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Abstract
Deep Reinforcement learning (DRL) has been successfully applied to the dialogue policy of task-oriented dialogue
systems. However, one challenge in the existing DRL-based dialogue policy methods is their unstructured state-action
representations without the ability to learn the relationship between dialogue states and actions. To alleviate this
problem, we propose a graph-structured dialogue policy framework for task-oriented dialogue systems. More
specifically, we use an unsupervised approach to construct two different bipartite graphs. Then, we generate the
user-related and knowledge-related subgraphs based on the matching dialogue sub-states with bipartite graph nodes.
A variant of graph convolutional network is employed to encode dialogue subgraphs. After that, we use a bidirectional
gated cycle unit (BGRU) and self-attention mechanism to obtain the high-level historical state representations and
employ a neural network for the high-level current state representations. The two state representations are joined to
learn the action value of dialogue policy. Experiments implemented with different DRL algorithms demonstrate that
the proposed framework significantly improves the effectiveness and stability of dialogue policies.

Keywords: dialogue policy, deep reinforcement learning, task-oriented dialogue systems

1. Introduction

Task-oriented dialogue systems aim to assist users
to complete one or more specific tasks, such as
movie ticket booking and restaurant reservation.
The pipeline task-oriented dialogue system is one
well-known fashion that consists of four compo-
nents (Kwan et al., 2023; Lubis et al., 2020): natural
language understanding, dialogue state tracking,
dialogue policy (DP) and natural language genera-
tion. The DP selects the next system action based
on the current dialogue state, which determines the
entire dialogue flow (Peng et al., 2017; Kwan et al.,
2023). We focus on dialogue policy learning (DPL).

DPL is mainly implemented by deep reinforce-
ment learning (DRL), which integrates deep learn-
ing and reinforcement learning. In reinforcement
learning, the dialogue agent takes an action to inter-
act with the environment and receives a dialogue re-
ward. While deep learning maps the dialogue state
into feature engineering (Prudencio et al., 2023) to
capture the important feature information. Tradi-
tional dialogue policies, such as rule-based (Varges
et al., 2009) and supervised learning-based meth-
ods (Kim et al., 2014), are inefficient and lack ro-
bustness. DRL-based dialogue policies are better
for maintaining large-scale dialogue state spaces
and being robust to noise.

However, the task-oriented dialogue policy based
on DRL remains some limitations. (i) The common
weakness of current DRL-based methods for DPL
is that they discretely represent the states/actions

(Zhang et al., 2021; Tian et al., 2022; Huang
and Cao, 2023), such that the underlying relation-
ships (e.g., behavioral similarities) between differ-
ent states (or sub-states) are not effectively ex-
plored and exploited. (ii) DRL-based dialog policies
conducted by trial-and-error often require a high
number of iterations to explore valuable state infor-
mation (Zhang et al., 2022), and accelerating the
learning of dialog policies through expert experi-
ences (Jeon and Lee, 2022; Wang et al., 2020) is
both a financially costly and laborious task. Further-
more, methods combine with supervised learning
are often not available for a very large number of
state spaces. (iii) Some traditional DRL-based dia-
logue policy methods (Chang et al., 2017; Li et al.,
2020) are not sample-efficient. The dialogue agent
training with limited samples does not achieve a
satisfactory performance, and it is also expensive
and time-consuming to obtain data by interacting
with real users. The above limitations significantly
impede the performance of existing methods to
learn effective dialogue policy.

To overcome these challenges, we propose a uni-
versal DPL framework implemented via DRL with a
graph-structured dialogue state. The framework is
based on a Graph convolutional Q-network to learn
graph-Structured information for modeling Dialogue
Policy (GSDP). The Q-network is a deep neural net-
work that is used to approximate the action-value
function, also known as the Q-function. First, the
user belief state, is the information extracted from
the user’s utterance, as a user-related graph node
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Figure 1: A toy example to illustrate how to build
a graph-structured state. The gray circle• is the
user-related node U . The green circle • is the
action node. The blue circle• is the knowledge-
related node K. The left part is the raw user-related
bipartite graph Gu and knowledge-related graph
Gk. The right part is building a graph-structured
state s = {Gu1

, ..., Gkj
} based on a similarity with

non-action nodes.

U . The corresponding action of the user belief state
is another graph node. The two kinds of nodes
are linked to build a user-related bipartite graph
Gu. The user belief state is also used to query the
database of the task-oriented dialogue system to
match user requests. Then the database query
results, and user belief state are combined to build
another knowledge-related graph node K, with its
action nodes to build a knowledge-related bipar-
tite graph Gk. The user belief state and database
query results are encoded following the existing
works (Peng et al., 2018; Li et al., 2017a). In a
single dialogue turn, we combine the current user
belief state, and database query results to match
them with the nodes of U and K, and obtain the po-
tential actions, and generate the subgraphs of the
dialogue state. Finally, the subgraphs are embed-
ded for calculating the Q-values of agent actions.
Figure 1 makes a toy example to illustrate how to
build a graph-structured dialogue state for DPL. Our
contributions are summarized as follows.

