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Abstract

Continual learning is an emerging area of machine learning that deals with the issue where models adapt well to
the latest data but lose the ability to remember past data due to changes in the data source. A widely adopted
solution is by keeping a small memory of previously learned data that uses replay. Most of the previous studies
on continual learning focused on classification tasks, such as image classification and text classification, where
the model needs only to categorize the input data. Inspired by the human ability to incrementally learn knowledge
and solve different problems using learned knowledge, we considered a more practical scenario, knowledge based
quesiton answering about continual learning. In this scenario, each single question is different from others(which
means different fact triples to answer them) while classification tasks only need to find feature boundaries of different
categories, which are the curves or surfaces that separate different categories in the feature space. To address this
issue, we proposed a Depth Aware Hierarchical Replay (DAHR) framework which includes a tree structure classifier
to have a sense of knowledge distribution and fill the gap between text classification tasks and question-answering
tasks for continual learning, a local sampler to grasp these critical samples and a depth aware learning network
to reconstruct the feature space of a single learning round. In our experiments, we have demonstrated that
our proposed model outperforms previous continual learning methods in mitigating the issue of catastrophic forgetting.
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1. Introduction

In conventional machine learning or deep learning
tasks (Dong et al., 2023; Liu et al., 2022), the com-
mon practice involves feeding all training data to
the model simultaneously to enhance the learning
of input sample representations (Li et al., 2022c;
Ma et al., 2022). As the volume of training data
continues to grow, a proportional expansion of the
model becomes necessary (De Lange et al., 2021).
Typically, the idea of processing training data in
discrete batches can be considered, akin to the
human process of sequentially mastering different
subjects in a predefined order. This concept forms
the central focus of research in the field of Contin-
ual Learning, also known as Lifelong Learning and
Incremental Learning.

The fundamental challenge addressed by con-
tinual learning is mitigating catastrophic forget-
ting(Schwarz et al., 2018), which is primarily at-
tributed to the incongruity of feature distributions
in input data. This phenomenon resembles the
way humans tend to forget old information upon
learning new material. Typically, these methods
can broadly be categorized into three groups to
address catastrophic forgetting: 1) regularization-
based methods, 2) expansion-based methods, and
3) memory-based methods. The memory-based
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methods are among the most effective and widely
used ones (Zhao et al., 2022). As illustrated in fig-
ure 1, the main idea of memory-based methods is
to retrain samples or representations from already
seen tasks when learning new tasks(Mundt et al.,
2023). In this article, our primary focus is on the
memory replay-based methods.
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Figure 1: A commonly employed framework for
continual learning with memory-replay methods.

Due to the necessity to consider each replay
within memory constraints significantly smaller than
the total memory capacity, the pivotal challenge
faced by replay-based continual learning algorithms
is how to optimally select or generate samples
that represent all the acquired knowledge from this
round of learning.

In past scenarios of continual learning research,
Many works (Kumari et al., 2022) focused on con-
tinuous learning for recognizing image categories
(e.g., sequentially learning cats, dogs, or sequen-
tially learning from 1 to 10). In the field of Natu-
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ral Language Processing (NLP), (Ke et al., 2021)
investigated the sequential learning of different
categories of text, (Zhao et al., 2022) addressed
sequential learning from diverse classes of dia-
logues. These studies were grounded in a strong
assumption that the content learned in different
batches was homogeneous. Consequently, the
knowledge acquired in different rounds naturally
exhibited better discrimination in high-dimensional
feature spaces, with feature representations of sam-
ples from the same class being closer. Therefore,
the approach to mitigating catastrophic forgetting
was to identify samples near the boundaries of
various categories for use as replay data (Kumari
et al., 2022).In other words, for tasks focused solely
on classification, it is only necessary to delineate
the boundaries of distinct category information in
the model’s representation. Our work breaks free
from this constraint by considering a more uncer-
tain mode of continual learning. Hence, we chose
knowledge-based question-answering as the re-
search task for continual learning. In this scenario,
different question-answer samples do not possess
a direct category relationship (although implicit as-
sociations still exist, such as different questions
having different types of relevance). This allows us
to simulate a more naturally generalizable continual
learning scenario.

