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Abstract
We present a novel approach to detecting noun abstraction within a large language model (LLM). Starting
from a psychologically motivated set of noun pairs in taxonomic relationships, we instantiate surface
patterns indicating hypernymy and analyze the attention matrices produced by BERT. We compare
the results to two sets of counterfactuals and show that we can detect hypernymy in the abstraction
mechanism, which cannot solely be related to the distributional similarity of noun pairs. Our findings are a
first step towards the explainability of conceptual abstraction in LLMs.
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1. Introduction

Large Language Models (LLMs) have
emerged as a powerful tool for a plethora of
applications. State-of-the-art LLMs are based
on the transformer architecture (Vaswani
et al., 2017) that can directly generate text
sequences (like chatbots), translate texts,
or lend their outcomes to other downstream
tasks. Due to their versatile functionality, LLMs
are often distributed as pre-trained black-box
models, which can then be fine-tuned to
specific needs.

While LLMs surpass the performance of sim-
pler models, they are far less explainable due
to the intransparent nature of their complex ar-
chitecture. More explainability can be crucial
in multiple applications, e.g., if models must
adhere to some governance to prevent bias or
build more data-efficient models. Especially
in the context of trustworthy Al, one central
open research question is how these models’
excellent output is achieved and whether the
mechanisms internally employed in LLMs re-
assemble those present in humans.

We provide an analysis examining whether
simple linguistic abstraction mechanisms are
present in a large language model. For hu-
mans, relations like hypernymy (ravens are
birds) are essential for linguistic understand-
ing and generalization. LLMs also necessarily
employ some kind of abstraction and general-
ization, but most likely not exactly in the same
way as humans do. With our experiments,

we add one more step toward representing
hypernym relationships within large language
models and, thus, their capacity to use human-
like abstraction mechanisms for generaliza-
tion. Specifically, we test BERT (Devlin et al.,
2019) for its attention patterns related to tax-
onomic hypernyms and compare this to un-
related noun pairs with either high or low se-
mantic similarity. We draw our test data from
a psychologically motivated data set of human
associations, which lends itself to examining
hypernym pairs with high cognitive saliency.
Our results show that BERT represents this
kind of abstraction within its attention module.

Our main contribution consists of clear ev-
idence that LLMs infer linguistic abstraction
and that this inference goes beyond semantic
similarity. For this, we provide both a method
and a dataset to show the attention patterns
of LLMs for semantic hypernymy and separate
them from counterfactuals matched by seman-
tic similarity and abstraction level.

2. Background and Related Work

In the past years, the capabilities of LLMs have
been enhanced tremendously. With trans-
former models (Vaswani et al., 2017) as an
architectural basis, LLMs are trained on vast
amounts of text and optimized to predict the
next word in a sequence or the following sen-
tence in a discourse. The resulting models
have many applications and can model many
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#No Pattern

[hypo]s are [hyper]s.

That [hypo] is [a(n)] [hyper].

| like [hypols and other [hyper]s.

The [hypo], which was the largest [hyper]
among them, stood out.

| like [hypo]s, particularly because they are
[hyper]s.

A OWN =

(&)

Table 1: Hypernymy patterns, with [hypo] and
[hyper] as slots for target and the feature con-
cepts respectively. Plurals are indicated with s
and [a(n)] is a determiner.

linguistic phenomena known to be crucial for
human language (Manning et al., 2020). When
analyzing the emergence of linguistic phenom-
ena, a particular focus lies on the self-attention
mechanism of transformers. Self-attention is a
step in the encoder part of these language
models. It maps the input sequence to a
weighted representation of itself and thus, intu-
itively speaking, reveals the sequence’s focal
points relevant to generating its follow-up. Self-
attention consists of multiple so-called heads,
which act in parallel on the sequence and are
multiplied in several layers (see Vaswani et al.
(2017) for details). The grid of attention heads
with the individual scores they attach to the
sequence is often treated as a proxy for the
information encoded in the transformer. For
some discussion on how far this is possible,
see, e.g., Jain and Wallace (2019) and Wiegr-
effe and Pinter (2019). There are two types
of approaches that recover linguistic structure
in LLMs: One performs end-to-end evalua-
tion by disabling or manipulating single atten-
tion heads and evaluating the performance
change for different tasks (Kovaleva et al.,
2019, e.g.). Others look directly into the at-
tention patterns, which we also do. Baroni
(2020) shows an overview of abstraction and
compositionality in artificial neural networks.
Many approaches use artificial languages and
small models (Lake and Baroni, 2018; Hup-
kes et al., 2020, e.g.), others also test pre-
trained LLMs like BERT (Devlin et al., 2019).
See Sajjad et al. (2023) for an overview. Sev-
eral approaches have found evidence for lin-
guistic knowledge within BERT. For instance,
Chen et al. (2023) prompt the model with cor-