• This paper proposed a generic framework for
DPL that predicts action values through bipar-
tite graphs. The bipartite graphs are built via
successful dialog trajectories from baseline
reinforcement learning algorithms and do not
require expert experience.

• We use similarity to generate dialogue sub-
graphs and construct a variant of graph neu-
ral network to extract information from differ-
ent subgraphs and output graph-aware em-
beddings. The BGRU (Chung, 2014; Morchid,
2022) and self-attention mechanism (Lin et al.,
2017) are employed to process the graph-
aware embeddings for more dialogue features.

• Our experimental evaluations show that the
GSDP framework is more robust, more effi-
cient, and has high scalability compared to dif-
ferent DRL algorithms, performing excellently
in the dataset of movie ticket booking.

2. Related work

With the flourishing of deep learning, deep rein-
forcement learning (DRL), which combines deep
neural networks and RL, is also extensively used
to dialogue policy. Cuayáhuitl et al. (2015) imple-
mented DRL in the negotiation domain, their ex-
perimental results demonstrate the DRL performed
significantly better than other heuristic or super-
vised approaches. Zhao et al. (2021) incorporated
episodic memory policy and DQN policy to learn
dialogue policies. Their episodic memory policy
stores a large number of experiences and does
not guarantee efficient storage. Tian et al. (2022)
estimate the Q-value using the partial average be-
tween the predicted maximum Q-value and the min-
imum Q-value. A balance weight is computed by
heuristics or neural networks to alleviate the over-
estimation Q-value problem of DQN (Tian et al.,
2022). However, the heuristic algorithm can reduce
the efficiency of training. The Deep Dyna-Q (DDQ)
(Peng et al., 2018) is a model-based method that
incorporates the world model to generate simulated
experiences. Thus, both real experience and simu-
lated experience are used to train dialogue policy.
Other DDQ-based DPLs can reference (Zhang and
Shinozaki, 2022; Huang and Cao, 2023).

Graph-based RL algorithms had been success-
fully applied in different domains, such as recom-
mendation systems (Lei et al., 2020), epidemic
control (Yang; et al., 2021), city services (Gam-
melli et al., 2022), etc. However, there are rela-
tively few studies are graph-based dialogue pol-
icy. Tu and Wang (2022) proposed a hierarchi-
cal information-aware conversation recommender
for conversation recommendation systems, they
constructed a hierarchical relationship graph by
customer, item, and attributes to enrich the item
and attribute representation based on similar users.
Then the DQN is used to predict items. However,
they are not available in the dialogue policy do-
main. Chen et al. (2019) proposed a multi-agent
graph dialogue policy model, where each graph
node corresponds to an agent, the graph con-
tains slot-independent nodes and slot-dependent
nodes, the slot-dependent nodes consist of infor-
mation slots, and slot-independent nodes indicate
database search results. Their graph is constructed
based on information slots, which is an isomorphic
graph, lacking consideration of the relationship be-
tween nodes and potential actions.

We propose to construct bipartite graphs for di-
alogue policy learning. This work is the first at-
tempt to consider the relationship between dialogue
states and potential actions. We implement differ-
ent RL methods based on the proposed framework
to demonstrate its excellent performance and ro-
bustness.
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Figure 2: Illumination of proposed dialogue policy framework GSDP. It is defined by two modules. The
top module receives the graph-structured history dialogue information which is represented by subgraph
Gui , and then encoded to a high-level history state. The bottom module receives one knowledge-related
subgraph which is represented by a Gkj , and then encoded to a high-level current state.

3. Method

In this section, we introduce our proposed GSDP
framework for dialogue policy learning. First, de-
scribe the structure of the proposed GSDP in gen-
eral. Then, we show the details of the framework
implementation of different modules. The training
and pseudo-code of the GSDP model is described
in the end.

3.1. Overall Architecture

The proposed GSDP is based on the structured
dialogue state to learn dialogue policy. We build a
user-related bipartite graph via user belief states
and dialogue actions, which are user utterance-
related. A knowledge-related bipartite graph is built
with added features of database query results (see
Figure 1 for details). Then we generate subgraphs
via the current dialogue state, and a graph con-
volutional network (GCN) is employed to learn the
graph-structured state representation of subgraphs.
The GSDP can grasp the relationship between user
utterances and actions and improves the training
efficiency of dialogue policy because it mines the
graph-structured features.