We have considered a depth-aware hierarchical
replay framework for continual learning. The ob-
jective is to find better replay samples in the afore-
mentioned uncertain feature space. Specifically,
we begin by employing unsupervised clustering
to capture the overall feature distribution of the
samples. Subsequently, we focus on feature se-
lection within each local cluster to represent the
samples within these clusters. Moreover, we hy-
pothesize that, within a classification tree, samples
from deeper clusters are often more representa-
tive of the overall feature distribution than shallower
ones. Consequently, we retrain the selected sam-
ples from different clusters with appropriate weights.
Extensive experimentation demonstrates that our
proposed replay approach significantly outperforms
baseline methods, offering a more effective solution
to the problem of catastrophic forgetting in continual
learning.

Moreover, from an efficiency perspective, our
memory replay framework is both concise and ef-
ficient. In a broader sense, we can consider that
for memory replay tasks, we select m sufficiently
representative samples from a dataset of size M
for retraining. For conventional strategies, the com-
putational complexity is limited by the square of the
number of samples, which can become very costly
when M is sufficiently large. However, we have
effectively ensured efficiency through multi-level
sampling.

Overall, the main contributions of our work in this
paper are:

* We have considered conducting continual
learning beyond classification tasks, explor-
ing how to assist in mitigating catastrophic for-
getting among unclassified learning samples.
Additionally, we support the random permu-
tation of datasets to simulate the process of
continual learning in a more human-like and
realistic manner.

» We propose a depth-aware hierarchical mem-
ory replay method DAHR (Depth Aware
Hierarchical Replay) for continual learning,
which initially self-classifies samples, then con-
siders locally challenging learning samples, ul-
timately resulting in an efficient sample replay
method with weighted sampling.

» Our experiments demonstrate that our ap-
proach effectively addresses the ability to bet-
ter retain previously learned content during
learning without compromising new learning
efficiency.

2. Related Work

2.1. Continual Learing

Continual learning aims at incrementally acquir-
ing new knowledge, and in the meantime, miti-
gating the catastrophic forgetting issue(Qin et al.,
2022). These methods of continual learning can
be categorized into three kinds : Expansion-
based methods(eg, (Li and Hoiem, 2017; Yoon
et al., 2017; Rosenfeld and Tsotsos, 2018; Hung
et al., 2019; Veniat et al., 2020; Li et al., 2022b,a,
2023e)) dynamically expand the network capac-
ity to reduce the interference between the new
tasks and the old ones. Regularization-based
methods(eg,(Kirkpatrick et al., 2017; Lee et al.,
2017; Chaudhry et al., 2018a; Dhar et al., 2019;
Ritter et al., 2018; Schwarz et al., 2018; Zenke
et al., 2017; Ye et al., 2023)) protect the old tasks
by adding regularization terms in the loss function
to penalize the model change on their important
weights. Memory-based methods mitigate for-
getting mainly by either storing a subset of exam-
ples from the past tasks in the memory from re-
hearsal(Rebuffi et al., 2017; Lopez-Paz and Ran-
zato, 2017; Chaudhry et al., 2018b, 2019; Riemer
etal., 2018; Huang et al., 2023), or synthesizing old
data from generative models to perform pseudo-
rehearsal(Shin et al., 2017; Zhao et al., 2022).
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Figure 2: The DAHR replay method involves creating a tree-like structure using a recursive unsupervised
classification process. Each learning round’s ga data is represented at the root node. For each leaf cluster,
the most representative samples are selected and aggregated. If the aggregated size exceeds the replay
threshold | M|, some samples are randomly discarded. If the size is below the threshold, samples are
randomly selected from the root node to supplement. These samples are then used in the next round of

learning.

