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Abstract

Food touches our lives through various endeavors, including flavor, nourishment, health, and sustainability. Recipes
are cultural capsules transmitted across generations via unstructured text. Automated protocols for recognizing
named entities, the building blocks of recipe text, are of immense value for various applications ranging from
information extraction to novel recipe generation. Named entity recognition is a technique for extracting information
from unstructured or semi-structured data with known labels. Starting with manually-annotated data of 6,611
ingredient phrases, we created an augmented dataset of 26,445 phrases cumulatively. Simultaneously, we
systematically cleaned and analyzed ingredient phrases from RecipeDB, the gold-standard recipe data repository,
and annotated them using the Stanford NER. Based on the analysis, we sampled a subset of 88,526 phrases using
a clustering-based approach while preserving the diversity to create the machine-annotated dataset. A thorough
investigation of NER approaches on these three datasets involving statistical, fine-tuning of deep learning-based
language models and few-shot prompting on large language models (LLMs) provides deep insights. We conclude
that few-shot prompting on LLMs has abysmal performance, whereas the fine-tuned spaCy-transformer emerges as
the best model with macro-F1 scores of 95.9%, 96.04%, and 95.71% for the manually-annotated, augmented, and
machine-annotated datasets, respectively.

Keywords: Named Entity Recognition, Deep Learning, Large Language Models, Language Modelling, Cor-
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1. Introduction

Food plays a central role in our lives. Beyond its pri-
mary purpose of nourishment and taste, it encom-
passes a broad spectrum of endeavors touching
on health and sustainability. In the modern culinary
landscape, where food is not just sustenance but
reflects our diverse tastes and interests, informa-
tion extraction in food texts has become increas-
ingly crucial. As we explore culinary experiences
and adapt to dietary preferences, extracting valu-
able information from food-related texts empowers
us to make informed choices. Information extrac-
tion (Wei et al., 2023) enables efficient utilization
of food-related data. This includes identifying in-
gredients and nutritional details in recipes (Kalra
et al., 2020), ensuring dietary safety by detecting
allergens (Pellegrini et al., 2021), optimizing restau-
rant operations through menu analysis (Syed and
Chung, 2021), enhancing food safety by tracking
recalls, cost and sustainability. These technolog-
ical enhancements provide deeper perspectives
on what we eat and facilitate personalized meal
planning, culinary research, and innovation in the
food industry.

Recipes are unstructured text, and named entities

TThese authors contributed equally to this work.

are their building blocks. Named entity recognition
(NER) is a technique for extracting information from
unstructured or semi-structured data with known
labels (Chieu and Ng, 2002). It requires the many-
to-one mapping of various named entities in text
to their domain-specific categories. NER can ex-
tract information from various domains, including
reviews, news articles, scientific literature, and food
texts. NER not only acts as a standalone tool for in-
formation extraction but also plays an essential role
in a variety of natural language processing (NLP)
applications such as text understanding (Zhang
et al., 2020; Cheng and Erk, 2020), information re-
trieval (Guo et al., 2009; Petkova and Bruce Croft,
2007), automatic text summarization (C. Aone and
Larsen, 1999), question answering (Molla et al.,
2006), machine translation (Babych and Hartley,
2003), and knowledge base construction (Etzioni
etal., 2005), etc. Recent studies have implemented
various deep-learning models, such as BERT (Liu
and Cui, 2023; Fang et al., 2023; Suleman et al.,
2022), DistilBERT (Sanh et al., 2019; Hossain et al.,
2022; Silalahi et al., 2022), DistiiRoBERTa (David-
son et al., 2021; Qu et al., 2023; Rodrigues et al.,
2022), spaCy (Kumar, 2023), and flair (Mathis,
2022; Pathak et al., 2022; Kumar et al., 2023).

