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Abstract
Automatic Speech Recognition has made significant progress, but challenges persist. Code-switched (CSW) Speech
presents one such challenge, involving the mixing of multiple languages by a speaker. Even when multilingual ASR
models are trained, each utterance on its own usually remains monolingual. We introduce an evaluation dataset for
German-English CSW, with German as the matrix language and English as the embedded language. The dataset
comprises spontaneous speech from diverse domains, enabling realistic CSW evaluation in German-English. It
includes splits with varying degrees of CSW to facilitate specialized model analysis. As it is difficult to collect CSW
data for all language pairs, the provision of such evaluation data, is crucial for developing and analyzing ASR models
capable of generalizing across unseen pairs. Detailed data statistics are presented, and state-of-the-art (SOTA)

multilingual models are evaluated showing challanges of CSW speech.
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1. Introduction

Code-switched (CSW) speech has long remained
an important linguistic phenomenon Poplack
(1980). Under the globalization effects, there exists
a growing number of speakers that blend in the
words of a second language (mostly English) in
their mother tongues, as can be heard in modern
German speakers. Even though speech recogni-
tion models can now be constructed to deal with
multiple languages, their capabilities in dealing with
CSW speech are still limited. This is because most
training data is homogeneous, and each utterance
is monolingual. These datasets, however, do not re-
flect the way certain English-speaking communities
practice English. Take Germany as an example,
English has been considered a second language
being understood and spoken by the majority of
people. As a result the vocabulary of English and
German are gradually merged in many areas in-
cluding business or information technology, where
foreign English words are used in the same context
with the German counterparts. The original English
word "download" can be blended into German utter-
ances such as "Kannst du die Datei downloaden."
(Can you download the file.). This practice is often
referred to as Denglisch and linguistically named
code-switching or code-mixing (CM)’

In general, CSW can happen when the spoken
utterances switch languages between sentences

'On a definition level CSW and CM are viewed dif-
ferently in different areas of linguistic studies Ezeh et al.
(2022).

multilingual speech recognition, evaluation-

(inter-sentential CSW), or words in different lan-
guages can be mixed in the same sentences (intra-
sentential CSW) Poplack (1980). The latter is often
considered more challenging for speech recogni-
tion models, as the language models and acoustic
models can be disrupted by the presence of pe-
culiar foreign words. Different pronunciation, syn-
tactical, and phonetical adaptations can add to the
difficulty. CSW speech tends to happen more in nat-
ural conversations rather than scripted dialogues
being used in recordings and requires participants
to be proficient in multiple languages to contribute.
This can explain the scarcity of CSW speech data,
being able to cover only a limited range of language
pairs and not publicly available.

The scope of this work, therefore, is to collect a
natural testset for realistic German-English code-
switched speech data, in which English is treated
as the embedded language in the main language,
German. The important feature of our collected
dataset is the spontaneity of the data, to serve as a
realistic and challenging benchmark for multilingual
speech models, which is proven using the tempo-
rary high-performance ASR models. To enable a
more in-depth analysis of ASR models, we also
provide splits of different amounts of CSW in the
utterances (<2%, 2%<9% and >9%). The amount
of CSW was determined by the percentage of En-
glish words in the data. The data will be available
by following instructions on our github page?®.

We evaluate several state-of-the-art ASR mod-

2https://github.com/enesyugan/DECM
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els on our test data revealing the difficulties when
dealing with CSW speech.

2. Related Work

Due to the nature of CSW, there is only a very lim-
ited amount of such data present in general. Most
datasets are concerned with the mixing of English
with one of the following other languages: Mandarin
Lyu et al. (2010), Cantonese Chan et al. (2005),
different Indian languages Diwan et al. (2021),
Spanish Deuchar (2008), Japanese Nakayama
et al. (2018a), dialectal Arabic Hamed et al. (2022).
There are some exception datasets like Amazouz
et al. (2017) which cover CSW between Algerian
and French. In the case of German-English CSW,
there is one benchmark set published Khosravani
et al. (2021). However, there are two major draw-
backs to this data which is extracted from the Spo-
ken Wikipedia Corpus Baumann et al. (2019). First
of all the domain and style of the text is quite differ-
ent from other speech which can be encountered in
real-life scenarios like talks, presentations, lectures,
or dialogues. Secondly, the data is read speech
which makes it less realistic, than spontaneous
speech.