2.2. Knowledge Based Question
Answering

The task of knowledge based question answer-
ing (namely KBQA) aims to answer the questions
presented in natural language using the relevant
facts available in knowledge base(Li et al., 2021,
2023a,c; Yu et al., 2023; Li et al., 2023d,b). Tradi-
tionally, the key tasks in addressing KBQA include
entity and relationship recognition in the identifica-
tion problem (Named Entity Recognition and Re-
lationship Extraction). Past work has collected a
series of datasets (Yih et al., 2016; Zhang et al.,
2018; Suetal., 2016; Gu et al., 2021) as well as pro-
posed a diversity of approaches for this task. These
approaches can be roughly divided into two cate-
gories, semantic parsing based (Yih et al., 2014;
Xu et al.; Xing et al., 2024) and information retrieval
based(Bordes et al., 2015; Zhang et al., 2018, 2016;
Tan et al., 2023).

Inspired by(Li et al., 2021), we explore continual
learning in knowledge based question answering
(KBQA). In contrast to this prior work, our approach
is better suited for handling the replay of class-less
question-answer samples, addressing the issue of
catastrophic forgetting in continual learning more
effectively.

3. Methodology

To alleviate the catastrophic forgetting issue of un-
classified samples in the context of continual learn-
ing, we propose a continual learning framework
DAHR (Depth Aware Hierarchical Replay) for KBQA

tasks. In Section 3.1, we define the task objec-
tives for continual learning in KBQA. In Section 3.2,
we optimize the question representation through
continual learning methods, obtaining vector en-
codings for each question-answer pair and associ-
ated knowledge from pretrained models. Section
3.3 and 3.4 introduce the DWHR replay method,
which, theoretically, exhibits reasonable computa-
tional complexity while effectively addressing both
local and global knowledge representations.

3.1. Problem Formulation

The knowledge based question answering (KBQA)
is typically performed by analyzing mentioned en-
tities s and entity relation » and then indexing the
target entity o in the knowledge graph based on
the fact triple (s,7,0) € (S,R,0) as the answer
of the question given question ¢ and a knowledge
base. For instance, the mentioned entity and re-
lation in 'who recorded the song baby’are 'baby’
and ’song recorded by artist’. Continuous learning
in KBQA can be defined as follows: As fact triples
and the relevant questions are assumed to be incre-
mentally available in the sequence as the datasets
D17 DQ, Dl, ..D,,, where D; = {Qu Fl} and Q,L', F;
represent the set of questions, and the knowledge
base represented by a set of fact tripples(s,r, o)
in the ¢ — th learning task, and n denotes the to-
tal number of learning rounds in continual learning
tasks. we incrementally train the model with new
questions and related knowledge tripples.

Each round of training involves learning entirely
new knowledge compared to the previous rounds.
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Algorithm 1: DAHR - Depth Aware Hierarchical Replay for Continual Learning

Input: Datasets (Dy, Dy, ...,
Output: Critical Samples C
1 for Dataseti < O0ton — 1 do
2 for (l‘i, Siy Qi Oi) ND7 do

D,,_1), Replay Memory M, Cluster Sample Size ¢

3 L prompted representation e; < Prompted LM Encoder (x4, S;, ¢, 0;)

while size of C; > c: do
LrCie—Hierarchical K-Means (e;)

M + C; {// updating Replay Memory }

cluster C; < Most Similiarity Sampling (C;)

The challenge lies in effectively learning the knowl-
edge from the current round while mitigating catas-
trophic forgetting in continual learning, ensuring
good performance both on the current QA data and
the QA data learned from previous rounds.