Figure 2 depicts the architecture of the GSDP
framework which includes two modules. The top
module encodes a high-level historical state rep-
resentation based on the subgraph Gui . The bot-
tom module encodes a high-level current state rep-
resentation based on subgraph Gkj

. Specifically,
different Gui

and Gkj
are encoded into different

subgraph embeddings using the GCN. Then, a
dropout layer is employed to weaken the embed-
ding of the subgraph that generates via similarities

with non-action nodes. The bidirectional gated cy-
cle unit (BGRU) is used to extract the temporal
information of sequences after the dropout layer.
The output of BGRU at each moment is incorpo-
rated into a high-level historical state representa-
tion by a self-attention mechanism. Meanwhile, A
high-level current state representation is generated
using a neural network following the dropout layer
after GCN learning of Gkj . The neural network
is implemented as same as the deep Q-network
(DQN) (Peng et al., 2018) and deep recurrent Q-
network (DRQN) (Zhao and Eskenazi, 2016). We
will demonstrate the performance of the different
implementation results in the experimental part. Fi-
nally, the high-level historical state and the high-
level current state are stitched together as the input
of a multilayer perceptron to predict the Q-values.
In the following, we present the details of the pro-
posed GSDP framework.

3.2. Implementation of GSDP
Dialogue state representation: In DPL, the user
utterance corresponding to the belief state can be
converted into three parts: user intent, information
slot and request slot. The embedding vector of
user intent is Ec ∈ Rdc , the information slot embed-
ding vector Ei ∈ Rdi and request slot embedding
vector Er ∈ Rdr . Ec, Ei, and Er are the one-hot
encoding reference papers (Peng et al., 2018; Li
et al., 2017a), which can retain the raw feature in-
formation. The user-related node embedding is the
Eu = [Ec, Ei, Er], where [·, ·, ·] is the concatenation
operation. The embedding of database query re-
sults is the multi-hot encoding Ed ∈ Rdr+1, which
satisfies the request slots set to 1, otherwise to
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0. The +1 is an encoding position to determine
whether all the request slots are satisfied. In the
graph Gk, the knowledge-related node embedding
is Ek = [Ec, Ei, Er, Ed].

Subgraph: We build the bipartite graphs Gu and
Gk based on a baseline RL model which can be
DQN, it does not rely on any expert experience.
Thus the action corresponding to the state may be
in the successful episodes or the failed episodes.
We select the state-action pairs with a higher suc-
cess probability to build the bipartite graphs Gu

and Gk. Eu is the embedding of node U , Ek is
the embedding of node K. However, we do not
build a large-scale bipartite graph even though the
embedding sets of the Eu and Ek are enormous.
Thus, we merely build small-scale bipartite graphs
for convenience of storage. In experiment section,
we demonstrate that even using small-scale graph
data can improve the effectiveness of DPL.

The subgraphs are generated based on the Gu

and Gk. In a single dialogue turn, a user cur-
rent belief state representation is suui

, and the cur-
rent knowledge-related dialogue representation sukj

.
The suui

and sukj
are matched via cosine similarity

with the nodes U and K, and obtain the action
nodes to generate subgraph Gui

and Gkj
. The ac-

tion representation corresponding to Gui
and Gkj

are obtained are obtained via weighted similarity,
respectively.

saui
=

N∑
n=1

simn(s
u
ui
, Eu)E

a
u (1)

sakj
=

N∑
n=1

simn(s
u
kj
, Ek)E

a
k (2)

where the simn is the function to calculate the simi-
larity, N is the number of the most similar ones. Ea

u

is representation of the action nodes corresponding
to node U (Eu is the node embeddings), and Ea

k is
the representation of action nodes corresponding
to node K (Ek is the node embedding). In the light
of above, the subgraph Gui ∼ (suui

, saui
) and the

subgraph Gkj ∼ (sukj
, sakj

).
GCN layer: We construct a variant of the GCN

model based on (Lei et al., 2020; Hamilton et al.,
2017) to encode the graph-structured states. For
each subgraph Gui

or subgraph Gkj
, the main goal

of variant GCN is to produce a graph-aware repre-
sentation. Notice that the Eu and Ek are replaced
by suui

and sukj
during dialog interactions. We use

xui to represent the Gui , and xkj to represent the
Gkj ,

xui
← relu(Wui

[suui
, saui

] + bui
) (3)

xkj
← relu(Wkj

[sukj
, sakj

] + bkj
) (4)

where Wui and Wkj are the trainable weights,
buiand bkj are the trainable biases. We can obtain

the embedding of each subgraph Gui
and Gkj

via
the above operation (3) and (4). For the dialogue
sequence of history, the graph-aware representa-
tion of {Gu1 , ..., Guj−1} is the {xu1 , ..., xuj−1}. For
the current dialogue state, the xkj is the represen-
tation of Gkj