Recently there has been a number of work focus-
ing on CSW ASR which range from old approaches
utilizing hybrid models for multilingual ASR such as
in Schultz and Waibel (2001), or other more recent
work utilizing Sequence-to-Sequence (S2S) mod-
els such as in Weller et al. (2022), Huber et al.
(2022) or Connectionist Temporal Classification
(CTC) based approaches such as in Seki et al.
(2018),Song et al. (2022), Yan et al. (2023). Re-
search in Liu et al. (2023), Shan et al. (2019), Li
et al. (2019) incorporates some language informa-
tion during training to improve the model. Whereas
another line of work focuses on data augmenta-
tion, Liu and Cao (2021), Ugan et al. (2023), Shen
and Guo (2022), Du et al. (2021),Nakayama et al.
(2018b), Nakayama et al. (2019).

3. Code-switched Dataset

For our German-English CSW evaluation dataset,
we collected 3.38 hours of YouTube videos from
different topics that we suspected to have CSW
present in them. The videos contained topics such
as Denglisch itself, Finance, Computer Science,
and Gaming.

In order to accelerate the transcript generation
process, we broke down the process into two
phases. First, the ASROT website 2 is used to gen-
erate initial segmentation and transcripts as well as
make a first-pass correction across the transcripts.

3transcript-corrector.dataforlearningmachines.com

Such correction is done on true-cased words with
the presence of punctuation. Additionally, English
words as well as morphologically adapted English
words are also annotated at the word level.

The second correction pass is done manually by
annotators who are German native speakers be-
ing highly proficient in the English language. The
ability to speak German as a mother tongue is im-
portant due to the German-specific ways of adapt-
ing English words. The transcription of the English
words depends on the grammatical context. The
words are treated as if they were originally Ger-
man, which results in unseen English morpholog-
ical forms. This transform can be rather intuitive,
such as verbs being used in their past form are
written in German rules rather than English, such
as "gecancelt" instead of "canceled".

Another complication is how the German lan-
guage has a high degree of freedom in making
compound nouns. German and English words can
be concatenated together as a single word, and
in such cases, they can be annotated with a hy-
phen such as "Technik-Review". Writing them with
hyphens allows for more flexible treatment in post-
processing scripts if necessary. To enable a more
fine-grained analysis of the CSW performance of
ASR models we decided to split the data into three
categories based on the amount of English words
occurring in a transcript.

* low-CSW: 0.5-2.0%
* mid-CSW: 2-9%
* high-CSW: >9%

These numbers also correlate with the com-
monly used metrics such as Switching-Point Frac-
tion (SPF) Pratapa et al. (2018) and Code-Mixing
Index (CMI) Gambéck and Das (2014).

The total number of words is 44147 with 1964
words being present in the English dictionary. The
number of words annotated as English amounted
to 3348 which also includes abbreviations and mor-
phologically adapted English words, which we re-
fer to as Denglisch in the rest of this paper. Out
of the 862 CSW utterances, 30 utterances start
with an English word and 832 start with a German
word. Our data contains 1353 transitions in which
an English word is followed by a German word and
1339 transitions in the reverse direction. The max-
imum of transitions from English to German and
vice versa in an utterance is Nine.

The different CSW-splits with their detailed infor-
mation are given in Table 1. We can appreciate that
each split contains speech of roughly an hour, with
the high-CSW split having the most data. We also
report the commonly used metrics of Switching-
Point Fraction (SPF), and Code-Mixing Index (CMI).
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[ Split | #utts | duration | En-ratio | SPF | CMI |
low-CSW 401 50.68 min <2 % 0.02 0.013
mid-CSW 553 75.59 min 2-9% 0.07 0.040
high-CSW 602 78.85 min >9 % 0.16 0.113

Table 1: Statistics of the collected German-English
CM dataset. Number of utterances, duration, ratio
of English/Denglisch words in the data, Switching-
Point Fraction, Code-Mixing Index

More detailed information about topics in the data
can be found in the Appendix A.1 Table 7.

In Table 2 we show an example sentence for
each split of the dataset. Transcipts in (eng...)
marking are Denglisch. The number 5 in the high-
CSW example was said in English, and as such is
also marked as Denglisch.