T
min Y B, 5,0,y 0) (1)

=1
0= f(OO;DhMDU"'7DT717MDT717DT) (2)
Mp = M(D, ) 3)

The formulas 1, 2, and 3 provide the mathemat-
ical definitions for our task. Consider a T-round
continual learning scenario where D; and D; repre-
sent the training and testing data for the i-th task.
Here, 0 represents the model parameters after con-
tinuous learning on data from all rounds, x and
y denote the question and answer samples, and
¢ represents the loss function for questions and
answers. Our task objective is to find the optimal
parameters that minimize the mathematical expec-
tation of answer loss. Formulas 2, and 3 describe
the acquisition of 6, where f represents the model’'s
training process, 6, represents the initial param-
eters, and Dy, Mp,, ..., Dr_1, Mp,._,, Dy denotes
the all learning data. It's important to note that learn-
ing is performed sequentially in the listed order, and
simultaneous training of multiple contents is not al-
lowed. The function g represents our data replay
algorithm, which corresponds to our DAHR frame-
work. Typically |Mp,| < [Dr|,i € {1,2,..,T — 1},
which is the key to addressing the challenge of
catastrophic forgetting in continual learning.

3.2. Prompted LM Encoder for KBQA

We employ a prompt-based learning approach
to embed entities and relationships related to the
question into its representation. Specifically, in
contrast to directly concatenating the entities and
relationships with the question, we utilize a set
of prompt words to assist the model in acquiring
encoding suitable for the QA task. We adopt
the following prompt learning strategy for initial

tokens: for question x, and its subject denoted as
s, its relation denoted as r, its answer denote as
0. We reconstruct this input as a question is
"[x]", the relation in this question
is ’'[qg]l’, the subject entity in this
question is ' [s]’.

3.3. Generation of Depth Aware Learning
Data

In contrast to continual learning in classification sce-
narios, in the case of question-answering tasks, the
samples in different rounds of learning are not di-
rectly related. In other words, within all the question-
answer knowledge learned in this round, different
samples exhibit varying degrees of relevance. For
instance, some questions share similar subject do-
mains, while others share similar topics. Therefore,
we can employ a self-supervised classification ap-
proach to make it more likely for similar questions
to belong to the same cluster.

As illustrated in algorithm 1, we utilize the hierar-
chical K-means algorithm to encode all questions
for each learning task. As depicted in figure 2,
when provided with a collection of questions for
indexing, we initially categorize all questions into
k clusters using their representations encoded by
Electra(Clark et al., 2020). If a cluster contains
more than ¢ questions, we apply the K-means algo-
rithm recursively. Each cluster containing ¢ ques-
tions or fewer (referred to as a 'leaf cluster’) serves
as the input for the next step.

3.4. Most Similiarity Sampling in Cluster

For each tree generated in the previous section, it
can be to some extent regarded as a representation
of a cluster of similar knowledge. Often, the cost of
forming such a small cluster is relatively low. Hence,
we can utilize similarity-based algorithms to select
the most representative samples for this cluster of
knowledge. It's worth noting that such methods are
particularly convenient for sample selection in the
case of small clusters (especially when only one
sample needs to be selected). For instance, as-
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suming a sampling rate of 0.1, when compared to
selecting one sample from 10 nodes, selecting two
samples from a cluster of 20 nodes would need to
consider the risk of high similarity between the se-
lected samples leading to memory wastage during
replay. Therefore, our method offers a straightfor-
ward and efficient approach to selecting the most
critical samples for each small cluster.

We employ an unsupervised classification strat-
egy. Firstly, we obtain question representations
using the model, and then we implement self-
supervised classification using the K-means algo-
rithm. Each classification process is binary. When
the number of samples in a cluster exceeds N, we
continue this process. Consequently, we obtain
a tree-like structured labeled dataset. We refer to
each final classification result |C;| < N as a node
of this data tree, with the depth being the number
of steps from the initial data classification to C;.

For each node in this classification, we have two
consistent characteristics: 1) For the local data,
regarding a sample D; within that node(leaf cluster),
the remaining samples in that node are the most
similar samples to this sample. 2) For the global
data, as the data depth of the node increases, it
implies that the node has the smallest total distance
within the entire dataset in one task round.