rect and counterfactual data and then infer
BERT’s abstraction capabilities. Only a few
approaches show results for deep semantic
knowledge directly within the attention mecha-
nism. Dalvi et al. (2019b) try to discover latent
concepts in BERT, which are essentially hy-
pernyms and their derivable hyponyms. In our
approach, we focus on hypernym-hyponym re-
lations between nouns as one central linguistic
abstraction phenomenon. For collecting hy-
pernyms by prompting, Hanna and Marec¢ek
(2021) present an experiment in which BERT
outperforms other unsupervised algorithms in
the collection of common hypernyms, which
suggest that the model at least has the capac-
ity to user hypernymy. This raises the ques-
tions on whether and how this is also internally
represented in the trained model. To the best
of our knowledge, there is no approach that
characterizes attention patterns for generic
hypernyms, especially no approach that dis-
tinguishes taxonomic relationships from pure
semantic similarity. We take another step to-
wards understanding conceptual abstraction
in LLMs, evaluate the attention patterns re-
lated to true and counterfactual hypernyms,
and show that the effects must be related to
abstraction rather than similarity.

3. Data

We create a data set of noun pairs that are in a
hypernymy relationship, and two sets of coun-
terfactual pairs (which are not hypernyms).
In order to construct example sentences, we
manually create patterns that typically express
hypernymy in their surface form and instantiate
them with the noun pairs.

3.1. Positive Examples

We extract hyponym-hypernym pairs from
McRae’s feature norms (McRae et al., 2005).
The feature norms contain pairs of concepts
(originally stimuli) and features (human associ-
ations), annotated with semantic relationships.
The pre-selection gives us more salient pairs
of terms than a full-fledged taxonomy and
should also be recognizable as strongly re-
lated by a large language model. For our data
of valid noun pairs, we select all pairs of con-
cepts and features labeled with a “superordi-
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nate” relationship in the feature norms. These
concept-feature pairs have the target concept
as a hyponym and the feature concept as a hy-
pernym (e.g., raven and bird). The dataset can
conatin multiple hypernyms for a concept with
different levels of abstraction, e.g raven and
bird as well as raven and animal. We include
all such pairs in the dataset and balance them
later with counterfactuals with similar degree
of abstraction.

3.2. Creating Counterfactuals

We create two counterfactual sets of noun
pairs, which are not in a hypernymy relation-
ship and thus will produce invalid sentences
within our patterns. Using WordNet (Fellbaum,
1998), we generate the pairs by either sister
terms of the feature concept from the posi-
tive examples (negative examples), which are
matched by the level of abstraction of the fea-
ture concepts, or terms which share a hyper-
nym with the target concepts (sister terms),
which approximately match the level of sim-
ilarity of the positive examples. With those
two sets, we want to exclude spurious effects
from just measuring semantic similarity or dif-
ferences in concept abstraction level (and thus
indirectly also frequency).

Negative Examples

For the first set of counterfactuals, we elicit
noun pairs in which the feature concept is on
the same level of generality as the hypernym
in the first set. For instance, for the positive ex-
ample raven — animal, we might choose raven
— person. If there are multiple hypernyms for
the same concept, we select an appropriate
counterfactual for each individual hypernym.
In detail, we proceed as follows:

1. We map each positive example to the
WordNet synsets by extracting those
synset pairs that contain the respective
lemmas and stand in a (direct or inher-
ited) hypernymy relationship in WordNet.