[ Split ]
low-CSW

example

Ja, das mit den <eng Bots>
glaube ich nicht. Das hat
mir noch nie einer zeigen
kénnen, dass diese <eng Bots>
echt sind.
Und das ist ein
<eng Language Model>. Es schlagt
schlagt mir im Endeffekt
nur das nachste Wort vor.
Sie haben quasi die
<eng Group-Stage > absolut
<eng gespeedrunt> 2 schnelle 2 Nulls
rausgeholt , dann ein 3 Null im
<eng best of 5>.

mid-CSW

high-CSW

Table 2: Example utterances from the dataset.

4. Recognition benchmarks

In this section, we demonstrate the challenges
posed in this dataset using various speech rec-
ognizers, ranging from the models trained us-
ing publicly available data such as Commonvoice
Ardila et al. (2019) or Librispeech Pratap et al.
(2020) which are mostly limited to being controlled
read speech to large scale models such as Whis-
per (Radford et al., 2022) and MMS (Pratap et al.,
2023).

4.1. ASR Models

Here we divide the recognizers into two main cate-
gories: the CTC-based models (Graves et al., 2006)
that relax the conditional dependencies between
output tokens, and the encoder-decoder based
models (Pham et al., 2019), with the intention to
observe if the conditional language model nature of
the latter struggles with the code-switched inputs.

For the CTC Model, we choose the massively
multilingual (MMS) model (Pratap et al., 2023)
which is a Transformer-based Wav2vec (Baevski
et al., 2020) model fine-tuned on a large scale of

data consisting of more than 1000 languages. The
German output layer was selected for inference.

For the latter, we consider two different options:
the open Whisper model (Radford et al., 2022) (with
the Large configuration) being trained on a very
large amount of data, especially with the sources
potentially containing code-switched data. We eval-
uate this model with German decoding strategy, as
well (WhisperDe).

For comparison, we also trained a model using
publicly available resources for German, Italian,
Portuguese, Dutch, Spanish, French and English
using the data from Commonvoice (CV) (Ardila
et al., 2019), Europarl (Koehn, 2005), Multilin-
gual Librispeech (MLS) (Pratap et al., 2020),
TedX (Salesky et al., 2021), in-house Lecture data.
This model contains a wav2vec2 encoder and
a MBART50 decoder, dubbed as WMB, which
were shown to outperform models trained from
scratch (Pham et al., 2022).

Training of the this model is done with Py-
Torch (Paszke et al., 2017). The batch size is set at
ca. 2M samples (ca. 21 minutes of audio) and we
used a warming-up schedule which increases the
learning rate to 0.001 for the first 4000 steps, and
then linearly decreases the learning rate over the
next 100K updates. The model is language agnos-
tic, during training there is no language cue given
to the model. We measure the Word-Error-Rate
(WER)s by comparing the outputs with the labels,
with all punctuations being stripped off, and words
are lower cased.

4.2. Comparison of CSW and
monolingual testsets

First of all, we measure the WERs on standard and
homogeneous testsets from CV and MLS. Both
of the WMB and MMS models fall into the usable
range of 10% error rate, with the WMB model ex-
celing in CommonVoice but performs a bit worse
in MLS.

[Model [ CV [ MLS |
MMS [ 13.07 | 8.75
WMB | 1.68 | 10.16

Table 3: WER in percent on CV and MLS testsets

Compared to the standard testsets, our created
dataset proves to be a challenge for the current
ASR models, as demonstrated in Table 4. Here
the lowest error rate achieved is 16.61% using the
Whisper model, while the MMS model struggles at
28.49%. It is worth noting that even with the assis-
tance of many times more training data, Whisper
only surpasses our model by a relative margin of
12.9%.
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There are two main challenges in this testset,
causing the high error rates: the recording con-
dition with a high variety of recording qualities in
spontaneous settings, and the interference of the
code-mixed words in the context.

The result suggests that the MMS model, a CTC
based model, is highly overfit on read speech. De-
spite being better than our WMB model,an encoder-
decoder model, in Multilingual Librispeech, MMS
really falls behind in this setting with error rates
reaching nearly 35% when the amount of code-
switched elements is high. Does this suggest that
having a conditional language model in the archi-
tecture is more important when the input is noisy
and varied? This seems to be the case, when the
performance of the encoder-decoder models are
noticeably better, and the distance between our
WMB and Whisper models are proportional in each
CSW category.

