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Abstract
Inspired by cognitive neuroscience studies, we introduce a novel ‘decoding probing’ method that uses minimal pairs
benchmark (BLiMP) to probe internal linguistic characteristics in neural language models layer by layer. By treating
the language model as the ‘brain’ and its representations as ‘neural activations’, we decode grammaticality labels of
minimal pairs from the intermediate layers’ representations. This approach reveals: 1) Self-supervised language
models capture abstract linguistic structures in intermediate layers that GloVe and RNN language models cannot
learn. 2) Information about syntactic grammaticality is robustly captured through the first third layers of GPT-2 and
also distributed in later layers. As sentence complexity increases, more layers are required for learning grammatical
capabilities. 3) Morphological and semantics/syntax interface-related features are harder to capture than syntax. 4)
For Transformer-based models, both embeddings and attentions capture grammatical features but show distinct
patterns. Different attention heads exhibit similar tendencies toward various linguistic phenomena, but with varied

contributions.
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1. Introduction

Given the exceptional performance of self-
supervised language models in a wide range of
NLP tasks (Brown et al., 2020; Devlin et al., 2018;
Radford et al., 2019), their ability to capture lin-
guistic information has piqued the interest of many
cognitive neuroscientists. These models offer new
insights and methodologies for studying the neural
mechanisms underlying language processing.

Notably, encoding analysis in cognitive neuro-
science, which leverages linguistic representations
from language models to reconstruct neural sig-
nals when corresponding stimulus presented, has
gained popularity as a method to identify the neural
substrates of speech and language processing in
the brain (Hale et al., 2018; Brennan et al., 2020;
Schrimpf et al., 2021; Li et al., 2022; Goldstein
et al., 2022). However, these studies have not
clearly delineated the specific linguistic informa-
tion that neural language model representations
capture when encoded in the brain; conclusions
thus far point mostly to the contextual aspects of
language processing. Therefore, determining the
exact linguistic content captured by these neural
language model representations is of paramount
importance.

Another line of research has delved into probing
linguistic capabilities. Marvin and Linzen (2018)
introduced the concept of targeted syntactic evalua-
tion. They designed minimal sentence pairs where
two sentences differ by only one word, yet this dif-
ference renders one sentence acceptable and the

other not. Here’s an example:
(1) Simple agreement:

a. The cats annoy Tim. (grammatical)
b. *The cats annoys Tim. (ungrammatical)

If a language model assigns a higher probability
to the acceptable sentence over the unacceptable
one, it is considered to have performed correctly on
this task. Building on this approach, Warstadt et al.
(2020) introduced a comprehensive minimal pairs
benchmark called BLIMP covering a broad range
of grammatical phenomena. Such an extensive
benchmark offers valuable insights into the holistic
linguistic comprehension of a language model and
help draw more concrete conclusions about the
specific kinds of grammatical features learned in a
certain model.

However, previous studies using minimal pairs
only focus on the probability assigned by the en-
tire model (i.e., the final layer), not delving deeply
into the linguistic characteristics inherent within the
neural language model (i.e., the intermediate lay-
ers). Conversely, many encoding analysis studies
in cognitive neuroscience favor the use of interme-
diate layer embeddings over solely the final layer.
For instance, Caucheteux et al. (2021) indicates
that the 2/3rd layer achieves the peak encoding cor-
relation score, while Schrimpf et al. (2021) reveals
variability in the optimal layer across participants.
Given these insights, probing the linguistic infor-
mation in intermediate embeddings of language
models becomes crucial.

Several studies have explored the linguistic prop-
erties encapsulated in intermediate embeddings
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from other perspectives. Tenney et al. (2019) exam-
ined the structural insights gleaned from contextual
word representations, but their approach combined
information from multiple layers rather than probing
each layer individually. Hewitt and Manning (2019)
and Manning et al. (2020) further identify the emer-
gent syntactic structures within neural networks.
However, a gap still remains in comprehensively
probing specific linguistic nuances across model
layers, an aspect our study aims to address using
minimal pairs for a more granular analysis.