.
Dropout layer: We add the dropout layer after

the GCN layer because we have used similarity to
obtain the latent actions, and the build of bipartite
graphs does not come from real expert experience.
In the dropout layer, we obtain the xui and xkj ,
where

xui
← dropout(xui

), xkj
← dropout(xkj

) (5)

BGRU Layer: The dialogue history is described
by {xu1

, ..., xuj−1
} as a temporal sequence. We

leverage the BGRU to process {xu1
, ..., xuj−1

},
Considering the dialogue interaction behavior of
the user is reversible, i.e., the pro and con or-
der (bidirectional) of user’s requests can also com-
plete a task-oriented dialogue. We take advantage
of BGRU because it has fewer parameters than
long short term memory (LSTM) and has achieved
advanced effects in low-complexity sequences
(Colombo et al., 2020; Cahuantzi et al., 2023). The
GRU has shown advantages over LSTM and simple
recurrent neural networks in many dialogue tasks
(Colombo et al., 2020; Cahuantzi et al., 2023). The
goal of the BGRU is to process the {xu1

, ..., xuj−1
}

to the sequence of hidden vectors {hu1
, ..., huj−1

},
the hui

is computed as

hui ← BGRU(xui , hui−1)

= GRU(xui
,
→

hui−1
) ◦GRU(xui

,
←

hui+1
)

(6)

where
→

hui−1 and
←

hui+1 are the forward and back-
ward hidden vectors, respectively. ◦ is the element-
wise sum. Considering that different hui

have differ-
ent importance for policy learning, a self-attention
mechanism (Lin et al., 2017) is constructed to dis-
tinguish its importance. Thus the weighted history
state is represented as:

su =

j−1∑
i=0

βihui
(7)

where j is the length of dialogue history, βi is the
self-attention score, which is computed by:

βi ←
exp(wT

h tanh(Whhui
))∑j−1

l=0 exp(wT
h tanh(Whhul

))
(8)

where wT
h and Wh are the trainable weights in the

self-attention. The important features can be au-
tonomously selected from the input sequence with
the attention mechanism, and help the dialogue
agent capture the user’s dynamic interaction pref-
erence at each turn step. A high-level historical
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dialogue state is used as a portion of the final dia-
logue state embedding to predict the Q-values.

Neural network layer: The main goal of the
neural network layer is to process the embedding
of the current dialogue state. Traditional unstruc-
tured dialogue policy directly processes the dia-
logue state which is embedded via a multi-hot en-
coder, and then either a deep neural network (Wang
et al., 2020) or LSTM (Zhao and Eskenazi, 2016)
is employed to output the Q-values. I.e., they do
not use the graph encoding that we implemented
above. In this module, we reprocess the xkj

ob-
tained from graph encoding, constructing a deep
neural network to map the high-level current state.
sj ← NN(xkj

), where the NN represents the deep
neural network or typical LSTM network. In the im-
plementation, The NN is selected as the same
as the neural networks of baseline reinforcement
learning.

Output Layers: We stitch together the high-level
historical state and the high-level current state to
obtain the final state representation s = [sh, sj ], the
Q-value is

Q(s, a) = f([sh, sj ], a) (9)

where j is the current state index. f is a mapping
function. It is worth mentioning that different algo-
rithms operate on s differently. For example, the
DQN algorithm uses a multilayer perceptron (MLP)
to map s to its corresponding Q-value. However,
the Dueling network constructs both an advantage
function and a Q-value function, which are com-
bined to determine the optimal action to take. Thus
f can be either MLP or operation via Dueling net-
work. Our model is able to use different mapping
operations.

3.3. Model Training
This part describes the model training based on
DQN. For notational convenience, we use st to
denote the raw dialogue state at t-turn dialogue,
which includes the dialogue history and database
query results, i.e. suui

∈ st, where i ∈ [0, t) , sukj
∈

st, where j = t .This means that the raw dialogue
state st will be coded to suui

and sukj
. The loss

function based on DQN is defined as follows.
L(θ) = E(st,at,rt,st+1)∼D[(y −Q(st, at, Gu, Gk; θ))]

+ λKL[p(a|πθ(st)) || q(a|st, Gu, Gk)]

= LD(θ) + λLKL(p, q)

(10)

where LD(θ) is the traditional DQN loss function,
LKL(p, q) is the Kullback-Leibler (KL) divergence
loss of distribution p and distribution q. p(a|πθ(st)
is the action distribution of st under policy πθ,
q(a|st, Gu, Gk) is corresponding mixed latent ac-
tion distribution of st under graphs Gu and Gk. λ is

Algorithm 1 Training dialogue agent with GSDP
1: Initialize replay memory D, user-related graph