4. Experiments

4.1. Dataset and Settings

We provide an extensive evaluation on Simple
Question Dataset(Bordes et al., 2015), which is
composed of a freebase knowledge base.

In the context of continuous learning for knowl-
edge graph-based question-answering, we em-
ployed the Simple Question dataset, which is de-
rived from the Freebase knowledge base. It is im-
portant to note that, unlike previous works where
continuous learning was applied to classification
tasks with distinct category labels, this particu-
lar task cannot be straightforwardly transferred to
KBQA tasks due to the absence of clear category
labels among the questions. In order to adapt this
dataset to continuous learning while ensuring ho-
mogeneity between training and testing sets for
each task, we sorted the dataset samples based
on entities and relationships, subsequently divid-
ing them into T subsets, each corresponding to a
task in the learning process. Simultaneously, we
restructured the KBQA task to infer (or extract) a
unique correct question entity and relationship pair
for each question within the limited (s, r,0) triple
set. For the correct entities, we ensured that in-
terfering knowledge triples were sufficiently close
to the uniquely correct triples, providing a realistic
measure of the difficulty in resolving KBQA ques-

tions.

Furthermore, given the necessity of employing
certain stochastic algorithms in our work, including
sample sampling in the stratified replay and random
replay, there exist minor fluctuations in experimen-
tal results for the same model and algorithms. To
ensure the accuracy and reliability of the exper-
imental outcomes, we conducted a minimum of
three experiments for each set of parameters in
the results. We reported both the mean and vari-
ance of the metric values under the same model
parameters and algorithms.

4.2. Baseline Methods And Training
Details

We adopt the following methods as baselines in
this work :

* Multitask: In this approach, it can be con-
sidered as a learning scenario with a single
task, where the model learns all the question-
answer data simultaneously.

* Fine-tuning: Fine-tune the model on new task
data continually.

» Prompt-tuning:Differing from the previous
method, this approach utilizes a simple but
effective prompt encoding strategy.

* Random Memory Replay:Save |M | samples
randomly sampled from the training set of each
task 7; to memory M, and jointly train the
model on new task data D and memory M_y.

+ EWC: Maintain the memory in the same way
as Replay but use it to compute the Fisher in-
formation matrix for regularization (Kirkpatrick
etal., 2017).

We employ the Electra pre-trained model as an
encoder for our question-answer data. Specifi-
cally, in order to better demonstrate the benefits
brought by the continuous learning approach, we
have chosen the google/electra-small-discriminator
model with a smaller parameter count to obtain the
question encoding vectors. The encoding vector is
passed through pooling and activation layers and
then fed into a classifier to extract the correct (en-
tity, relation) as an encoder-decoder structure for
solving QA questions. In this structure, our train-
ing epochs are set to 5, the training and inference
batch sizes are set to 50, and the learning rate is
set to be — 5.

For the details of the memory replay algorithm,
we use an unsupervised clustering algorithm, K-
means, to classify the trees. Each classification
is set to have 2 categories. Finally, after aggre-
gating the samples selected from each cluster, we
randomly sample and select m samples for replay.
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Dataset Dy Do D5 Dy Dy
#qin train 18,001 22,055 10,768 11,672 15,961
# qinvalidation | 2,250 2,757 1,346 1,459 1,995
# qin test 2,251 2,757 1,346 1,460 1,996
# relations in 7; | 1696 3,392 5,088 6,784 8,480
# relations of q 330 305 339 329 336

Table 1: Simple Question Dataset setting in our experiment

FA(T) OA(1) Forgotness(l)
|M | for Replay (%) 2% | 10% 2% | 10% 2% | 10%
multitask 86.4+02 | 86.4£02 | 86.24+0.2 | 86.24+0.2 | —3.54+04 | =3.5£04
fine-tuning 989+08 | 58.9+£0.8 | 59.4+0.9 | 594+09 | 25.9£09 | 25.9+0.9
prompt-tuning 60.3 £ 2.1 60.3 £ 2.1 609+13 | 609+£13 | 245£14 | 245+14
RMR 649+24 | 73.1+08 | 69510 | 76.8+0.2 | 20333 | 123+£1.3
Ours 678+28 | 72612 | 721+21 | 77.2+21 | 196£35 | 92+3.8