Given focus on intermediate layers, the tradi-
tional method of comparing probabilities assigned
by the entire language model becomes infeasible.
This is because the probabilistic output of LM is
based on the final layer processed through the
softmax function. Although one could apply a soft-
max to an intermediate layer, there are inherent
challenges. These layers aim to capture linguistic
nuances rather than provide direct vocabulary prob-
ability distributions. Additionally, since they aren’t
optimized during training for token prediction, in-
troducing softmax might distort the true linguistic
patterns they represent. As such, a new probing
method for these layers is essential.

In cognitive neuroscience, when subjects are ex-
posed to stimuli of different conditions, if stimulus
categories or labels can be correctly categorized
based on features derived from neural signals, it
is inferred that those neural signals carry task-
relevant representational information. (Haxby et al.,
2001; Mitchell et al., 2008; Sudre et al., 2012).
Drawing inspiration from this, we treat the neural
language model as a “brain”. By feeding minimal
sentence pairs into the language model simultane-
ously, we can obtain the internal activations cor-
responding to whatever distinguishes these stim-
uli. We designed a simple yet effective decoding
probing method using these ‘activations’ to decode
grammatical or ungrammatical labels.

Decoding probing offers a precise lens to ex-
amine the linguistic intricacies within each layer
of neural language models. By applying this de-
coding method along with the large minimal pairs
benchmark, we can pinpoint which layers excel at
capturing morphology, syntax, semantics, or other
linguistic phenomena. This granularity provides
insights into how the model processes language hi-
erarchically. In essence, decoding probing unlocks
a deeper understanding of the inner workings of
neural language models.

In our present study, we employ decoding prob-
ing to investigate GPT-2, ELMo, and GloVe. These
models exemplify self-supervised, RNN-based,
and word embedding language models, respec-
tively. Our exploration yields four principle results:
1) We first confirm that these intermediate layers
support grammatical decoding that is not possible

with simpler RNNs and GLoVE. 2) GPT-2 XL learns
syntactic grammaticality through its initial layers,
with this information being encoded among later
layers. As sentences grow in complexity, more lay-
ers are needed to capture grammatical information.
3) Morphology and semantics-related features are
captured by later layers than purely syntactic ones
in LMs. 4) For Transformer-based models, while
both embeddings and attentions capture grammat-
ical attributes, they exhibit different patterns. In-
triguingly, while different attention heads perform
similarly toward various linguistic phenomena, a
limited set of heads consistently emerge as pre-
dominant contributors.

2. Decoding Probing

2.1.

Decoding analysis has emerged as a cornerstone
methodology in cognitive neuroscience, enabling
researchers to infer the specific representational
content encoded in neural patterns (Kriegeskorte
et al., 2006). This approach primarily revolves
around the concept of training classifiers to predict
specific stimulus conditions (e.g., a particular im-
age or word) based solely on neural responses.
When a classifier can predict a stimulus condi-
tion with accuracy significantly above chance, it
suggests that the neural data contains information
specific to that condition (Norman et al., 2006).
The foundational idea posits that if specific stim-
ulus attributes can be consistently decoded from
neural configurations, such configurations must in-
herently represent those attributes (Haynes and
Rees, 2006).

One of the paradigmatic works leveraging decod-
ing analysis in language and speech is Mesgarani
and Chang (2012). In this study, the authors em-
ployed ECoG to measure neural responses in sub-
jects as they listened to speech. Through the lens
of decoding, the researchers could distinguish be-
tween neural patterns elicited by attended speech
and normal speech, underscoring the perceptual
distinctions between them.

Decoding analysis in the brain

2.2. Decoding probing in LMs

Building on this foundational idea and to determine
the linguistic competence of each layer within the
neural language models, we propose a decoding
probing approach (Figure 1). For every minimal
pair, we extracted embeddings and attentions as
LMs’ ‘activations’, and we trained a binary classifier
to decode whether a given sentence was grammat-
ical or ungrammatical. This approach allowed us to
investigate if specific internal regions of the model
contains information related to the grammaticality
of that particular minimal pair.
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Figure 1: Decoding probing pipeline. Note: in the current study, we didn’t include any actual experiments
on the brain; it’'s just for demonstrating the core idea as the dashed lines also imply.