Gu, knowledge-related graph Gk, ϵ-greedy ex-
ploration value

2: for each episode do
3: Initialize raw state s1
4: for t = 1 to j do
5: Obtain the user-related status encoding

sut
u and the knowledge-related encoding
sut

k according to st
6: Obtain the action encodings sat

u and sat

k

according to Eq.(1) and Eq.(2)
7: Based on the similarity of sut

u , sut

k to nodes
U and K, obtain the latent action probabil-
ity distribution qt

8: Select an action at according to Eq.(11)
9: Execute action at, receive environment re-

wards rt and come into next raw state st+1

10: Store (st, at, rt, st+1) to D
11: set st = st+1

12: end for
13: Sample random minibatch of (st, at, rt, st+1)

from D
14: Execute a gradient descent step via Eq. (10)

15: Replace target parameter θ− ← θ after every
L iterations

16: end for

a multiplier to control the disentanglement of latent
dialogue actions. We add hyperparameter λ as a
reference (Wang et al., 2021). More loss functions
can also be used for training. For example, loss
functions based on Double DQN or Dueling net-
works to replace the LD(θ). Moreover, the Ea

u and
Ea

k (see Eq.(1) and Eq.(2)) are latent normalized
action representations that provide an initialized dis-
tribution of latent actions. Thus, we make a slight
variation of the traditional ϵ-greedy policy. The vari-
ant of ϵ-greedy policy is

at =


argmaxa Q(st, a),

with probability

1− ϵ
select an action based
on probability 1− q,

otherwise

(11)
Our model greedily selects (exploitation) the ac-
tion corresponding to the largest Q-value with the
probability 1− ϵ, otherwise, the action is selected
(exploration) with probability 1 − q. Algorithm 1
presents the training processing of GSDP.

4. Experiments

This section describes the performance evalua-
tion of GSDP. The experiments are conducted on
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the task-oriented movie-ticket booking (Li et al.,
2017a) dataset. It contains 11 user intents, 16 user
slots, and 128 user goals. This dataset is applied
in recent studies (Zhao et al., 2021; Huang and
Cao, 2023). We use a user simulator (Li et al.,
2017b), which is frequently used in the study of
dialogue policies (Zhao et al., 2020; Zhang et al.,
2021; Tian et al., 2022). The evaluation metrics
include dialogue success rate (Suc), averaged
reward (Rew), and the number of averaged dia-
logue turns (Tur). Suc indicates the probability
that the RL agent helps the user to complete all
user goals in a limited number of dialogue turns.
Rew is the mean of all rewards obtained by the
simulated user while interacting with the dialogue
agent. Rew = 1

N

∑N
i=1

∑M
j=1 Q(sj , a), where N

is the number of dialogue trajectories, and M is
the length of current dialogue trajectory. Note that
different dialogue trajectories may have different di-
alogue lengths. That is, M is not always the same.
Tur is the average number of dialogue turns before
the simulated user completes a task.

4.1. Baselines
We compared performance of GSDP with other Q-
network based methods, including:
DQN (Mnih et al., 2015): A classical reinforcement
learning algorithm was first proposed in the field of
games, which has become a fundamental model
to train dialogue policy (Wang et al., 2020).
DDQN (Xiao et al., 2016): Double DQN (DDQN)
is used to deal with the Q-value overestimation of
DQN that selects the maximum action in each ex-
ploitation.
DRQN (Zhao and Eskenazi, 2016): DRQN is an ex-
tension to DQN which introduces a LSTM network.
DRQN performs significantly better than DQN when
an agent only observes partial states in dialogue
policy learning.
Dueling (Wang et al., 2016): Dueling DQN fac-
torizes the Q-value into the sum of the advantage
function and Q-function, which changes the struc-
ture of DQN.
MAXMIN (Lan et al., 2020): MAXMIN Q-learning
uses the minimum of multiple maximums from dif-
ferent ensemble units to estimate the ground truth
maximal Q-value.
DPAV (Tian et al., 2022): DPAV uses a dynamic par-
tial average estimator to calculate the ground truth
maximum action value. A partial average weight
is used to balance the predicted maximum action
value and minimum action value.

These models are used as baseline methods and
their inputs are the structureless dialogue states.
We scale them to verify the performance of the
proposed GSDP. Specifically, deep reinforcement
learning contains two modules, deep learning and
reinforcement learning. The GSDP framework

mainly modifies the deep learning part of baselines.
We obtain a high-level historical state representa-
tion and a high-level current state representation
by encoding the original dialogue states through
bipartite graphs. The neural network module used
to obtain the high-level current state representa-
tion follows the deep learning approach used in
the baseline models. In the reinforcement learning
part, the GSDP framework is implemented consis-
tent with the baseline models, but the loss function
of the reinforcement learning part adds a KL regu-
larization term.