Traditional NER models, such as Hidden Markov
models (Rabiner and Juang, 1986) and conditional
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Figure 1: The pipeline implemented for fine-tuning supervised deep learning-based named entity recogni-
tion comprises three phases. To begin with, we built vocabularies for each of the three datasets. Further,
we utilized these vocabularies to convert every word of an input sentence into corresponding token indexes
that were subsequently converted to token embeddings via tokenization. Finally, Encoder-Only language
models were employed to predict entity tags for the input token embeddings. The spaCy-transformer
emerged as the best model with F1 scores of 95.9%, 96.04%, and 95.71% for Manually_Annotated,
Augmented, and Machine_Annotated datasets, respectively.

random fields (Lafferty et al., 2001), rely heav-
ily on rule-based features (Luo et al., 2015; Pas-
sos et al., 2014). DrNER (Eftimov et al., 2017) in
rule-based NER that can extract food entities from
evidence-based dietary recommendations. This
work was extended to develop another rule-based
NER FoodIE (Popovski et al., 2019), where the
rules incorporate computational linguistics informa-
tion. FoodIE achieved promising results on inde-
pendent benchmark datasets and has been used to
create the FoodBase corpus, the first NER corpus
in the food domain. The limitation of the FoodIE
method is its dependency on external resources,
which have become inaccessible after its publica-
tion, rendering the method unusable. With a simi-
lar spirit, a data-driven method to find named enti-
ties, BUTTER (Cenikj et al., 2020), was trained on
the FoodBase corpus based on Bidirectional Long
Short-Term Memory and conditional random field
methods. Radu et al. (2022) implemented NER
on cooking instructions from multilingual recipes
(French, German, and English). They implemented
a Conditional Random Field layer on top of Bidirec-
tional Long-Short Term Memory models, achieving
F1 scores over 96% in mono and multi-lingual con-
texts for all classes. Another research (Brahma
et al., 2020) implemented a NER approach to iden-
tify the food quality descriptors from chats between
customers and customer support staff. Previous
research (Diwan et al., 2020) used the RecipeDB
dataset (Batra et al., 2020) to identify the named en-

tities in ingredient phrases and cooking instructions.
They reported an F1 score of 0.95 (ingredient),
0.88 (processes), and 0.90 (utensils). SciFood-
NER (Cenikj et al., 2022) is a BERT-based method
for recognizing named entities in scientific texts and
achieved an F1 score of 0.90. NER can accurately
identify ingredient names, quantities, unit, state,
size, dry/fresh, and temperature within recipes and
food-related content.

Computational Gastronomy represents the study
of food, flavors, nutrition, health, and sustainability
from the computing perspectives (Goel and Bagler,
2022). This new data science niche dramatically
changes the outlook on food and cooking, tradition-
ally considered artistic endeavors. In this context,
building NER models for recipe texts is an exciting
proposition, given its applications spanning mul-
tiple domains, including disease prediction, cost
estimation, flavor profiling, and comprehensive nu-
tritional analysis of recipes. Herein, we present a
computational pipeline by utilizing encoder-based
language models to extract NERs from recipe text
(Figure 1).

The salient contributions of research studies pre-
sented here are (a) the introduction of augmented
and machine-annotated ingredient phrase datasets,
(b) analysis of the distribution of RecipeDB ingre-
dient phrases, and (c¢) a thorough investigation of
NER approaches on recipe texts involving statisti-
cal, deep-learning-based fine-tuning of language
models and few-shot prompting on LLMs.
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2. Dataset

We have used the manually annotated data con-
sisting of 6,611 ingredient phrases (Diwan et al.,
2020) that were sourced from RecipeDB (Batra
et al., 2020), where all named entities were man-
ually labeled (Manually_Annotated_Dataset). An
augmented dataset comprising 26,445 ingredient
phrases was created by label-wise token replace-
ment, synonym replacement, and shuffling with
segments (Augmented_Dataset).

We created an extensive repository of 349,762
unique ingredient phrases from the RecipeDB
dataset (Batra et al., 2020) involving semi-
automated processing protocol and human curation
(Machine_Annotated_Dataset). These ingredient
phrases were divided into 2,067 clusters (Stratified
Entity Frequency Sampling) based on seven named
entity tags (name, quantity, unit, df (dry/fresh),
state, size, and temp) and 25% of data (88,526
phrases) were sampled for training. We used 2,187
Manually_Annotated_Dataset for testing.