3. Experimental Setup

3.1. Minimal pairs as model inputs

We use minimal pairs (sentences with subtle but
grammatically significant differences) as the basis
for grammatical assessment. By comparing the
assigned probabilities to grammatical and ungram-
matical utterances in these pairs, we can probe
if the language models truly grasp linguistic rules
or merely rely on statistical biases. This method,
providing a precise perspective on the linguistic
comprehension of LMs, has been adopted in prior
research (Marvin and Linzen, 2018; Wilcox et al.,
2018; Gauthier et al., 2020). We employed the
Benchmark of Linguistic Minimal Pairs (BLiMP)
dataset by Warstadt et al. (2020). BLIMP is the
largest and most comprehensive such minimal
pairs dataset, comprising 67 tasks covering 12 phe-
nomena. These phenomena are divded into "mor-
phology”, "semantics-syntax interface’ and "syn-
tax" categories. Each task presented 1, 000 sen-
tence pairs. Within each pair one pair is grammati-
cal and one is not. See Table 1 for details.

3.2. Models

GloVe acts as a symbolic static word embedding
that encodes words into fixed vectors based on
global word co-occurrence statistics regardless of
specific context (Pennington et al., 2014).

ELMo is based on the LSTM architecture, which
represents a type of dynamic, context-sensitive em-
beddings (Sarzynska-Wawer et al., 2021). For our
analysis, given that ELMo’s default word represen-
tation is a linear combination of two bi-LSTM layers
and one char-level CNN embedding, and our intent
is to investigate the performance of each individual
layer, we manually extracted the LSTM activations

instead of employing the standard embeddings.

GPT-2 XL is a self-supervised model (Radford
et al.,, 2019). With its Transformer architecture,
GPT-2 XL is known for its ability to generate coher-
ent text and understand complex language struc-
tures. There are 1 token-level embedding layer
and 48 contextual Transformer layers in the GPT-2
XL. For each Transformer layer, there are 20 atten-
tion heads. We used both hidden states and the
attention matrices to do later decoding probing.

3.3.

Sentence Embedding When inputting sentences
into various language models, we obtain word em-
beddings for each token in the sentence. The strat-
egy for aggregating these embeddings into a coher-
ent sentence representation varies depending on
the model used. Given that GloVe provides static
word embeddings, we employed a bag-of-words
(BoW) model to construct the sentence represen-
tation. We computed the mean of the embeddings
of all tokens within a sentence to generate a sen-
tence representation. For ELMo and GPT-2 XL,
the representation of the last token in each sen-
tence was extracted from each layer to serve as
the sentence representation for that particular layer.
This decision is grounded in the understanding that
the last word’s embedding, especially in context-
sensitive models like ELMo (a bidirectional model)
and GPT-2 XL (a unidirectional model), encapsu-
lates substantial contextual information from the
entire sentence. The choice of the last word en-
sures that the representation has been influenced
by all preceding tokens.

Attention We also investigate how attention matri-
ces in GPT-2 XL captures grammatically informa-
tion. For each attention head, we vectorized its
attention matrix. To analyze the collective behavior,

Internal Activations
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we concatenated these vectorized matrices across
all attention heads to produce a final attention vec-
tor. Additionally, we examined the behavior of indi-
vidual attention heads by probing their respective
vectorized matrices without concatenation.

3.4. Setup and Metrics

10-fold CV To ensure the robustness and gen-
eralizability of our results, we adopted a 10-fold
cross-validation strategy to train the logistic regres-
sion classifier. The final evaluation metric was the
averaged F1 score on the held-out set across all
ten validation folds.

Feature Capture Depth We explored the number
of layers GPT-2 XL requires to grasp the linguistic
characteristics for a particular task. To mitigate
potential noise and obtain a more robust measure,
we defined this layer as the first instance where the
F1 score reaches 99% of the maximum F1 score
observed across all layers for that task.
Sentence Complexity We measured sentence
complexity, using the depth of its syntactic tree.
We normalized the syntax tree depth by the length
of the sentence.

Depth of Syntax Tree
Sentence Length

Sentence Complexity =

The depth of the syntax tree was computed using
the SpaCy (Honnibal and Montani, 2017) package
in Python. We then correlate sentence complexity
with the depth at which GPT-2 XL effectively learns
the underlying linguistic patterns.