4.2. Implementation Details
All methods are implemented with the PyTorch
toolkit. In the GSDP, the BGRU takes one hid-
den layer of size 40, and the NN takes one hidden
layer of size 80. Other methods include one hidden
layer of size 80 and a ReLU activation function. All
methods are warm started using a rule-based pol-
icy before training, with a hyperparameter of 200
episodes. The size of the experience replay pool
is set to 5000, and the discount factor for future
reward is γ = 0.95. The optimizer use RMSprop
with a learning rate of 0.001 and a batch size of 16.
The maximum number of dialogue turns is L = 40.
The agent is rewarded with 2L when the user all
goals are completed, −L when it fails, and -1 at
other turns. The MAXMIN DQN uses 5 DQNs for
selecting the minimum Q-value in the maximum
Q-values of different DQNs. The weight of DPAV
balancing the maximum and minimum Q-values is
obtained by a heuristic algorithm, and the best per-
formance on our machine corresponds to a weight
of 0.5. The value of λ in the loss function of GSDP
is set to 1, and its bipartite graph Gu contains 2100
nodes of U and the bipartite graph Gk contains 170
nodes of K. The other parameters of all models
are kept consistent for a fair evaluation.

4.3. Performance of GSDP with different
top-N similarity

For each turn dialogue, the raw state st is encoded
into user-related and knowledge-related representa-
tions. Thus their latent actions need to be obtained
based on top-N similarity to non-action nodes in the
bipartite graphs (see Eq.(1) and Eq.(2)). Consider-
ing different top-N similarities have different perfor-
mances to GSDP. We implement the GSDP with
different baseline DRL algorithms, and the Suc as a
metric to verify the performance under hyperparam-
eter N. Table 1 displays the experimental results.
The GSDP(DQN) obtained the highest dialog suc-
cess rate with Top-2 similarity, and its performance
is better compared with the other models, because
GSDP (DQN) has more reliable actions with top-
2 similarity of bipartite graph non-action nodes.
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top-1 top-2 top-3 top-4 top-5 top-6 top-7 top-8 top-9 top-10

GSDP(DQN)
0.661
± 0.042

0.727
± 0.038

0.682
± 0.041

0.670
± 0.053

0.683
± 0.040

0.651
± 0.044

0.661
± 0.042

0.678
± 0.043

0.662
± 0.056

0.664
± 0.053

GSDP(DDQN)
0.644
± 0.034

0.659
± 0.031

0.694
± 0.030

0.675
± 0.034

0.683
± 0.053

0.657
± 0.029

0.670
± 0.038

0.668
± 0.043

0.662
± 0.048

0.684
± 0.051

GSDP(DRQN)
0.640
± 0.034

0.688
± 0.022

0.683
± 0.032

0.679
± 0.028

0.687
± 0.044

0.651
± 0.036

0.686
± 0.026

0.67
± 0.039

0.643
± 0.041

0.704
± 0.035

GSDP(Dueling)
0.635
± 0.035

0.702
± 0.029

0.689
± 0.031

0.699
± 0.027

0.692
± 0.032

0.669
± 0.033

0.668
± 0.038

0.703
± 0.036

0.692
± 0.039

0.683
± 0.045

GSDP(MAXMIN)
0.648
± 0.027

0.602
± 0.031

0.630
± 0.055

0.700
± 0.042

0.614
± 0.059

0.614
± 0.059

0.595
± 0.036

0.606
± 0.037

0.620
± 0.042

0.604
± 0.048

GSDP(DPAV)
0.665
± 0.040

0.632
± 0.040

0.690
± 0.033

0.644
± 0.034

0.668
± 0.033

0.653
± 0.033

0.653
± 0.035

0.667
± 0.033

0.661
± 0.028

0.623
± 0.038

Table 1: The dialogue success rate of GSDP with Top-N similarity under different models. The bolded
font indicates the best results and the underline indicates the second best results.

GSDP(DDQN) achieves the best results with Top-3
similarity. GSDP(DRQN) achieves the best results
with Top-10 similarity and second-best results with
Top-2 similarity. Besides, its results slightly fluctu-
ate from Top-3 to Top-5. GSDP(Dueling) had the
best results with top-8 similarity and the second-
best results with Top-2 similarity, but the two results
are close to each other, the result of op-2 similarity
with a smaller variance. GSDP(MAXMIN) signifi-
cantly fluctuates under different top-N similarities,
and it achieves the best results with Top-4 similarity.
The GSDP(DPAV) results are less fluctuating than
the GSDP(MAXMIN) as it updates the Q function
with a balance parameter. GSDP(DPAV) achieves
optimal results with the Top-3 similarity. Different
top-N achieve different dialogue success rates be-
cause the action distributions and high-dimensional
state representation are different with distinct top-N.
In the following section, we select the appropriate
Top-N similarity to implement our model and com-
pare it with the baseline models.