By verifying the audio quality, it is recognizable
that the audio in low-CSW is consisting of multi-
ple speakers or dialogue, the data in mid-CSW is
mainly monologues which might explain the unex-
pected performances of the models in the mid-CSW
section, with the expectation of having higher error
rates than the low-CSW. Further insights will be
given in the following experiments section 4.3.

Model low-CSW | mid-CSW | high-CSW | all-CSW
WhisperDe 16.58 11.30 25.03 17.71
Whisper 16.55 11.30 22.10 16.61
MMS 28.47 22.57 34.58 28.49
WMB 17.34 12.75 26.71 19.08

Table 4: WER in percent on our Evaluation set

4.3. CSW analysis

Here, we focus on the distinctive error rates of the
German and Denglisch parts within the text, with
the intention to identify whether the models strug-
gle with the data in general or if they are able to
transcribe the audio in German but struggle to do
so in the Denglisch part. In order to obtain the
separate WERs for each part, it is necessary to cal-
culate the alignment between the model hypothesis
and the target transcripts. Afterward, we count the
substitutions, deletions, and insertions lying within
the Denglisch part of the text or the German part
and divide the values by the respective number of
words in the target transcript.

Table 5 shows the WERs respective to the Ger-
man parts of the text. The values closely align with
those in Table 4. Given the prevalence of the ma-
trix language and the predominantly German audio
content, it is expected that these error rates reflect
the overall WER on the dataset. Another interest-
ing point we can appreciate is that the WhisperDe
model with the German decoding prefix has almost

the same performance as the Whisper model.

Model low-CSW | mid-CSW | high-CSW | all-CSW
WhisperDe 16.36 10.74 19.03 15.02
Whisper 16.37 10.74 19.04 15.02
MMS 27.69 20.48 27.67 24.79
WMB 16.66 11.36 20.39 15.81

Table 5: WER in percent on German parts of the
data

In Table 6 the error rates on the Denglisch parts
of the utterances are depicted. First of all, we can
see that the WERs on these parts are pretty high
when compared to the German parts. The biggest
difference on the overall testset is for the MMS
model which has 24.79% WER in Table 5 and
72.78% WER on the Denglisch parts. Even the
best-performing Whisper model has an increased
WER from 15.02% to 34.68%. This shows that the
models clearly struggle more when it comes to tran-
scribing parts of the embedded language in the
CSW scenario. Additionally, we can appreciate
that the mid-CSW split, which is generally easier for
the models to transcribe, has higher WERs on the
Denglisch parts. This suggests, that even in gen-
erally easier-to-transcribe setups, the models still
struggle with the embedded language. It is notewor-
thy that the WER disparity between the low-CSW
and high-CSW segmentation, initially registering
a modest 2.67% for WhisperDe and Whisper (Ta-
ble 5), has now expanded to 29.49% and 10.25%,
respectively.

Model low-CSW | mid-CSW | high-CSW | all-CSW
WhisperDe 27.27 24.58 56.76 49.49
Whisper 24.43 24.75 37.67 34.68
MMS 69.32 78.43 71.72 72.78
WMB 44.89 47.83 60.47 57.41

Table 6: WER in percent on Denglisch parts of the
data

An example prediction of the models is shown in
the Appendix A.2 Table 8.

4.4. Effect of Model architectures

Language-aware models often have an edge in
performance compared to language-agnostic coun-
terparts, but do the former struggle with code-
switching? For this question, the values in sec-
tion 4.3 show that the WhisperDe model with a
language specific decoding strategy has a simi-
lar performance to its language agnostic counter-
part Whisper, however, it has a worse performance
on the transcription of the embedded language.
The WER for WhisperDe is worse than Whisper
by 14.81%. These numbers suggest that keeping
the model and the decoding language agnostic or
letting the model implicitly determine the language
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of the speech, yields better transcriptions than pre-
determining the matrix language.

On the other hand, we might also wonder if
using a language-modeling-style approach in the
encoder-decoder models is problematic for CSW
since the model is less likely to output unfamiliar
words given the context. The CTC model, in that
case, might arguably be the better choice.

For this question, the values in our tables in sec-
tion 4.3 show that the encoder-decoder-based mod-
els outperform the CTC model (MMS) with respect
to WER in all scenarios. However, as the MMS
model has fewer parameters as well as no explicit
or implicit language model, such as the decoder
in the other models, its performance even on the
monolingual German parts is already pretty low.
Although it performed quite well on read speech
Table 3, this suggests that this model needs fur-
ther training on more diverse data and possibly an
external language model for better comparison of
its actual CSW capabilities.