4. Results

4.1. BoW and RNN-based sentence
embeddings distinguish
grammaticality for some, but not all,
minimal pairs

For each model, we utilized the averaged F1 score
across 10 cross-validation folds to denote each
layer’'s performance. The highest score across all
layers is the final F1 score for the model. We did
a comprehensive probing analysis for GPT-2 XL,
ELMo, and GloVe across all 67 linguistic tasks.
A more focused result can be found in Figure 2,
which shows average performance on 12 linguistic
grammatical phenomena. The top four panels rep-
resent morphology probing results, the middle four
showcase the semantics-syntax interface, and the
bottom four are dedicated to syntax. This result
shows that GPT-2 XL consistently stands out, de-
livering superior performance across all language
categories. ELMo, while lagging behind GPT-2
XL in morphology and semantics/syntax interface,
shows significant closeness to GPT-2 XL for the
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Figure 2: Decoding probing results of GPT-2 XL,
ELMo and GloVe. The symbols ***’, ** and
denote t-test p-values less than 0.001, 0.01, and
0.05, respectively.

syntatic benchmarks. Interestingly, despite its rudi-
mentary bag-of-words approach in sentence rep-
resentation, GloVe performs well in specific areas
such as quantifiers and ellipses. In some tasks,
GloVe is even better than ELMo.

In the subsequent sections, we will narrow our
focus to GPT-2 XL. We also excluded tasks (26 in
total) where GloVe'’s F1 score is higher than 0.9,
trying to delve deeper into the unique mechanisms
by which self-supervised language models capture
linguistic characteristics.

4.2. Feature capture depth in GPT-2 XL

4.2.1. Grammaticality information captured
through the first third of GPT2-XL

layers

0.8

F1 score
o
(o2}

o
~

quantifiers argument_structure
npi_licensing ellipsis
filler_gap_dependency
island_effects

0.2 anaphor_agreement
determiner_noun_agreement
iregular_forms binding
subject_verb_agreement control_raising

0.0

0 10 20 30 40 50
GPT-2 XL layer (hidden states)

Figure 3: Decoding probing results of GPT-2 XL.
Pink lines represent morphology, yellow lines high-
light the semantics/syntax interface, and blue lines
correspond to syntax.
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Grammatical Example

Ungrammatical Example

Level Phenomenon N
Morphology Anaphor Agreement 2
Morphology Determiner Noun Agreement 8
Morphology Irregular Forms 2
Morphology Subject Verb Agreement 6
Semantics Quantifiers 4
Semantics/Syntax ~ NPI Licensing 7
Semantics/Syntax  Binding 7
Semantics/Syntax ~ Control Raising 5
Syntax Argument Structure 9
Syntax Ellipsis 2
Syntax Filler Gap Dependency 7
Syntax Island Effects 8

Many girls insulted themselves.
Rachelle had bought that chair.
Aaron broke the unicycle.
These casseroles disgust Kayla.
No boy knew fewer than six guys.
The truck has clearly tipped over.
Carlos said that Lori helped him.
There was bound to be a fish escaping.
Rose wasn't disturbing Mark.
Anne’s doctor cleans one important
book and Stacey cleans a few.
Brett knew what many waiters find.
Which bikes is John fixing?

Many girls insulted herself.

Rachelle had bought that chairs.

Aaron broken the unicycle.

These casseroles disgusts Kayla.

No boy knew at most six guys.

The truck has ever tipped over.

Carlos said that Lori helped himself.

There was unable to be a fish escaping.

Rose wasn’t boasting Mark.

Anne’s doctor cleans one book and
Stacey cleans a few important.

Brett knew that many waiters find.

Which is John fixing bikes?

Table 1: BLIMP dataset details. This table is adapted from Warstadt et al. (2020). N denotes how many
tasks are within each linguistic phenomenon. For each task, there are 1,000 pairs of sentences.

After we filtered out tasks where GloVe’s F1
score is higher than 0.9, we retained tasks where
GPT-2 XLs self-supervised mechanism contributes
uniquely. As shown in Figure 3, grammatical infor-
mation appears to be learned gradually through the
first third of the GPT-2 XL layers. These linguistic
features are also captured by subsequent layers,
but with a slight downward trend.

4.2.2. Complex sentences require more
layers to capture linguistic information
0.60
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Figure 4: Sentence complexity and feature capture
depth shows strong linear correlation in GPT-2 XL.