2.1. Data Preprocessing

Starting with the 1,150,000 ingredient phrases
obtained from RecipeDB dataset (Batra et al.,
2020), we implemented a preprocessing protocol
of lemmatization and manual annotations. A team
of culinary experts manually identified the most fre-
quent error patterns present in the dataset (see B).
These mistakes were collectively rectified using
Python scripts.

2.2. Data Augmentation

Language models need a larger dataset for training.
Hence, to extend the Manually_Annotated_Dataset,
we implemented three augmentation techniques
(Figure 2).

Labelwise Token Replacement (LWTR): LWTR
replaces the token with a random token from the
training set with the same label after taking a call
on whether a token should be replaced based on
the binomial distribution. This procedure ensures
that the original label sequence is preserved.
Synonym Replacement (SR): In a procedure anal-
ogous to LWTR, the SR method replaces the token
randomly with its synonyms from the Wordnet lexi-
cal database.

Shuffle within Segments (SiS): In SiS, the to-
ken sequence is first split into segments with the
same label, so each segment has some probability
of shuffling (as per binomial distribution). The to-
ken within the same segment is then shuffled while
keeping the order of tokens unchanged.

2.3. Machine-Annotated Dataset

We had a training dataset with 6,611 and 2,187
labeled ingredient phrases for training and testing.
Given ten ingredients per recipe on average in a
recipe, this yields around 661 recipes for training
and 218 recipes for testing. These data are of
limited utility when training transformer-based lan-
guage models on which our experiments are based
and which are known to excel in NLP tasks such
as named entity recognition.

Dataset Creation

Given the size of the ingredient phrase corpus
(1,150,000 ingredient phrases), it was deemed im-
practical to annotate the entire RecipeDB. After
removing duplicates (an ingredient phrase may be
a part of several recipes), we were left with 349,762
unique phrases. We adopted a hybrid approach to
address this challenge. First, we trained the Stan-
ford NER on the labeled corpus (6,611 + 2,187 =
8,798 Ingredients) to annotate the unique ingre-
dient phrases from RecipeDB. Then, we manu-
ally cleaned the machine-generated annotations
to identify the error patterns and correct them pro-
grammatically. We implemented Stratified Entity
Frequency Sampling, a clustering and sampling
approach, to sample 25% (88,526 phrases) of the
unique ingredient phrases.

Stratified Entity Frequency Sampling

The unique challenges posed by our dataset led
to the development of a clustering and sampling
technique that we term ‘Stratified Entity Frequency
Sampling (SEFS).” SEFS ensures a diverse and
representative selection of annotated data from
a vast corpus, maximizing the capture of varied
ingredient phrase patterns.

SEFS operates on the premise that ingredient
phrases vary based on the combination and fre-
quency of entities they contain. Some phrases
may contain the ingredient’s name only, while oth-
ers could be more descriptive, indicating quantity,
unit, state, size, and temperature. Ensuring a wide-
ranging representation of these combinations in
our sample was imperative to train a robust model.
Clustering The first step in SEFS is to cluster the
unique ingredient phrases based on their entity
composition. An entity frequency vector is created
for each phrase, where each vector component rep-
resents the count of a specific entity (hame, quan-
tity, unit, state, size, or temperature) in the phrase.
These vectors serve as the basis for clustering,
where each unique vector corresponds to a cluster.
This ensures that ingredient phrases with the same
entity composition and frequency are grouped.
Sampling Once clustered, we sample from these
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Figure 2: lllustration of Data Augmentation strategies to generate new samples. (a) LwTR: Labelwise Token
Replacement: replace a token with a random token of the same label. (b) SR: Synonym Replacement:
replace a token with its synonym from Wordnet. (c) SiS: Shuffle within segments: shuffle the tokens under

their corresponding label within an ingredient phrase.

groups to create our dataset. A uniform sampling
might not capture the richness and variability of
the corpus. Therefore, we adopt a stratified sam-
pling approach. In this method, we sample a fixed
proportion (25%, in our case) from each cluster.
This guarantees that the resultant dataset contains
diverse ingredient phrase patterns.