2. For each feature synset, we select a sis-
ter term (a synset sharing a parent node),
which is no hypernym of the target con-
cept (in the example, we pick a sister term
of the alligator synset). To avoid effects

from low-frequency words, we select the
most frequent lemma from those sister
synsets as a counterfactual (in the exam-
ple person).

Sister Terms

Our second counterfactual set controls for the
level of semantic similarity within the positive
examples. Hyponyms and their hypernyms are
often distributionally very similar (Padé and La-
pata, 2007), especially salient ones. To mea-
sure whether we really find differences related
to violations of taxonomic rules or just effects
due to high semantic similarity, we pick a sis-
ter term in WordNet for each of the original
target concepts (e.g., raven — crow, which are
both hyponyms of bird). As for the negative
examples, we choose the most frequent sister
term lemma. Sister terms usually share many
contexts, so we expect effects due to semantic
similarity to be shared between the positive
examples and the sister terms.

3.3. Creating Test Sentences

As input for the LLM, we create test sentences
that express a taxonomic relationship directly
or indirectly. First, we manually create a set of
five sentence patterns that exhibit hypernymy
relationships, partially inspired by the patterns
used by Hearst (1992) to extract hyponym-
hypernym pairs automatically from large text
corpora. We vary the simplicity and saliency of
the patterns to control for those effects. Table 1
shows the set of patterns.

We instantiate our patterns with the noun
pairs from all three sets, resulting in 3425 ex-
amples per set. The results are sentences
like I like ravens and other animals (positive
example), and / like ravens and other people
(negative example) and / like ravens and other
crows (sister term). We provide all data sets
for reference.

4. Hypernymy within BERT

We analyze whether or not hypernymy has a
correlation with BERT’s attention mechanism.
After visualizing the attention for all datasets,
we separate them via a linear classifier. For all
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Figure 1: Attention maps for hyponyms and hypernyms averaged across all patterns.

experiments, we use BERT-large in the mono-
lingual English version.

4.1. Attention Matrices and Clustering

For each sentence, we extract the self-
attention values from BERT. We restrict our
analysis to the forward-looking attention be-
tween our target and feature tokens. Each
sentence is represented by a 12x12 attention
matrix (with 12 layers of 12 attention heads
per layer). BERT’s tokenizer breaks up some
of our pluralized tokens, which makes the at-
tention between a split token and a complete
token incomparable. For the sake of simplicity,
we discard all examples in which one of our
tokens in focus is split up.

Figure 1 gives a high-level overview of the
results for each data set. For this visualization,
we average the attention between target and
feature concepts (resp. their sequence posi-
tion) over all examples. Each cell in a heatmap
corresponds to one attention head (x-axis) in
one layer (y-axis). Dark colors indicate a high
average activation of the attention head. In-
tuitively, we see that the three sets differ, so
concept clashes in the negative set and the
sister terms do expose different attention pat-
terns than the salient hypernyms. Further, the
overall attention seems lower in the positive
setting than in the other two control settings.
This suggests that higher attention here de-
notes some form of surprise for unexpected
semantic constructions.

To validate how well the three sets are sep-
arable, we employ logistic regression to re-
cover the three test sets automatically. Each
data point is the attention matrix of one exam-
ple sentence, flattened into a 144-dimensional

vector. For classification, we use the stan-
dard implementation of logistic regression from
scikit-learn (Pedregosa et al., 2011) with all de-
fault parameter settings, setting the number of
iterations to 1000 and the regularization pa-
rameter C to 1. We also perform a pairwise
comparison of the different sets to understand
how similar levels of abstraction (sister terms
vs. negative) or similar levels of semantic sim-
ilarity (positive vs. sister terms) of the test
tokens influence the separability of the exam-
ples.