We also studied the interplay between sentence
complexity and the depth required by the model
to capture the corresponding linguistic information.
Analyzing all the 41 tasks (after excluding 26 tasks
where BoW sentence embedding model based
on GloVe excelled), we compared sentence com-
plexity against the feature capture depth for each
task. The left panel of Figure 4 illustrates this re-
lationship. A distinct linear relationship (r = 0.58 ,
p < 1x10~*) emerges between sentence complex-
ity and the required depth for feature capture. As
the complexity of the sentences increases, GPT-2
XL demands more layers to effectively internalize
the associated linguistic features.

4.3. Semantics-syntax interface and
morphology are harder to learn than
syntax for LMs

anaphor_agreement
determiner_noun_agreement
irregular_forms
subject_verb_agreement
quantifiers

npi_licensing

binding

control_raising
argument_structure
ellipsis
filler_gap_dependency
island_effects

0 5 10 15 20 25
Feature capture depth of GPT-2 XL

Mophology
mean depth=16.00

Semantics Syntax Interface Syntax
mean depth=19.50 mean depth=14.25

Figure 5: Feature capture depth for 12 linguistic
phenomena, derived from 41 tasks after filtering
out those where GloVe’s F1 score exceeds 0.9.

Figure 5 illustrates the feature capture depth for
various linguistic phenomena in GPT-2 XL. This
depth is defined as the number of layers required
for the model to achieve 99% of the maximum F1
score for each phenomenon, as described in the
Methods section. Here, we observe that, on av-
erage, the semantics-syntax interface demands
the highest depth for efficient feature capture, sug-
gesting its inherent complexity. Morphology follows
closely, while pure syntactic phenomena can be
captured through a relatively shallower depth.

Figure 6 further illustrates this finding. Here, the
average feature capture depth required to achieve
various thresholds of the maximum F1 score is
plotted for the three linguistic levels. The curve
corresponding to the semantics-syntax interface
again consistently sits at the top, indicating that
it requires more layers to reach comparable per-
formance thresholds. Morphology occupies the
middle ground, while syntax consistently requires
the least depth. Roughly speaking, for GPT-2
XL to capture a comprehensive understanding of
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the semantics-syntax interface, it requires approx-
imately 20 layers. For morphology, this number
is around 16 layers, while syntax, being the most
straightforward, needs roughly 14 layers.
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=
o © O

Layers needed to reach the threshold
S
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0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
Threshold% of peak performance

Figure 6: Average feature capture depth required
by GPT-2 XL for different linguistic levels to reach
certain threshold of the peak performance.

To supplement these findings, the right panel of
Figure 4 presents linear fits between sentence com-
plexity and feature capture depth for each of the
three linguistic levels. A clear linear relationship is
evident across all three, with the semantics-syntax
interface exhibiting the most pronounced correla-
tion. Intriguingly, the slope of the linear fit offers
insights into the relative difficulty of capturing lin-
guistic features for each category. A gentler slope
indicates that more layers are necessitated per unit
increase in sentence complexity. Both morphology
and the semantics-syntax interface showcase flat-
ter slopes compared to syntax, reaffirming that
these two linguistic levels present steeper learning
challenges for GPT-2 XL.

Results in 4.1 comparing GPT-2 XL, ELMo and
GloVe also suggest that features related to mor-
phology and the semantics/syntax interface are
more challenging to capture compared to syntax.

4.4. Attention distribution across many
heads supports grammatical
representations, but not much on
morphology

We examined the attention patterns in GPT-2
XL across its layers. Notably, attention mecha-
nisms exhibited weaker performance in captur-
ing morphology than in recognizing syntax or the
semantics-syntax interface. Unlike the embed-
dings (or hidden states) which exhibit a clear grad-
ual or incremental pattern in information capture,
the concatenated attention matrices from all 20
heads did not display such a trend during decoding
probing as shown in Figure 7. This suggests that
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Figure 7: Decoding probing results of GPT-2 XLs
attention matrices.
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Figure 8: Decoding probing results for single at-
tention heads. We take 4 heads as the examples.
Legend is the same as in Figure 7.

the each attention layer might operate somewhat
independently, different from hidden states building
upon information from previous layers. In addition,
individual attention head detection strengthens this
observation. The layer-by-layer performance does
not show an incremental pattern, but has signifi-
cant oscillations, as shown in Figure 9.