SEFS ensures that our sample is not biased to-
wards any particular type of ingredient phrase. It
captures the breadth and diversity of the RecipeDB,
making it particularly suited for training transformer-
based models that thrive on varied data. Moreover,
the stratified sampling ensures that even rarer pat-
terns, which could be missed in a random sampling
approach, are included in the dataset.

Figure 3 depicts the skewed distribution of ingre-
dient phrases across clusters. Around 90% of the
total ingredient phrases (1.15 million) can be rep-
resented by only 91 unique entity frequency vec-
tors, and the remaining 10% of the phrases require
1,976 different frequency vectors for their repre-
sentation. This shows that random sampling of
ingredient phrases may lead to a bias towards the
majority frequency vectors and justifies the SEFS
sampling strategy.

3. Named Entity Recognition Models

3.1. Model Configurations

Building upon the previous work (Diwan
et al.,, 2020), we re-implemented the Stanford-
NER (Finkel et al., 2005). The Standford NER
was trained using CRFClassifier with default
parameters on an 8 GB CPU RAM system. We
implemented diverse deep-learning NER models

(BERT, DistilIBERT, RoBERTa, and DistilRoBERTa)
and NLP frameworks (spaCy, and flair) to find
the named entities in the ingredients section. We
fine-tuned our datasets on base-case variants of
BERT, DistiIBERT, RoBERTa, and DistilRoBERTa
models with their pre-trained weights using an
SGD optimizer with a learning rate 1e-2. All
these models were run on an NVIDIA A100 80GB
PCle GPU card with a batch size of 44 and
up to 12 epochs. We have used two different
pipelines of spaCy 3.6.1 (en_core_web Ig - a
classical rule-based NLP pipeline optimized for
CPU, and en_core_web_trf - a RoBERTa-based
transformer pipeline). Flair used a pre-trained
xlm-roberta-large model to perform the NER.

3.2. Modelling Techniques

BERT (Devlin et al., 2019) captures the contextual
nuances in language by considering the surround-
ing context of a word in a sentence. Apart from
BERT, we employed its other three variants - Distil-
BERT (Sanh et al., 2019), RoBERTa (Liu and Cui,
2023) and DistilIRoBERTa (Sanh et al., 2019). NLP
frameworks such as spaCy (Matthew et al., 2020),
flair (Akbik et al., 2019) have been implemented
to find the named entities of ingredient phrases.
A tool Stanford NER (Finkel et al., 2005) employs
Conditional Random Fields to analyze and tag enti-
ties in a given text with their respective categories.
One of its notable features is its ability to recognize
and classify entities in multiple languages, making
it valuable for multilingual applications.
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Figure 3: Analysis of the percentage of ingredient phrases captured by various clusters. The distribution
is extremely skewed, with a few clusters hoarding most ingredient phrases. Half of the ingredient phrases,
for example, are captured by merely the eleven largest clusters.

4. Model Evaluation

We employ macro-F1 score, precision, and recall
to evaluate our models’ predictive performance.
These metrics address the inherent class imbal-
ance in our datasets, where accuracy can be mis-
leading. The F1 score provides a robust measure
in such cases. Precision and recall are equally criti-
cal for our task, as we prioritize correctly identifying
all valid ingredient tags (particularly names and
quantities) without omissions. While the macro-
F1 score is an average of tag-wise F1 scores, it's
important to note that it doesn’t directly follow the
typical harmonic mean relationship with precision
and recall. This is because macro-averaging calcu-
lates these metrics separately for each label and
then averages them, giving equal weight to all la-
bels — a crucial distinction for interpreting results in
multi-label classification tasks.

5. Resluults

Pattern recognition aimed at NER across manual,
augmented, and machine-annotated datasets is a
difficult task due to degenerate tags corresponding
to the same named entity. These ambiguous as-
sociations have origins in the linguistic subtleties
referring to food’s taste, value, and utility. For exam-
ple, the word ‘sour’ in ‘sour cream’ signifies STATE,
whereas in ‘ice cream,’ it collectively represents an
ingredient; hence, both entities should belong to
the NAME tag.