5. Conclusion

In this work, we present an evaluation dataset for
German-English CSW, with German as the matrix
and English as the embedded language. We pro-
vide word-level annotation of English words and
describe detailed statistics of the data. Addition-
ally, the data is annotated in three splits for more
detailed analysis. We evaluate the data on SOTA
models and show that they have significant prob-
lems with transcribing the embedded language (Ta-
ble 6) when compared to the matrix language Ta-
ble 5. Language specific decoding strategies hurt
the performance on parts of the embedded lan-
guage, which suggests the use and investigation
of language agnostic models will yield better per-
forming models on the task of CSW speech recog-
nition. The data will be made available by providing
download scripts of utilized videos, along with their
corresponding segmentation and transcripts*.

6. Ethics

The source of our data comes from videos up-
loaded on the Youtube platform, supported by
Google LLC corporation. The published content
only contains the segmentations and transcripts
which account for insufficient original data in the
videos, and the action of taking down videos, if
necessary, is going to be handled by Google.

*https://github.com/enesyugan/DECM

7. Acknowledgement

The project on which this report is based was
funded by the Federal Ministry of Education and
Research (BMBF) of Germany under the numbers
01EF1803B (RELATER). Part of this work was sup-
ported by funding from the pilot program Core- In-
formatics of the Helmholtz Association (HGF).

8. Bibliographical References

Djegdjiga Amazouz, Martine Adda-Decker, and
Lori Lamel. 2017. Addressing code-switching
in french/algerian arabic speech. In Interspeech
2017, pages 62—66.

Rosana Ardila, Megan Branson, Kelly Davis,
Michael Henretty, Michael Kohler, Josh Meyer,
Reuben Morais, Lindsay Saunders, Francis M
Tyers, and Gregor Weber. 2019. Common voice:
A massively-multilingual speech corpus. arXiv
preprint arXiv:1912.06670.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mo-
hamed, and Michael Auli. 2020. wav2vec 2.0: A
framework for self-supervised learning of speech
representations. Advances in neural information
processing systems, 33:12449—-12460.

Timo Baumann, Arne Kéhn, and Felix Hennig.
2019. The spoken wikipedia corpus collection:
Harvesting, alignment and an application to hy-
perlistening. Language Resources and Evalua-
tion, 53:303-329.

Joyce YC Chan, PC Ching, and Tan Lee. 2005. De-
velopment of a cantonese-english code-mixing
speech corpus. In Ninth European Conference
on Speech Communication and Technology.

Margaret Deuchar. 2008. The miami corpus: Doc-
umentation file. Bangortalk, bangortalk. org.
uk/docs/Miami_doc. pdf.

Anuj Diwan, Rakesh Vaideeswaran, Sanket Shah,
Ankita Singh, Srinivasa Raghavan, Shreya
Khare, Vinit Unni, Saurabh Vyas, Akash Ra-
jpuria, Chiranjeevi Yarra, et al. 2021. Multi-
lingual and code-switching asr challenges for
low resource indian languages. arXiv preprint
arXiv:2104.00235.

Chenpeng Du, Hao Li, Yizhou Lu, Lan Wang, and
Yanmin Qian. 2021. Data augmentation for end-
to-end code-switching speech recognition. In
2021 IEEE Spoken Language Technology Work-
shop (SLT), pages 194-200. IEEE.

4472



Nnenna Gertrude Ezeh, Ifeoma Ann Umeh, Es-
ther Chikaodi Anyanwu, et al. 2022. Code switch-
ing and code mixing in teaching and learning of
english as a second language: Building on knowl-
edge. English Language Teaching, 15(9):106—
106.

Bjorn Gambéack and Amitava Das. 2014. On mea-
suring the complexity of code-mixing. In Pro-
ceedings of the 11th international conference on
natural language processing, Goa, India, pages
1-7.

Alex Graves, Santiago Fernandez, Faustino
Gomez, and Jirgen Schmidhuber. 2006. Con-
nectionist temporal classification: labelling un-
segmented sequence data with recurrent neural
networks. In Proceedings of the 23rd interna-
tional conference on Machine learning, pages
369-376.

