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Abstract
Natural Language Processing (NLP) models tend to inherit and amplify stereotypical biases present in their training
data, leading to harmful societal consequences. Current efforts to rectify these biases typically revolve around
making models oblivious to bias, which is at odds with the idea that humans require increased awareness to
tackle these biases better. This prompts a fundamental research question: are bias-oblivious models the only
viable solution to combat stereotypical biases? This paper answers this question by proposing the Agency-BeLiefs
Embedding (ABLE) model, a novel approach that actively encodes stereotypical biases into the embedding
space. ABLE draws upon social psychological theory to acquire and represent stereotypical biases in the form
of agency and belief scores rather than directly representing stereotyped groups. Our experimental results
showcase ABLE’s effectiveness in learning agency and belief stereotypes while preserving the language model’s
proficiency. Furthermore, we underscore the practical significance of incorporating stereotypes within the ABLE
model by demonstrating its utility in various downstream tasks. Our approach exemplifies the potential benefits
of addressing bias through awareness, as opposed to the prevailing approach of mitigating bias through obliviousness.

Keywords: Bias Detection, AI Fairness, Stereotyping

1. Introduction

Recent studies in Natural Language Processing
(NLP) have unveiled a concerning issue: NLP mod-
els frequently exhibit stereotypical biases associ-
ated with demographic groups (Bolukbasi et al.,
2016; Caliskan et al., 2017; May et al., 2019). Given
the widespread deployment of these models across
diverse domains, the escalating potential for risks
and harms stemming from these biases demands
our immediate attention.

In response to this formidable challenge, a range
of strategies has surfaced to address and alleviate
these biases within NLP models. A prevailing ob-
jective of these strategies is to promote a state of
bias obliviousness within the models. For instance,
counterfactual data augmentation methods (Zhao
et al., 2018; Zmigrod et al., 2019; Webster et al.,
2020; Lauscher et al., 2021; Qian et al., 2022; Xie
and Lukasiewicz, 2023; Fatemi et al., 2023) strive
to balance training data by replicating each training
sentence for every demographic group, ensuring
that every group appears in identical contextual set-
tings. As a result, under counterfactual data aug-
mentation, models cannot form any biased asso-
ciations. Alternatively, equalizing loss techniques
are explicitly designed to minimize disparities in
embeddings (Cheng et al., 2021; He et al., 2022;
Li et al., 2023), prediction probabilities (Guo et al.,
2022; Zhou et al., 2023) or attention weights (Gaci
et al., 2022) across different demographic groups.

∗These authors contributed equally to this work.

Subspace removal methods (Bolukbasi et al., 2016;
Dev et al., 2020; Liang et al., 2020; Ravfogel et al.,
2020; Kaneko and Bollegala, 2021; Ravfogel et al.,
2022; Kumar et al., 2023) identify bias directions
within the embedding space and subsequently elim-
inate or penalize embedding components along
these bias directions. Through the targeted re-
moval of components exhibiting correlations with
bias, these equalizing loss and subspace removal
methods prevent models from encoding bias.

While these bias-oblivious approaches have suc-
cessfully reduced stereotypical biases in certain
scenarios, they still remain vulnerable to bias when
subjected to further fine-tuning. The conventional
practice of fine-tuning a single, large language
model across a spectrum of tasks necessitates sep-
arate bias mitigation in each fine-tuning instance.
This not only poses a logistical challenge but also
imposes a substantial financial burden. Recent em-
pirical findings have revealed that bias mitigation
measures do not consistently carry over to down-
stream tasks (Jin et al., 2021; Cao et al., 2022a;
Kaneko et al., 2022; Shen et al., 2022; Cabello
et al., 2023) 1, adding complexity to the situation.
Moreover, bias-oblivious models lose access to
bias information, rendering them incapable of ana-
lyzing stereotypes in text data, diagnosing biased
model outputs, or identifying distribution shifts from

1It is worth mentioning that there is also conflicting
evidence supporting the transferability of bias measures
across different tasks (Orgad et al., 2022; Ladhak et al.,
2023).
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evolving stereotypes.
Bias-oblivious approaches stand in stark con-

trast to the way humans address stereotypical bi-
ases. Extensive research in social science con-
firms that awareness of one’s own biases plays a
pivotal role in reducing bias, as opposed to embrac-
ing obliviousness (Lee, 2017; Pope et al., 2018;
Boring and Philippe, 2021). Stereotyping is a nat-
ural human tendency to simplify our understand-
ing of society within the limits of our cognitive re-
sources. To counter stereotypical biases effectively,
it requires active awareness and proactive interven-
tions, rather than adopting an oblivious stance. The
question then arises: can NLP models also lever-
age bias awareness to effectively address bias?

In response to this fundamental question, our
paper introduces the Agency-BeLiefs Embedding
(ABLE) model, a novel approach designed to proac-
tively incorporate stereotypical biases into the em-
bedding space. By leveraging insights from so-
cial psychological theories (Koch et al., 2016), our
model learns to predict these biases in the form
of agency and belief scores, endowing the model
with a profound awareness of bias (§3.1). Addition-
ally, we employ contrastive learning loss to ensure
the consistent representation of each stereotyped
group by clustering texts containing the same group
(§3.2).