Herein, we present state-of-the-art models based
on deep learning and statistical approaches for

named entity recognition in recipe texts. This sec-
tion is arranged as follows: Section 5.1 discusses
the implementation of Stanford NER (Finkel et al.,
2005), which uses statistical-based techniques for
NER. In Section 5.2, we evaluate relevant deep-
learning-based models fine-tuned on our datasets
for performance. Section 5.3 describes the tag-
wise analysis of named entities using the best per-
forming model, and finally, Section 5.4 delves into
the few-shot prompting experiments using state-of-
the-art LLMS.

5.1. Stanford NER Implementation

We used the Stanford NER (Finkel et al., 2005),
to reproduce the earlier work of Nirav et.al (Diwan
et al., 2020) and have found consistent results (Ta-
ble 1). We obtained the same results for seven out
of nine experiments, and for the rest of the two, the
deviation was <1%. These results signify the im-
portance of CRF-based methods, which have been
the go-to methods for recipe NER in most previous
works (Diwan et al., 2020; Patil et al., 2020; Wei
et al., 2016; Yang and Huang, 2018; Sato et al,,
2017). By building on the learnings from these ar-
ticles and rooted in extensive datasets introduced
in this study, we implement deep-learning-based,
state-of-the-art fine-tuned models.

5.2. Supervised Fine-tuning of
Encoder-based Language Models

To enhance the performance of Named Entity
Recognition on recipes, we began with a base-
line model, Stanford NER (Finkel et al., 2005).
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Figure 4: Model Comparison based on F1-scores and Loss. (a), (b) and (c) represent epoch-wise F1-score
for Manually Annotated, Augmented, and Machine Annotated Datasets, respectively. Similarly, (d), (e)
and (f) represent the epoch-wise Loss score for three datasets.

Train Set
Test Set Diwan et al. (2020) Present Study
AR GK Both AR GK Both
AR 96.82 | 93.17 | 97.09 | 96.82 | 93.31 | 97.04
GK 86.72 | 95.19 | 94.98 | 86.71 | 95.16 | 95.02
Both 89.72 | 94.72 | 96.11 | 89.16 | 94.72 | 95.52

Table 1: Performance comparison of Diwan et al. (2020) and our implementation of Stanford NER.
AllIRecipes.com (AR) and geniuskitchen.com (GK) refer to the source of recipes from where the raw data
was compiled to create the Manually_Annotated dataset.

We further implemented seven deep-learning mod-
els, including BERT variants (BERT, DistilBERT,
RoBERTa, and DistilRoBERTa) and NLP toolkits
(SpaCy with CPU optimization, SpaCy equipped
with transformer, and flair). To ensure a compre-
hensive assessment, each model was fine-tuned
across three distinct datasets before being consis-

tently evaluated on the Manually Annotated test
dataset of 2187 ingredient phrases (Diwan et al.,
2020).

Figure 4 depicts epoch-wise F1 and validation loss
scores for all three datasets across all models. Ta-
ble 2 encapsulates the results from the best epoch
for every dataset-model pair. Despite starting with
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Modelling Technique | Manually_Annotated Augmented Machine_Annotated
F1(%) | P(%) | R(%) | F1(%) | P(%) | R(%) | F1(%) | P(%) | R (%)
spaCy-transformer 95.90 | 95.89 | 95.91 | 96.04 | 96.05 | 96.04 | 95.71 | 95.73 | 95.69
spaCy-CPU optimized | 94.46 | 94.52 | 94.41 | 94.91 | 9492 | 94.90 | 91.30 | 91.36 | 91.24
Stanford NER 95.52 | 95.64 | 95.39 | 95.16 | 94.37 | 95.96 | 89.9 | 91.31 | 88.53
DistiBERT 93.80 | 95.20 | 93.60 | 93.50 | 93.50 | 94.60 | 90.20 | 92.20 | 89.70
BERT 94.00 | 94.70 | 94.10 | 93.60 | 93.70 | 94.10 | 90.30 | 91.50 | 90.20
DistilRoBERTa 93.80 | 94.80 | 93.90 | 94.60 | 94.10 | 95.90 | 90.60 | 91.60 | 90.60
RoBERTa 92.40 | 92.90 | 92.60 | 94.00 | 94.50 | 94.10 | 90.40 | 91.60 | 90.20
flair 95.01 | 96.11 | 96.05 | 94.45 | 95.87 | 96.14 | 89.85 | 88.71 | 89.22