Table 2: The main results table includes the results of the baseline method and our method for three
evaluation metrics across different memory sizes. Multitask training all data simultaneously represents
the theoretical upper bound for the effectiveness of lifelong learning.'FA’ represents the average accuracy
in testing with question-answering data from different rounds after the final round of learning. ‘OA’, on the
other hand, represents the overall average accuracy in all testing rounds.

In the experiments, we considered the method’s
performance under different memory constraints
by using two replay ratios, M p| = |D| x 0.02 and
M|D| = |D| *0.1.

4.3. Metrics

In the context of continual learning, after each learn-
ing round, we evaluate the knowledge acquired
from previous tasks to assess the extent of forget-
ting. Consequently, each set of experiments in-
cludes C2_, results, where each result represents
the accuracy (denoted as a; ;) of evaluating in the
j — th task after learning the i — th task. Based
on these results, we introduce two key evaluation
metrics: the final accuracy (F' A), the overall accu-
racy (OA), and the total forgetness (Fg). These
metrics provide a comprehensive and holistic as-
sessment of the effectiveness of continual learning
algorithms.

9 i T
VN 2 2%

T
1
FA:TZaT,j,OA: >
Jj=1 Jj=11=1
(4)

metrics. It is evident that our method has achieved
the best performance across all three metrics.

As shown in the table 3, we compared random
sampling and our DAHR sampling under the same
parameters (aside from the replay method). Our
experimental results demonstrate that our method
significantly mitigates catastrophic forgetting in con-
tinual learning. We also observed an intriguing phe-
nomenon: for different tasks, such as Task 1 and
Task 2, it turns out that, for Task 1, subsequent
learning on Task 2 exhibits faster forgetting (Task
1 experiences approximately a 15% accuracy drop
after four rounds of continual learning, while Task
2 encounters a 40% drop in accuracy during three
rounds of continual learning). Our analysis sug-
gests that this phenomenon is likely due to varying
degrees of overall knowledge distribution incon-
sistency during five rounds of different question-
answer knowledge acquisition. Nevertheless, the
DAHR replay method we propose consistently out-
performs random sampling, achieving better results
in continual learning.

Moreover, we found that for the final-round
accuracy(F' A), the overall accuracy(O A) better re-
flects the effectiveness of our method. We analyze
that this is likely due to the significant variations in
feature distributions of unlabeled learning samples,

;| Il as in each learning iteration, the model places more
Fg=r— > max (a;—ar;) (5) emphasisongradient updates from the most recent
o e T round of data. Therefore, when the knowledge dis-

4.4. Main Result

As shown in the table 2, we have reported the ex-
perimental results of different methods across three

tribution from previous rounds significantly differs
from the current round, the average accuracy eval-
uation metric for the current round is likely to show
a noticeable decrease compared to the previous
round. Furthermore, since the data for each task in
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L 7| % | B | T | T | Mean
RMR 80.81 80.81
DAHR | 82.69 82.69
RMR 75.65 | 79.05 77.40
DAHR | 78.57 | 80.43 79.50
RMR 62.31 | 63.37 | 81.92 69.20
DAHR | 61.62 | 69.54 | 84.03 71.73
RMR 64.93 | 56.59 | 72.51 | 85.87 69.98
DAHR | 65.12 | 57.94 | 74.19 | 85.97 70.81
RMR 64.33 | 39.60 | 56.10 | 82.19 | 80.41 | 64.53
DAHR | 67.21 | 39.88 | 69.23 | 81.46 | 81.11 | 67.78