Injy Hamed, Pavel Denisov, Chia-Yu Li, Mohamed
Elmahdy, Slim Abdennadher, and Ngoc Thang
Vu. 2022. Investigations on speech recogni-
tion systems for low-resource dialectal arabic—
english code-switching speech.  Computer
Speech & Language, 72:101278.

Christian Huber, Enes Yavuz Ugan, and Alexander
Waibel. 2022. Code-switching without switching:
Language agnostic end-to-end speech transla-
tion. arXiv preprint arXiv:2210.01512.

Abbas Khosravani, Philip N Garner, and Alexan-
dros Lararidis. 2021. An evaluation benchmark
for automatic speech recognition of german-
english code-switching. In 2021 IEEE Automatic
Speech Recognition and Understanding Work-
shop (ASRU), pages 811-816. IEEE.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In Proceedings
of machine translation summit x: papers, pages
79-86.

Ke Li, Jinyu Li, Guoli Ye, Rui Zhao, and Yifan Gong.
2019. Towards code-switching asr for end-to-
end ctc models. In ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 6076—
6080. IEEE.

Guoyu Liu and Lixin Cao. 2021. Code-switch
speech rescoring with monolingual data. In
ICASSP 2021-2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6229-6233. IEEE.

Hexin Liu, Haihua Xu, Leibny Paola Garcia,
Andy WH Khong, Yi He, and Sanjeev Khudanpur.

2023. Reducing language confusion for code-
switching speech recognition with token-level lan-
guage diarization. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 1-5.
IEEE.

Dau-Cheng Lyu, Tien-Ping Tan, Eng-Siong Chng,
and Haizhou Li. 2010. An analysis of a mandarin-
english code-switching speech corpus: Seame.
Age, 21:25-8.

Sahoko Nakayama, Takatomo Kano, Quoc Truong
Do, Sakriani Sakti, and Satoshi Nakamura.
2018a. Japanese-english code-switching
speech data construction. In 2018 Oriental
COCOSDA-International Conference on Speech
Database and Assessments, pages 67-71.
IEEE.

Sahoko Nakayama, Andros Tjandra, Sakriani Sakti,
and Satoshi Nakamura. 2018b. Speech chain
for semi-supervised learning of japanese-english
code-switching asr and tts. In 2018 IEEE Spoken
Language Technology Workshop (SLT), pages
182-189. IEEE.

Sahoko Nakayama, Andros Tjandra, Sakriani
Sakti, and Satoshi Nakamura. 2019. Zero-shot
code-switching asr and tts with multilingual ma-
chine speech chain. In 2019 IEEE Automatic
Speech Recognition and Understanding Work-
shop (ASRU), pages 964-971. IEEE.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and
Adam Lerer. 2017. Automatic differentiation in
pytorch.

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Miiller, and Alex Waibel. 2019. Very
Deep Self-Attention Networks for End-to-End
Speech Recognition. In Proc. Interspeech 2019,
pages 66-70.

Ngoc-Quan Pham, Alexander Waibel, and Jan
Niehues. 2022. Adaptive multilingual speech
recognition with pretrained models. In Inter-
speech 2022, 23rd Annual Conference of the
International Speech Communication Associa-
tion, Incheon, Korea, 18-22 September 2022,
pages 3879-3883. ISCA.

Shana Poplack. 1980. Sometimes i’ll start a sen-
tence in spanish y termino en espanol: toward a
typology of code-switching1.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali
Elkahky, Zhaoheng Ni, Apoorv Vyas, Maryam

4473


https://doi.org/10.21437/Interspeech.2019-2702
https://doi.org/10.21437/Interspeech.2019-2702
https://doi.org/10.21437/Interspeech.2019-2702
https://doi.org/10.21437/Interspeech.2022-872
https://doi.org/10.21437/Interspeech.2022-872

Fazel-Zarandi, et al. 2023. Scaling speech tech-
nology to 1,000+ languages. arXiv preprint
arXiv:2305.13516.

Vineel Pratap, Qiantong Xu, Anuroop Sriram,
Gabriel Synnaeve, and Ronan Collobert. 2020.
Mis: Alarge-scale multilingual dataset for speech
research. ArXiv, abs/2012.03411.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Ka-
lika Bali. 2018. Language modeling for code-
mixing: The role of linguistic theory based syn-
thetic data. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1543—
1553.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and llya Sutskever.
2022. Robust speech recognition via large-scale
weak supervision.