Table 2: Performance Evaluation on Manually Annotated, Augmented and Machine Annotated Datasets

a lower F1 score, the spaCy-transformer exhibits a
rapid learning curve, eventually surpassing the per-
formances of its counterparts. Such discrepancies,
especially during the initial epochs across various
models, can be attributed to the inherent variabil-
ity arising from the seed values of model weights
and consistent hyperparameters employed. The
Augmented dataset, as expected, shows slight per-
formance gains, which is explained by the fact that
DL models are data-hungry and given more exam-
ples, they would learn the entity-tag mapping better.
However, the Machine_Augmented dataset with
silver labels created using DL models previously
trained on Manually_Annotated datasets appears
to echo the inherent variability and noise, coupled
with potential mislabeling. This explains a slight
decrease in its performance compared to the man-
ually annotated dataset.

A particularly captivating observation emerged from
our analysis of the Distil-versions compared to their
original BERT-based counterparts. Contrary to con-
ventional assumptions, the Distil-variants held their
ground and frequently outperformed the base mod-
els. This phenomenon merits a closer examination.
Several plausible factors could be driving this un-
expected outcome. Firstly, the base BERT variants
might be predisposed to overfitting the peculiarities
of the training set. Such a tendency would culmi-
nate in an escalated validation loss, suggestive of
an overly tailored model struggling to generalize to
new, unseen data.

Additionally, the presence of fine-grained, spuri-
ous correlations within the dataset could be more
readily captured by these base models. While
seemingly advantageous, this heightened sensitiv-
ity might be counterproductive by leading the model
to internalize these inconsequential patterns as
meaningful, skewing its predictions. Moreover, the
potential presence of label noise within the datasets
might cause Base BERT models to be overly adept
at learning these noise-influenced labels. Conse-
quently, while they might produce tags mirroring the
original distribution, these tags might deviate from
the expected results in the validation set, thereby
being marked erroneous. Summarising, The Distil

versions, being smaller with fewer parameters, are
weaker in capturing the ‘bad patterns’—spurious cor-
relations and label noise, which surprisingly acts in
favor of their performance metrics.

As we see from our results on the augmented
dataset, some models perform better on the aug-
mented datasets, such as spaCyNER and Dis-
tilRoBERTa. Because deep-learning-based lan-
guage models are data-hungry, we enhanced the
volume of our dataset by using data augmenta-
tion techniques. Consequently, the model perfor-
mances get a boost as they get more examples
to learn about the inherent nature of ingredient
phrases.

Analysis of the results obtained in the previous sec-
tion reveals that spaCy-transformer stands out as
the best deep-learning-powered package for recog-
nizing entity tags in recipe texts. It outperformed all
other models and baselines on all three datasets.
It has also shown stable, consistent learning for our
models with the least variance compared to others,
as shown in Figure 4.

5.3. Tag-wise Analysis of Named Entities

In our investigation of epoch-wise learning trends
for various entity tags using our top-performing
model, a notable correlation emerges between the
frequency of a tag in the dataset and its learning
trajectory within the model. Consistently, across all
three datasets, the ‘Quantity’ tag exhibits the earli-
est and most robust learning, while the “Tempera-
ture’ tag lags, both in initiation and overall learning,
as shown in Figure 5 by their F1 scores. This dispar-
ity underscores the model’s limitations in grasping
rare tags as effectively as with prevalent ones. A
plausible interpretation of this observation is that
while attempting semantic understanding, the mod-
els also rely on memorizing specific entity-tag pair-
ings. Consequently, less frequent tags that offer
fewer memorization opportunities tend to be under-
learned.
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Figure 5: Tag-wise learnability of named entities
and their final results using the best-performing
model-the spaCy-transformer. Figures (a), (b) and
(c) depict these results for the Manually_Annotated,
Augmented, and Machine_Augmented datasets,
respectively.

