the
agreement between positive pairs leads the model
to learn invariant features after rotation, flipping,
and cropping. In the same way, masking offen-
sive words leads the model to learn offensive word
variants. For instance, users may use “cOward”
instead of “coward” to avoid keyword-based filter-
ing. In that case, our training process can make
the model robust to such modification.

In contrast, masking the non-offensive words
means the model learns the offensive context.
That is, masking non-offensive words makes the
model focus on the offensive words (n-words,
swear words, or offensive phrases).

Identifying offensive or non-offensive words
using c-TF-IDF c-TF-IDF is similar to TF-IDF,
but it is different in that it modifies how to calcu-
late TF-IDF scores for multiple classes by joining
all documents per class (Grootendorst, 2022). In
this case, the words with high scores imply the rep-
resentative words for each class.

To set the offensive keywords and non-offensive
keywords, we used c-TF-IDF with offensive and
non-offensive documents in the Jigsaw dataset.
We selected the top 500 offensive and non-
offensive words based on the c-TF-IDF score from
the training dataset. During the random masking
process, offensive and non-offensive words have
a fixed probability of being masked.

Masking Strategy | Acc F1 Prec Recall
Offensive words 0.838 0.719 0.683 0.902
Non-offensive 0.842 0.723 0.686 0.904
All words 0.844 0.726 0.688 0.904

Table 2: Performance by masking strategy.

5. Experimental Setup

Datasets We use three datasets as follows.

o Jigsaw: The Jigsaw Wikipedia Comment
Dataset comprises 159,571 training and
63,978 test samples. There were six labels:
toxic, severely toxic, obscene, threat, insult,
and identity hate. We use the toxic label for
training. For training, we balanced the Jigsaw
dataset by undersampling with 30,588 sam-
ples (i.e., 15,294 toxic samples and 15,294
nontoxic samples).

* ConvAbuse: ConvAbuse corpus consists
4,185 samples (Cercas Curry et al., 2021).
We use the binary abusive label for training.
We split the dataset into 3,332 training and
853 testing datasets.

» Teach: Explained in Section 3. We use 10K
randomly selected sentences from the Teach
dataset.

Baseline We compare our model, SimMask,
with the following baselines in the same setting.

+ Always offensive (AQO), never offensive (NO):
These are the most naive baselines. The
low performance of these baselines demon-
strates the difficulty of the detection task.

* TF-IDF+SVM: This baseline uses the TF-IDF
values of a sentence and feeds them into an
SVM classifier. We use the top 2000 frequent
unigrams to build the vocabulary. The basic
preprocessing was applied, including lower-
case, removing the white spaces, stopwords,
and punctuation. We used the list of stop
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Dataset Jigsaw— Jigsaw Jigsaw— Teach
Model Acc F1 Precision Recall | Acc F1 Precision Recall

Always Offensive | 0.095 0.087 0.500 0.048 | 0.254 0.202 0.500 0.127

Never Offensive 0.905 0.475 0.500 0.452 | 0.746 0.427 0.500 0.373

TFIDF+SVM 0.823 0.684 0.831 0.655 | 0.497 0.495 0.617 0.603

BERT-FT 0.829 0.708 0.676 0.895 | 0.664 0.645 0.671 0.726

SimCSE 0.815 0.693 0.667 0.887 | 0.543 0.540 0.635 0.660

SupCon 0.726 0.573 0.602 0.758 | 0.564 0.493 0.595 0.620

SimMask 0.865 0.749 0.704 0.911 | 0.744 0.711 0.706 0.763

Table 3: Experimental result from Jigsaw and Teach dataset.
Dataset Jigsaw— ConvAbuse ConvAbuse— ConvAbuse
Model Acc F1 Precision Recall Acc F1 Precision Recall

Always Offensive | 0.150 0.130 0.500 0.075 | 0.150 0.130 0.500 0.075

Never Offensive 0.850 0.459 0.500 0.425 | 0.850 0.459 0.500 0.425

TFIDF+SVM 0.723 0.644 0.771 0.647 | 0.886 0.711 0.669 0.825

BERT-FT 0.870 0.803 0.765 0.903 | 0.898 0.833 0.797 0.899

SimCSE 0.879 0.812 0.774 0.901 | 0.913 0.848 0.819 0.890

SupCon 0.695 0.585 0.623 0.729 | 0.737 0.598 0.683 0.698

SimMask 0.878 0.811 0.773 0.905 | 0.914 0.850 0.822 0.894

Table 4: Experimental result from Jigsaw and ConvAbuse dataset.