Elizabeth Salesky, Matthew Wiesner, Jacob Bre-
merman, Roldano Cattoni, Matteo Negri, Marco
Turchi, Douglas W. Oard, and Matt Post. 2021.
Multilingual tedx corpus for speech recognition
and translation. In Proceedings of Interspeech.

Tanja Schultz and Alex Waibel. 2001. Experiments
on cross-language acoustic modeling. In INTER-
SPEECH, pages 2721-2724.

Hiroshi Seki, Shinji Watanabe, Takaaki Hori,
Jonathan Le Roux, and John R Hershey. 2018.
An end-to-end language-tracking speech recog-
nizer for mixed-language speech. In 2018 IEEE
international conference on acoustics, speech
and signal processing (ICASSP), pages 4919-
4923. IEEE.

Changhao Shan, Chao Weng, Guangsen Wang,
Dan Su, Min Luo, Dong Yu, and Lei Xie.
2019. Investigating end-to-end speech recog-
nition for mandarin-english code-switching. In
ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 6056—6060. IEEE.

Zhijie Shen and Wu Guo. 2022. An improved de-
liberation network with text pre-training for code-
switching automatic speech recognition. Proc.
Interspeech 2022, pages 3854-3858.

Tongtong Song, Qiang Xu, Meng Ge, Longbiao
Wang, Hao Shi, Yongjie Lv, Yuqin Lin, and
Jianwu Dang. 2022. Language-specific char-
acteristic assistance for code-switching speech
recognition. arXiv preprint arXiv:2206.14580.

Enes Yavuz Ugan, Christian Huber, Juan Hussain,
and Alexander Waibel. 2023. Language-agnostic

4474

code-switching in
speech recognition.

sequence-to-sequence

Orion Weller, Matthias Sperber, Telmo Pires, Hen-
dra Setiawan, Christian Gollan, Dominic Telaar,
and Matthias Paulik. 2022. End-to-end speech
translation for code switched speech. arXiv
preprint arXiv:2204.05076.

Brian Yan, Matthew Wiesner, Ondfej Klejch, Preethi
Jyothi, and Shinji Watanabe. 2023. Towards
zero-shot code-switched speech recognition. In
ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1-5. IEEE.


https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.48550/ARXIV.2212.04356
http://arxiv.org/abs/2210.08992
http://arxiv.org/abs/2210.08992
http://arxiv.org/abs/2210.08992

A. Appendices

A.1. Topic distribution in the dataset

| CSW Level | Style (Topic) | SPF | CMI | #utts [ duration | #speakers |
Low-CSW Satire (artificial intelligence) 0.015 | 0.010 | 102 11.98 min | >3
Podcast (political) 0.022 | 0.014 | 299 38.70 min | 2
Mid-CSW Podcast (mobile-phones) 0.072 | 0.044 | 262 35.5 min 1

Podcast (artificial intelligence) 0.058 | 0.037 | 291 40.09 min | 2
Educational comedy (Denglisch) | 0.112 | 0.093 | 35 4.40 min 1

High-CSW Documentation (technology) 0.052 | 0.054 | 127 16.23 min | >3
9 Satire (Denglisch) 0.208 | 0.155 | 30 4.63 min >3
Commentation (Esports) 0.199 | 0.129 | 410 53.60 min | >3

Table 7: Statistics and topics covered in the dataset

A.2. Example Hypothesis

Reference sie haben quasi die group-stage absolut gespeedrunt 2 schnelle 2 nulls
rausgeholt dann ein 3 null im best of 5
WhisperDe sie haben quasi die groupstage absolut gespeedruns zwei schnelle 2-0
rausgeholt dann ein 3-0 im best of five
Whisper sie haben quasi die groupstage absolut gespeedruns zwei schnelle 2-0
rausgeholt dann ein 3-0 im best of five
MMS denn sie haben for se die group stage absolut gesfhet runs zwei schnelle zwei nulls
rausgeholt dann in drei null im bester
WMB sie haben die group stage absolute des feature ones zwei schnelle zwei nulls
rausgeholt dann ein drei null im best of five

Table 8: Example utterances from the dataset. With an appropriate processing of the reference, green
colored words could be considered correct due to the hyphen usage. Red depicted words are considered
wrong.
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