5.4. Analysis of Few-Shot Prompting on
LLMs

Few-shot NER leverages the power of LLMs, such
as Chat-GPT and GPT-4 (Wang et al., 2023; Ji,
2023), to tackle the challenging task of entity recog-
nition with minimal annotated data. A prompt is
given as input to the LLM that outlines the NER
task and specifies the context and available exam-
ples ( 6). This prompt acts as a few-shot learning
signal, enabling the model to understand the task
and context. The pre-trained LLM predicts named
entities in a given text. Few-shot NER is useful
with limited labeled data, as it can quickly adapt to
new entity types and domains. While fine-tuning
specific data can further enhance performance, the
strength of LLMs lies in their ability to perform re-

markably well in a wide range of NLP tasks.

Table 3 indicates that pre-trained LLMs have limited
exposure to food and culinary datasets during their
initial pretraining. Consequently, their performance
in in-context learning, especially in food-related
named entity recognition, is suboptimal. This defi-
ciency in domain-specific knowledge acquired dur-
ing pretraining significantly affects their in-context
learning capabilities and overall task performance.
It underscores the need to fine-tune these mod-
els with domain-specific datasets to enhance their
effectiveness in specialized tasks.

Model Macro-F1 (%) | Micro-F1 (%)
LLaMA2-7b 5.88 44.29
LLaMA2-13b 17.06 54.20
Mistral-7b 32.78 47.51
Vicuna-7b 32.90 51.41

Table 3: Results of NER using Few-Shot Prompting
on the state-of-the-art LLMs.

6. Discussion and Conclusions

Our study presented one of the most extensive la-
beled data resources of named entities from recipe
ingredient phrases. Further, we present deep-
learning and statistical models built to achieve state-
of-the-art results. Nonetheless, our studies are lim-
ited in certain aspects of culinary context, nuances
of data, and modeling paradigm.

Our present study focuses on only ingredient
phrases while not accounting for the recipe instruc-
tions, which often carry semantic information about
cooking that encodes cultural nuances. Further,
static pre-trained models, such as BERT, RoBERTa,
and XLM-RoBERTa, come with inherent biases and
might not be fine-tuned to capture the nuances of
the food lexicon. Complex culinary instructions
may not be amenable to extracting meaningful in-
formation. For example, the phrase ‘ground roasted
peanuts’ holds multiple layers of information, pos-
ing a severe challenge for NER. Names of ingredi-
ents unique to certain cuisines might be tokenized
sub-optimally, leading to NER errors.

In the future, this research may be extended to
include LLM fine-tuning, implementing NERs on
cooking instruction, prompt engineering for LLMs
for NER on recipes, soft prompt tuning, chain of
thought, and implementation of multilingual NER.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that

appropriately completes the request.

### Instruction:

Your task is to do Named Entity Recognition of input sentence. You must assign entity tags to each word in given input

sentence from
[QUANTITY, UNIT, NAME, TEMP, STATE, SIZE, DF, O].

Number of tokens in input and output sentences must be equal.

Where,

NAME is the name of the ingredient added into the recipe, like onion, garlic etc.

UNIT is the unitary amount of the ingredient added into each step of recipe, like cup, tablespoon, etc.

QUANTITY is a multiple of the UNIT tag which gives the total quantity of the ingredient used in every step of the recipe.
TEMP is the temperature based state of the ingredient, like frozen, hot etc.

STATE is the condition of the ingredient used, like chopped, ground etc.

SIZE is the qualitative amount of the ingredient in each step of the recipe.

DF is the Dry or Fresh condition of the ingredient.