4.2. Results

We find a prediction accuracy of 0.75 on the
test sets for our overall comparison and similar
scores for the pairwise separation (Table 2).
Our three sets are equal-sized, so a random
baseline would return an accuracy of about
0.33. All scores indicate a substantial differ-

Sets Acc.
All three 0.75
Pos. vs. Neg. 0.88
Pos. vs. Sisters  0.84
Neg. vs. Sisters  0.85

Table 2: Accuracy for predicting the test sets.

ence in attention patterns in the three sets.
The positive and the negative examples are
well separated. Here, we see the semantic
type clash for non-hypernyms in a hypernymy
pattern and the low semantic similarity of the
target and feature concept. The sister terms
are equally well distinguishable from both pos-
itive and negative examples, but the set is less
well recoverable than the positive examples.
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This means that the differences we see be-
tween positive and negative examples must
be due to something different than semantic
similarity because the sister terms are distribu-
tionally very similar to their matched positive
examples. Further, the attention seems to rep-
resent the subtle difference between the two
sets of counterfactuals internally, which points
to interesting research questions on the level
of abstraction within the transformer models.

4.3. Limitations

Our approach takes a first step towards under-
standing linguistic abstraction in transformer
models. Our experiments have several tech-
nical limitations and limitations in the inter-
pretability of the results.

First, we restrict ourselves to taxonomic hy-
pernymy of nouns, which is only a small part
of abstraction. Within this theoretical limitation,
our dataset is also limited to the hyponym-
hypernym pairs from the feature norms we
used as our source.

The restriction to a dictionary-based defi-
nition of abstraction also affects our dataset.
When assembling the counterfactuals fitted to
the input data, we found that some of our coun-
terfactuals are strictly speaking no hypernyms,
but colloquially still treated as such, e.g., spat-
ula — tool, or barn — shelter. We leave those
examples in the dataset, which might have
influenced our results.

Further limitations of our input data result
from our handling of tokenized words. We
filter all words that are split up by the BERT
tokenizer. There are several approaches that
recombine subword tokens into whole words.
Unfortunately, no standard approach fits all ap-
plications, so in future work, the most suitable
way to retrieve whole words from subwords
should be tested and applied.

Lastly, like for every probing approach, the
interpretability of our results is debatable. We
have shown that words in a hypernymy rela-
tionship give rise to attention matrices that
are well distinguishable from counterfactuals,
which are semantically wrong assertions. One
can argue that the results on our dataset
mainly show that we can distinguish salient
sentences from absurd ones. We think that
the least our results show is that there is some-

thing that is regularly attached to hypernymy
that the transformer learned. Otherwise, we
would not be able to separate the two sets of
counterfactuals, which both consist of unlikely
sentences and which are not distinguishable in
their degree of oddity (/ like ravens and other
crows is about as wrong as / like ravens and
other people). The only nuance between those
counterfactuals is the degree of abstraction in
the target words. Moreover, they both are well
separable from the correct sentences when
matched on the level of abstraction. So, while
we cannot (and did not) claim that we found the
attention pattern that completely explains how
taxonomic abstraction works in transformers,
we can claim that there is more than semantic
similarity and reasonable content that makes
the differences we measure.

5. Summary and Future Work

Our experiments show an initial indicator for
linguistic, conceptual abstraction in the atten-
tion mechanism of LLMs. Based on sentence
patterns that imply hyponymy relations of noun
pairs, we showed that we can separate sen-
tences with salient hyponym-hypernym pairs
from counterfactuals in which target and fea-
ture concepts do not stand in a taxonomic ab-
straction relationship. Our setting shows that
the level of abstraction in the counterfactual
and the semantic similarity of target and fea-
ture concepts give rise to different patterns.

Our approach can only give a limited first
explanation of the presence of linguistic ab-
straction within transformers. Firstly, we re-
strict ourselves to noun pairs and hyponymy,
while abstraction comprises many more types
of words, relations, and complex mechanisms
like frames or scenarios. Further, our experi-
ments cannot explain how the differences in
the attention mechanism arise and what they
imply. To shed more light on these questions,
further research is required, which should an-
alyze both the mathematical theory of the ab-
straction mechanism and the statistical proper-
ties of the input word embeddings. This would
make the mechanisms of conceptual abstrac-
tion within the transformer architecture more
transparent.
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