A Acc F1 Precision Recall r Acc F1 Precision Recall
0.15 0.841 0.722 0.685 0.903 0.15 0.842 0.723 0.686 0.904
0.30 0.837 0.718 0.683 0.902 0.30 0.838 0.719 0.684 0.902
0.45 0.837 0.718 0.683 0.901 045 0.838 0.718 0.682 0.900
0.60 0.838 0.719 0.683 0.902 0.60 0.833 0.714 0.681 0.901
0.75 0.834 0.715 0.681 0.899 0.75 0.839 0.719 0.683 0.901
0.90 0.835 0.716 0.681 0.901 0.90 0.835 0.716 0.682 0.901

Table 5: Performance by varying A

Model Acc | F1] Prec | Recall|
BERT-FT | 5.67% 8.15% 11.02% 11.9%
SImCSE | 3.70% 4.89% 5.70% 5.02%
SimMask | 3.33% 4.51% 4.92% 4.07%

Table 7: Performance drop from Jigsaw with Tex-
tAttack by model.

words in NLTK library. For the SVM imple-
mentation, we use the sklearn Python library
with the parameter C = 1.0.

* BERT fine-tune(FT): This fine-tuned model
has a fully connected layer after the SBERT
encoder and was trained using only cross-
entropy loss. The configuration is the same
as our SimMask model but without the con-
trastive loss head.

+ SIMCSE: This baseline uses the original un-
supervised SImMCSE loss (Gao et al., 2021)
Lcont, and the newly added supervised loss
Lce. Unsupervised SIMCSE loss increases
similarities of output embeddings between
positive pairs from the same input, which are
different due to the dropout.

» SupCon: This baseline uses supervised con-

Table 6: Performance by varying r

trastive loss (Khosla et al., 2020), along with
the newly introduced supervised loss L¢e. Su-
pervised contrastive learning uses samples
with the same label as positives while sam-
ples with different labels as negatives.

5.1. Experimental Results

Masking Strategy Experiment We tested the
three masking strategies mentioned in Section
4.2. The masking probability » was set to 0.8, 0.8,
and 0.3 for strategies 1, 2, and 3, respectively. We
set a higher masking probability ratio to balance
the total number of masked tokens. Since mask-
ing both performed best, we use this strategy in the
main experiments (Table 2). We use BERT-base-
uncased as the encoder and the Jigsaw dataset to
train and conduct evaluation.

Classification Performance For the main eval-
uation metric, we selected the F1-score due to the
label imbalance of the test dataset. Experimen-
tal results show that TF-IDF achieves the lowest
performance, whereas the BERT-based models
perform well in the Teach dataset. This demon-
strates the generalizability of the pre-trained lan-
guage model. Our method, SimMask, outperforms
all baselines in both datasets except for Jigsaw—
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ConvAbuse where SimMask shows slightly lower
performance compared to SIMCSE. For the Table
3 and 4, we performed t-test and found no signif-
icant differences between the F1 scores of Sim-
Mask and SIimCSE(p-val>0.1). However, in Table
3, there was a significant difference between the
F1 scores of SimMask and BERT-FT(p-val<0.1).
Notably, SimMask is also trained on an external
dataset (Jigsaw) since it shows the potential to
detect offensive language in practical scenarios
where labeling is scarce due to cost. In this ex-
periment, we use SBERT as the base encoder
and fixed two hyperparameters as A = 0.15 and
r = 0.3. Table 3 and Table 4 summarize the perfor-
mance over train and test dataset(train— test).

5.2. Robustness Testing

As shown in 3.4, people try to fool the rule-based
filtering system in chatbot conversation. To detect
this kind of attack, we use the TextAttack library
to generate adversarial examples (Morris et al.,
2020). We corrupt the test dataset using Tex-
tAttack algorithms and compare the performance
drop of each method. In detail, the attack algo-
rithm inserts space, deletes a random character,
swaps neighbor characters, or replaces a char-
acter with a similar-looking character for random
30% of the word tokens. Table 7 shows the exper-
imental results on jigsaw dataset, where our sug-
gested method shows minimal performance drop
compared to other approaches.