4.4. Main Results
The main results are reported in Figure 3 and Ta-
ble 2. We use Suc, Rew, and Tur to evaluate
the performance of dialog policy learning. Ac-
cording to the experimental results in section 3.2,
we implement the GSDP(DQN), GSDP(DDQN),
GSDP(DRQN), GSDP(Dueling), GSDP(MAXMIN),
and GSDP(DPAV) with top-2, top-3, top-2, top-2,
top-4 and top-3 similarities. These top-N values
are chosen based on the Suc and its variance.

Figure 3(a) shows results of Suc with different Q-
networks in 500 simulations. The proposed GSDP
framework achieves better performance and the
tendency of the Suc increase faster in the earlier
simulations. The proposed framework is nearly
converged at 200 epochs demonstrating its faster
convergence rate. In the last epoch of the simula-
tion, GSDP significantly outperforms the baseline
models. Specifically, see Table 2 which shows

that the GSDP(DQN) algorithm achieves the best
performance with a Suc 72.7%. The performance
of the GSDP(MAXMIN) and baseline MAXMIN al-
gorithms are comparable, which remains a slight
performance improvement. The DDQN algorithm

(a) Dialogue success rate

(b) Dialogue average reward
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(c) Dialogue average turns

Figure 3: Performance demonstration of deep rein-
forcement learning-based graph convolutional Q-
networks for dialogue policies.The X-axis is the
number of training epochs and the Y-axis is the
dialogue success rate.

has the most significant performance improvement
(21.4% ) compared with GSDP(DDQN), which fully
demonstrates the superiority of our GSDP frame-
work. Furthermore, according to the results in Table
2, the variance of experimental results of our model
implemented on different Q-networks are all smaller
than that of the traditional algorithms, which fully
demonstrates the stability of the GSDP.

Figure 3(b) illustrates the Rew of different Q-
networks over 500 simulations. It demonstrates
the Rew maintains decreasing and then increasing,
which is due to the sparse reward at the begin-
ning of the dialogue. The sample data gradually
increases with the agent and user interaction, while
positive rewards samples are also increased, re-
sulting in a gradual increase in dialogue rewards.
Table 2 displays the detailed experimental results,
in which the proposed GSDP and baseline models
have a large gap with the metric of Rew at the 200th
epoch. Where MAXMIN and GSDP(MAXMIN) had
the largest average reward gap of 41.13. The small-
est gap was between DRQN and GSDP(DRQN),
which is 17.37 at the 200th epoch. At the end of
the epoch, the proposed GSDP maintains a signifi-
cant advantage over the baseline models, where
GSDP(DQN) achieves the highest reward of 38.08.

Figure 3(c) demonstrates the results of Tur of
different Q-networks. The smaller the number of
dialogue turns, the less dialogue is required for the
dialogue agent to complete a task, indicating the
better performance of the dialogue agent. Figure
3(c) and Figure 3(b) have an inverted tendency in
general, showing that the proposed GSDP frame-
work can improve the effectiveness of different
baseline Q-networks. In particular, refer to Table 2,

GSDP(DDQ) reduces the average number of dia-
logue turns by 6.6 compared to the DDQ algorithm.
Furthermore, Table 2 also displays that GSDP has
lower variance in both the Tur and the Rew, which
demonstrates the stability of GSDP.

Based on the results in Figure 3 and Table 2, we
conclude that the GSDP framework demonstrates
superior performance when implemented on the
six Q-networks. Specifically, (i) it has more efficient
sampling performance: On the one hand thanks to
our modification of the traditional ϵ-greedy explo-
ration fashion ( see Eq.(11)), and on the other hand
owing to our incorporation of the latent action distri-
bution into the loss function ( see Eq.(10)). These
two components work together to make our pro-
posed framework more sample-efficient. (ii) It has
excellent performance improvement. We suggest
that the use of bipartite graphs to model dialogue
policy learning contributes to the observed results,
as this approach enables a more effective explo-
ration of past interaction patterns and the relation-
ship between user utterances and latent actions.
In addition, our framework does not use expert ex-
perience modeling bipartite graphs. If we use the
expert experience to build the bipartite graphs, the
performance of the dialogue policy is expected to
be further improved.