Table 3: For each task with the parameter M = 0.02x|D|, we compared the evaluation results of our Depth
Aware Hierarchical Replay (DAHR) method with Random Memory Replay (RMR) across different rounds
of question-answer knowledge training end testing. Additionally, the average values for this row, which
represent the final accuracy (FA) metric at different task rounds, are reported in the rightmost column.

k FA[M) OA(M) Fg(l)
2 6629 7190 21.05
4 6512 7046  24.39
8 62.05 68.75  25.82

Table 4: The impact of different levels of branch-
ing factor on the experimental results. Parameter k
determines the number of categories for each clus-
tering, thus shaping the structure of the clustering
tree and the depth of the sample.

c FAM) 0A[) Fg(l)
100 6577 71.90 22.38
200 64.87  70.26  23.39
400 62.05  70.75  27.02

Table 5: The impact of different cluster size thresh-
olds on the experimental results. Parameter ¢ de-
termines the size of leaf clusters and the depth of
the tree, thereby shaping the structure of the clas-
sification tree.

the learning process of different methods in the ex-
periment is the same, this issue does not affect our
validation of the proposed method’s effectiveness.

4.5. Ablation Study

In our proposed method, it is evident that the re-
cursive classification of question-answer data in
each round is a key step. In our ablation ex-
periments, we examined the critical parameters
for constructing the question-answer sample tree,
namely k (the number of clusters in each clas-
sification round) and ¢ (the threshold for cluster
size beyond which further recursive classification
is not performed). As shown in Tables 4 and 5,
we considered ¢ = 100,¢ = 200,¢ = 400 and
k =2,k =3,k =4, and present the experimental
results for our main method with a sample replay
rate of 2%.

Based on the results of our ablation experiments,
we found that, for a 2% replay rate in the continu-
ous learning framework, as discussed in Section
3.4, it is not advisable to have cluster sizes that
are too large. Instead, they should be just right
to ensure that each cluster independently selects
approximately one central sample to reduce the
information redundancy caused by overly similar
replay samples, which could lead to losses for the
model. In particular, when ¢ = 400, there is a sig-
nificant increase in the degree of forgetting(from
22.39 t0 27.02), indicating that the selection of highly
similar samples indirectly results in a meaningful re-
duction in the effective number of samples selected,
rather than effectively retaining representations of
previously learned question-answer knowledge.

Additionally, we observed that when consider-
ing different values of k, k = 2 yielded the best
experimental results. We speculate that this is
likely because, in the scenario with £ = 2, the
question-answer sample collections for each round
can achieve the maximum depth within the clas-
sification tree. From an extreme standpoint, if we
assume k — |D|, where n is the total number of
samples and no further classification is needed,
the depth of every sample becomes 1, essentially
reducing the algorithm to the baseline. Therefore,
we infer that our depth parameter is effective in
expressing the importance of samples. When a
sample attains a greater depth within this tree-like
structure, it signifies that it holds a more central
position within the overall sample characteristics.

5. Conclusion

In this work, we innovatively explore the scenario
of continuous learning in knowledge based ques-
tion answering tasks. Our proposed DAHR(Depth
Aware Hierarchical Replay) method is concise
and efficient, specifically tailored for selecting op-
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timal replay samples from unlabeled QA data.
Through comprehensive experiments, we have
demonstrated that our approach significantly miti-
gates catastrophic forgetting. Additionally, the abla-
tion studies conducted in our work provide consis-
tent support for the motivation behind our proposed
method, affirming its effectiveness.

6. Limitation

In this work, we have not yet discussed the impact
of data augmentation. Data augmentation, as a
common strategy, can often improve the perfor-
mance of model methods. For our study, we have
not explored whether combining our replay method
with data augmentation could complement each
other, potentially offering a more substantial miti-
gation of catastrophic forgetting. Additionally, we
have used a single model or clustering algorithm
in our experiments, such as Electra in the encoder
and the K-means clustering algorithm. We have not
extensively validated our approach using multiple
parallel pre-trained model encoders and unsuper-
vised clustering algorithms. We will explore them
in future work.
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