In our exploration of individual attention heads
in Figure 9, we observed that most scores falling
below 0.8. However, when the attention vectors
from all heads were concatenated and examined
collectively, there was a notable surge in the F1
score, exceeding 0.9. This suggests that while indi-
vidual attention heads may capture specific facets
of syntactic information, a comprehensive repre-
sentation emerges only when the information from
all heads is integrated.

The left panel of Figure 9 shows that various
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Averaged F1 score across 48 layers
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Figure 9: Performance (F1 score) and ranking of 20 attention heads across 12 linguistic phenomena.
Each head is ranked based on its performance for an individual phenomenon.

attention heads yield similar performance across
different linguistic phenomena. Again, their per-
formance is notably weaker in morphology but
better for syntax and the semantics-syntax inter-
face. While the performance of individual heads
appears consistent across phenomena, certain
heads (e.g., No.8 and No.16, as indicated by the
ranking) consistently contribute the most. However,
many heads display varied contributions across
different phenomena, suggesting that each head
might focus on distinct linguistic facets.

5. Discussion

The performance between models, and across indi-
vidual layers of GPT2-XL offers a granular window
into the linguistic representations formed by these
language models.

Comparison between GloVe, ELMo, GPT The
F1 scores landscape drawn from three models of-
fers an intricate understanding of their competen-
cies in Figure 2. The panels delineating morphol-
ogy suggest that capturing word structures might
be a hurdle for ELMo, as it lags behind GPT-2
XL. Similarly, in the semantics-syntax interface,
ELMo’s performance indicates potential challenges
in grappling with the nuances between meaning
and structure. In stark contrast, its performance
in syntax showcases its adeptness in capturing
abstract aspects of sentence structure. GloVe’s
unexpected strength in specific linguistic tasks, in
spite of its inability to capture structural aspects
of sentences, implies that strong baselines are
necessary to isolate performance aspects of more
complicated models that support most abstract lin-
guistic representations. GPT-2 XLs relatively high
performance across all linguistic phenomena, from
morphology to syntax, emphasizes its comprehen-
sive linguistic capabilities. It highlights not only the
versatility of the model but also its relatively strong
capacity to capture certain aspects of language
structure.

GPT-2 XLs linguistic architecture Neural net-
works, particularly deep ones like GPT-2 XL, are
known to capture features hierarchically. In the con-
text of language modeling, simpler linguistic fea-
tures, such as basic syntax and common word re-
lationships, are often captured in the earlier layers.
More abstract and complex features, like nuanced
semantics and intricate grammatical relationships,
tend to be represented in the middle to later layers
(Yosinski et al., 2015). Thus, we suggest that the
gradual accumulation of grammatical information
through the first third of the layers might reflect
this hierarchical capture of linguistic structures in
Figure 3.

As we move deeper into the network, the model
not only captures new information but also refines
and contextualizes the features from the preceding
layers. This could lead to some redundancy where
the same grammatical features are represented
across multiple layers (Raghu et al., 2017). Our
results support this as we see relatively high per-
formance across all later layers in the model, albeit
the slight downward trend in Figure 3. As the model
refines and merges features, some of the explicit
grammatical information captured in the earlier lay-
ers might become implicit or get overshadowed by
more complex linguistic patterns.

Morphology and semantics harder than syntax
In essence, across models, performance thresh-
olds, and the relationship between complexity and
depth, all observations support specific hypothe-
ses: the semantics-syntax interface and morphol-
ogy present greater learning challenges for lan-
guage models than pure syntax. This consensus
aligns with previous studies suggesting that seman-
tics is harder to learn than syntax (Tenney et al.,
2019). Intriguingly, our results also align with neu-
rolinguistic studies utilizing neural LMs to study
the hierarchical mechanism of language process-
ing. We speculate that the additional layers we
observe for these pairs of sentences may be linked
to the increased persistence of predictive repre-
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sentations for semantic information as reported by
Caucheteux et al. (2023), suggesting that semantic
processing in the human brain is more long-term,
high-level, than the short-term, shallow syntactic
representation.

Attention’s behavior Our findings on attention
mechanisms in GPT-2 XL raise intriguing questions
about their role and functionality. The absence of a
clear incremental trend in attention, unlike hidden
states, suggests that each attention layer in GPT-2
XL might be capturing unique linguistic information
without necessarily building upon previous layers.
The relatively low performance of attention heads
in capturing morphology, especially given the su-
pervised nature of our probing, might indicate that
attention in GPT-2 XL isn’t as adept at discerning
morphological nuances.