5.3. Ablation Study

This section presents ablation results on two pa-
rameters, A and r. The ) is expected to ad-
just the training effect between contrastive loss
and supervised cross-entropy loss, and r» man-
ages the information amount to generate positive
samples used in contrastive learning by masking.
We varied the values of two hyperparameters in
{0.15,0.3,0.45,0.6,0.75,0.9} and measured the ef-
fects. We use BERT-base-uncased as the en-
coder and the Jigsaw dataset in ablation study ex-
periments. All other experimental details are set
the same as in the main experiment.

The lower value of A guides the model to focus
on supervised learning. Table 5 shows that the
proposed method is less sensitive to A. Note that
A = 0 equals to the baseline BERT-finetune. The
value of r guides the model to learn context in-
formation. However, it would harm the perfor-
mance if the masking ratio is too high since it would
generate inconsistent positive pairs. The higher
the mask ratio is, the greater the model perfor-
mance may decrease. Since the proposed model
also uses supervised loss, in extreme cases (i.e.,
r = 0.9) the model does not collapse (Table 6).
Note that » = 0 equals the SImCSE baseline.

5.4. Qualitative Analysis

Table 8 shows the classification examples that
SimMask correctly classified offensiveness,
whereas other baselines (BERT fine-tune and
SimCSE) fail. In particular, the examples have no
specific obscene words but imply sexually explicit
content (S1, S3). For example, S2 shows the
modification of the original word by omission. The
non-offensive cases showed misclassification of
baseline models due to biased words. Words
such as ‘thieves’, ‘demon’, ‘black’, or ‘death’ are
predicted as offensive content by the baseline
models. When we replaced these words with sim-
ilar nouns or removed such words, the baselines
successfully classified them as non-offensive.

6. Discussion and Conclusion

This paper examined the offensive language of
users generated during open-domain conversa-
tions with the SimSimi chatbot service. Further-
more, we proposed a contrastive learning model
that identifies offensive language. Our data re-
vealed a pronounced skew on offensive language
topics, exhibiting a heightened frequency of sex-
related topics (48%) compared to other subjects
like politics or sports. In addition, the proposed
method with a random masking strategy outper-
formed existing models in detecting offensive lan-
guage. We further emphasize the societal im-
perative to detect sexually explicit material, espe-
cially on platforms predominantly used by vulner-
able groups such as children.

Insights from two decades of service We
have gathered insights from addressing offensive
language over SimSimi’s 20 years of service. We
must note that what is deemed offensive words
is often rooted in cultural taboos, which may vary
across cultures (Vingerhoets et al., 2013). As Sim-
Simi now services 81 languages, the challenge of
effectively detecting emerging forms of offensive
language across multiple languages has been in-
tensifying. To solve this issue, SimSimi contin-
ues to run tasks such as labeling offensive lan-
guage via crowdsourced human annotation on a
per-language basis, aiming to enhance the effi-
ciency of offensive language detection using deep
learning models. However, more than 100 mil-
lion sentences of SimSimi data remain unlabeled,
there remains a significant gap in human resource
availability for this task.

Nonetheless, we believe that our method lever-
aging unsupervised learning can resolve two sig-
nificant challenges highlighted above: the emer-
gence of new offensive words and the extensive,
yet untapped, database of unlabeled offensive lan-
guage. Furthermore, we hope our findings will
contribute to the research community’s combat
against evolving offensive language on platforms.
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Type ID Query (User)

Answer (Simsimi)

S1 How are you

Obscene S2 fme

S3 *Takes a shower*

good. But i'd be better with you inside me
it would be my pleasure too f someone
like you, I'll make sure I'll do it hard ;)
*Gets in the shower with you*

S4  joker

S5 Have you watched angry kid

Non-offensive  S6  do you like black pink?

S7 What's your biggest fear?

P5 phantom thieves leader

Yes that ginger demon is so funny
yes, do you?

death

Table 8: Classification examples form Teach dataset
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