4.5. Sub-graphs with different Sizes

We verify the influence of the size of the subgraph
to the performance of proposed GSDP framework.
We only show the relationship between different
sizes of Gu and dialogue success rate, ignoring
the relationship between dialogue success rate and
Gk, because the number of subgraphs of Gk is 170,
which is already relatively small. Figure 4 shows
the test results, which demonstrate that there is a
positive correlation between Gu graph size and dia-
logue success rate. The larger of the size Gu have
a higher dialogue success rate in general. The re-
sults of the dialogue success rate fluctuates with the
sizes of Gu because the state encoding is based on
the similarity to non-action nodes of Gu, whereas
the experiments are randomly selected subgraphs
of Gu to calculate the similarity. In most cases, the
implementations with smaller size Gu have been
able to achieve decent dialogue success rates that
exceed their corresponding baseline models. This
is because we use the graph Gu as a master, and
then construct structured states based on similar-
ity. The experiments verify that even small-scale
graphs Gu can effectively facilitate dialogue policy
learning.
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Models Epoch 200 Epoch 500
Suc Rew Tur Suc Rew Tur

DQN 0.491 ± 0.121 6.28 ± 16.02 27.17 ± 3.23 0.522 ± 0.089 10.09 ± 11.79 27.01 ± 2.40
DDQN 0.428 ± 0.164 -1.69 ± 21.23 28.22 ± 3.37 0.480 ± 0.094 4.24 ± 12.44 28.61 ± 2.51
DRQN 0.518 ± 0.099 9.28 ± 12.80 27.86 ± 2.29 0.584 ± 0.077 18.07 ± 10.20 25.90 ± 2.15
Dueling 0.460 ± 0.112 2.09 ± 14.82 28.22 ± 3.05 0.624 ± 0.067 23.85 ± 8.97 24.03 ± 2.01
MAXMIN 0.309 ± 0.138 -17.71 ± 17.93 31.65 ± 3.05 0.680 ± 0.054 32.28 ± 7.10 20.72 ± 1.56
DPAV 0.411 ± 0.115 -4.54 ± 14.57 29.84 ± 1.93 0.617 ± 0.077 22.63 ± 10.21 24.78 ± 2.19
GSDP(DQN) 0.6460.6460.646 ± 0.0310.0310.031 26.9126.9126.91 ± 4.164.164.16 23.1223.1223.12 ± 1.071.071.07 0.7270.7270.727 ± 0.0380.0380.038 38.0838.0838.08 ± 6.176.176.17 20.3720.3720.37 ± 1.421.421.42
GSDP(DDQN) 0.6510.6510.651 ± 0.0620.0620.062 28.0528.0528.05 ± 8.048.048.04 22.1122.1122.11 ± 1.991.991.99 0.6940.6940.694 ± 0.0300.0300.030 33.6533.6533.65 ± 7.947.947.94 21.2821.2821.28 ± 1.411.411.41
GSDP(DRQN) 0.6430.6430.643 ± 0.0560.0560.056 26.6526.6526.65 ± 7.267.267.26 22.9622.9622.96 ± 1.831.831.83 0.6880.6880.688 ± 0.0220.0220.022 32.5032.5032.50 ± 7.477.477.47 20.9420.9420.94 ± 1.661.661.66
GSDP(Dueling) 0.5910.5910.591 ± 0.1160.1160.116 24.3024.3024.30 ± 7.987.987.98 23.3123.3123.31 ± 1.691.691.69 0.7020.7020.702 ± 0.0290.0290.029 34.5934.5934.59 ± 7.647.647.64 21.3221.3221.32 ± 1.881.881.88
GSDP(MAXMIN) 0.6130.6130.613 ± 0.0230.0230.023 23.4223.4223.42 ± 3.153.153.15 22.3422.3422.34 ± 1.211.211.21 0.7000.7000.700 ± 0.0420.0420.042 35.9335.9335.93 ± 5.325.325.32 18.0518.0518.05 ± 0.940.940.94
GSDP(DPAV) 0.6580.6580.658 ± 0.0560.0560.056 28.8728.8728.87 ± 7.597.597.59 22.2822.2822.28 ± 2.032.032.03 0.6900.6900.690 ± 0.0330.0330.033 33.3433.3433.34 ± 6.026.026.02 21.0221.0221.02 ± 1.431.431.43

Table 2: Display of detailed experimental results. The bolded font indicates better results than its baseline
model.

(a) GSDP(DQN) (b) GSDP(DDQN)

(c) GSDP(DRQN) (d) GSDP(Dueling)

(e) GSDP(MAXMIN) (f) GSDP(DPAV)

Figure 4: The dialogue success rate of GSDP with
different Sizes of Gu.

5. Conclusion

In this paper, we propose a graph-structured frame-
work for learning dialogue policy. At first, user-
related and knowledge-related bipartite graphs are
built using baseline RL. Then, we use these bi-
partite graphs to generate two kinds of subgraphs
which are dialogue history based and current dia-
logue based. The different subgraphs are encoded
to obtain the high-level state representations. Fi-
nally, the Q-values are predicted based on the con-

catenation of high-level state representations. Our
model extracts latent actions based on cosine sim-
ilarity and can take into account the relationship
between states, as well as the relationship between
states and actions. We implement our model on
six Q-networks and the experimental results show
that the proposed model is more efficient, and more
stability. In future work, we will focus on the impact
of different dialogue environments on the proposed
model, e.g., noisy environments.
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