The variability in performance among different at-
tention heads may suggest an inherent specializa-
tion within the model. For instance, certain heads,
like No.8 and No.16, consistently outperforming
others could indicate that these heads have spe-
cialized in capturing more general or prevalent lin-
guistic features. This could be a result of the train-
ing process, where frequent patterns in the data
are more likely to be captured and optimized by
specific heads.

6. Related Work

Probing LM Tenney et al. (2019) explored
how much sentence structure is captured
by contextually-embedded word representations.
They used a series of diagnostic tasks to test
whether these models can capture various gram-
matical and semantic features of sentences. What
should be mentioned is while they did examine the
outputs of LMs, their approach differed from a true
per-layer probing in our study as they combined
information from multiple layers so that it does not
allow for a direct examination of specific linguistic
information present within each layer.

Similarly, Hewitt and Manning (2019) delved into
the intricacies of neural representations by intro-
ducing a "Structural Probe". This tool specifically
quantifies the degree to which word representa-
tions in a sentence capture syntactic tree distances.
Hewitt and Manning’s approach highlights the po-
tential of these embeddings to encapsulate the
underlying syntactic structures of sentences, sug-
gesting that neural network architectures inherently
learn syntactic relationships as a consequence
of their training. Manning et al. (2020) further of-
fers intriguing insights into the emergent proper-
ties of neural networks. Their study underscored
that even in the absence of explicit supervision or
task-specific training signals, neural architectures
can spontaneously develop internal representa-

tions that echo linguistic structures.

While these studies have made significant con-

tributions to understanding the linguistic capabil-
ities of intermediate embeddings, they often rely
on broader linguistic tests or syntactic trees, which
might not offer the granularity needed to dissect the
specific linguistic phenomena being captured. The
use of minimal pairs provides a finer-grained lens.
It allows us to pinpoint with greater precision the
exact linguistic distinctions these embeddings can
discern, thereby offering a more detailed under-
standing of the nuances in linguistic representation
across different layers.
Brain-inspired LM probing Concurrently, cogni-
tive neuroscientists also provide insights from neu-
roscience into the internal neural representation of
LMs. For instance, Caucheteux et al. (2021) delved
into the GPT-2 embeddings and successfully iso-
lated syntactic and semantic representations. Their
findings further showed that these disentangled lin-
guistic embeddings have cognitive neuroscience
support, reinforcing the connection between neural
LMs and language processing in the brain. While
by using electrophysiology recording as a form of
‘human measurement filter’, Chen et al. (2023) sug-
gest that intermediate layers of the deep speech
model and language model share high-level contex-
tual information. The present effort adds specificity
to the kinds of information available to the network
at particular layers, which in turn contributes to un-
derstanding how those layer-wise representations
may, or may not, map to human neural states.

7. Conclusion and Future work

Adapting the decoding theory from cognitive neu-
roscience to language models, as we do in our
study, offers a novel approach to understanding
the internal mechanisms of these models. By treat-
ing the neural language model as a "brain", we
can decode its internal representations, much like
how cognitive neuroscientists decode brain activity.
This methodological borrowing not only bridges the
gap between cognitive neuroscience and natural
language processing but also paves the way for
new insights into the intricacies of linguistic repre-
sentation within deep learning models.

Using this method, our analysis of GPT-2 XL,
ELMo, and GloVe’s capabilities across various
grammaticality tasks sheds light on the inherent
strengths and limitations of each model. The hi-
erarchically layered architecture of deep neural
models like GPT-2 XL captures linguistic features
progressively, with simpler ones appearing in the
early layers and more complex ones in subsequent
layers. Consistently, our findings emphasize that
the semantics-syntax interface and morphology
are more challenging for LMs compared to syntax,

4495



for both embeddings and attentions. In addition,
results on individual attention heads show possible
inherent specialization mechanisms.

Our current research focuses mainly on structure
grammaticality, with limited attention to the concep-
tual capabilities of neural LMs. For future work,
we aim to apply decoding probe methods to reveal
LM’s ability to master concepts using the COMPS
minimal pair dataset (Misra et al., 2023), which is
designed to probe such conceptual capabilities.
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