O is Others which is used for entities which are none of these : [QUANTITY, UNIT, NAME, TEMP, STATE, SIZE, DF]

Some Examples:

Input: '2 tablespoons vegetable oil , divided'
Output: [QUANTITY, UNIT, NAME, NAME, O, STATE]

Input: '2 tablespoons dried marjoram'
Output: [QUANTITY, UNIT, DF, NAME]

Input: '1 -LRB- 12 ounce -RRB- box Barilla Gluten Free Penne'

Output: [QUANTITY, O, QUANTITY, UNIT, O, UNIT, NAME, NAME, NAME, NAME]

Input: '2 jalapeno peppers , seeded and minced'
Output: [QUANTITY, NAME, NAME, O, STATE, O, STATE]

### Input:
{input_sentence}
### Output:

Figure 6: The hand-crafted prompt given to LLMs during Few-Shot Prompting.
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A. NER Tagging Inference Results

A.1. Error Analysis Comparing
spaCy-transformer with Stanford
NER

The two most frequent error patterns of Stanford
NER that emerged in our analysis were the mis-
classification of the entity STATE as NAME and the
entity UNIT as OTHER (see Figure 7). We exem-
plify these error patterns, showcasing instances
where Stanford NER and spaCy-transformer differ
in their predictions.

This study reveals a significant breakthrough:
spaCy-transformer outperforms the established
Stanford NER tagger in recipe entity classification
tasks.

A.2. Erroneous Predictions using
spaCy-transformer

The spaCy-transformer model exhibits erroneous
predictions, which include misclassification of in-
gredient names and brands (see Figure 8).

B. Cleaning Protocols for Machine
Annotated Dataset

» The model could not fully capture the unique
culinary language dynamics different from our
usual natural language. Color is an adjective,
but it might be part of the ingredient. For ex-
ample, ‘Yellow lentils’ where ‘yellow’ in natural
language is a color and a usual natural lan-
guage model would classify it as a ‘STATE’
of an ingredient. Other examples are red Ro-
mano pepper, red chilies, etc.

+ Fixing the incorrect placement of named en-
tities. These included the quantity incorrectly
labeled as a unit or vice-versa and an ingredi-
entincorrectly classified as a unit or vice-versa.
A null value was used to indicate the absence
of the unit in the unique list of training datasets.

Append the fraction and integer together in the
quantity as a string to avoid misclassification.
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I S = N = =

Original QUANTITY UNIT TEMP STATE NAME NAME
Stanford NER QUANTITY UNIT TEMP NAME NAME NAME
spaCy QUANTITY UNIT TEMP STATE NAME NAME
[ 4 J [ slices ] [ bread ] [ s ] [ thick ] [ slice J
Original QUANTITY UNIT NAME o o UNIT
Stanford NER QUANTITY UNIT NAME o o o}
spaCy QUANTITY UNIT NAME o o UNIT

Figure 7: Error Analysis of Stanford NER tagger. Stanford NER tagger incorrectly classifies “cut” as
NAME instead of STATE, which was correctly identified by spaCy-transformer. Similarly, “slice” classifies
as OTHER instead of UNIT, which was correctly identified by spaCy-transformer.

‘ 1 ’ ‘ cup ’ ‘ quinoa ’ ‘ -LRB- ’ ‘ flakes ’ ‘ -RRB- ’
Original QUANTITY UNIT NAME o NAME o
spaCy QUANTITY UNIT NAME o o] o
‘ 1 ’ ‘ can ’ ‘ Campbell's ’ ‘ Chicken ’ ‘ Noodle ’ ‘ Soup ’
Original QUANTITY UNIT o NAME NAME NAME
spaCy QUANTITY UNIT NAME NAME NAME NAME

Figure 8: Error Analysis of spaCy-transformer. spaCy misclassifies “flakes” as OTHER (O) instead of a
specific form of quinoa (NAME). Similarly, “Campbell’s" is the chicken noodle soup brand name (O) instead
of an ingredient name (NAME). -LRB- and -RRB- stand for left and right round brackets, respectively.
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