Our experimental results illustrate the remarkable
effectiveness of ABLE in learning agency and belief
stereotypes while preserving the language model’s
proficiency (§4). Our model formulates stereotypi-
cal biases as agency and belief scores rather than
focusing on specific demographic groups, making it
generalizable to unseen demographic groups. We
emphasize the practical importance of embedding
this bias awareness within the ABLE model and
demonstrate its utility in various downstream tasks
such as toxicity and hate speech detection (§5).
Our research challenges the conventional practice
of avoiding bias through obliviousness, advocating
instead for the active recognition and intervention
of bias as a more effective approach.

2. Background

2.1. Social Psychological Theories

Stereotyping is a cognitive process characterized
by the tendency to generalize specific attributes to
entire social groups. The manifestation of these
stereotypical biases in society leads to adverse
consequences, including the marginalization of cer-
tain groups from an equitable place in society, the
exacerbation of social inequalities in resource allo-
cation, and the psychological impact on individuals
due to the awareness and internalization of these
biases (Timmer, 2011).

Modern social psychology theories take a mul-
tifaceted approach to characterizing stereotypes
associated with social groups, moving beyond the
dichotomous categorization of these stereotypes
as strictly positive or negative. The Stereotype Con-
tent Model (SCM) (Fiske et al., 2002; Fiske, 2018)
introduces two fundamental dimensions in social
perception: warmth and competence. The SCM is
based on the premise that individuals aim to assess
both the intentions directed towards them (warmth)
and the abilities to fulfill those intentions (compe-
tence) within their social context. A notable insight
from the SCM is that the presence of positive stereo-
types along one dimension does not necessarily
negate the presence of negative stereotypes along
the other dimension. The interplay between warmth
and competence gives rise to distinct stereotypical
emotions, such as pity for groups perceived as
warm but incompetent and envy for groups per-
ceived as cold but competent.

The Agency-Belief-Communion (ABC) theory
(Koch et al., 2016, 2020) employs a data-driven
approach to identify traits that better explain stereo-
types. The resulting list of traits reveals two dimen-
sions strongly correlated with stereotypes: agency
(competence or socioeconomic success) and be-
liefs (polarity along the conservative-progressive
spectrum). Although communion (warmth) does
not exhibit a direct correlation with stereotypes, it
is associated with the proximity to the center along
the agency and beliefs dimensions. In line with this
ABC theory, our ABLE method models stereotypes
along the agency and beliefs dimensions.

Recent developments in NLP research have in-
creasingly integrated insights from the aforemen-
tioned social psychological theories. A series of
studies have explored biases within NLP models,
specifically in relation to the stereotype dimensions
identified by these theories. For instance, Fraser
et al. (2021) identified the SCM subspace within
word embedding space and analyzed benchmark
datasets on stereotypical bias. Herold et al. (2022)
scrutinized how NLP models associate the SCM di-
mensions with disabled people. Cao et al. (2022b)
introduced a novel association test metric, apply-
ing it to study the stereotypical biases along the
ABC dimensions that NLP models encode for vari-
ous demographic groups, including intersectional
groups. In a related vein, Davani et al. (2023) exam-
ined the impact of the SCM dimensions on labeling
and model performance for hate speech detection.
These studies collectively highlight that both SCM
and ABC theories offer valuable frameworks for
analyzing stereotypical biases in NLP models.

In studies closely aligned with our research, the
focus has been on mitigating the influence of stereo-
type dimensions within NLP models. Ungless et al.
(2022) employed a method that identifies and re-
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Figure 1: Embedding Space Comparison. We plot the first two principal components by applying PCA
on the embedding spaces for pretrained BERT (left) and ABLEBERT (right). Each point corresponds to a
single text sample color-coded by the demographic group. While the pretrained BERT embedding space
does not exhibit a meaningful pattern, ABLEBERT puts embeddings for texts with the same demographic
groups close together. Moreover, two directions correspond to agency and beliefs dimensions: from
conservative on top to progressive on bottom and from competent on left to incompetent on right.

moves the SCM dimensions from the embedding
space of language models to address bias. Build-
ing upon this work, Omrani et al. (2023) proposed
two similar debiasing methods. However, all of the
aforementioned studies adopt a bias-oblivious ap-
proach, in contrast to the bias-aware approach of
our ABLE method.

2.2. Contrastive Learning
Contrastive learning aims to encode sample sim-
ilarity in the embedding space of deep learning
with minimal supervision. Given an anchor sam-
ple, the first step involves selecting similar samples
as positives and dissimilar samples as negatives.
Subsequently, the contrastive loss penalizes large
anchor-positive distance and small anchor-negative
distance. This pushes similar samples closer to-
gether and keeps dissimilar samples far apart.

Following Reimers and Gurevych (2019), we em-
ploy the contrastive loss based on an (anchor, pos-
itive, negative) triplet (a, p, n):
L(a,p,n) = max(∥ea − ep∥ − ∥ea − en∥+ ϵ, 0) (1)

where ea, ep, and en denote the embedding vectors
for the anchor, positive, and negative, respectively.
The triplet loss in Equation 1 penalizes when the
anchor is not closer to positive by ϵ than to negative
in Euclidean distance.

In the ABLE method, we encourage texts with
the same demographic group to embed closer to-
gether using contrastive learning. As shown in
Figure 1, the embeddings that are originally scat-
tered in the left Figure are clustered according to
the demographic groups in the ABLE embedding
space shown in the right Figure. For example, texts
with the “Asians” group, denoted in purple, are em-
bedded closer together into a cluster while farther
away from different groups such as “Blacks”.

3. Methods

We describe the Agency-BeLiefs Embedding
(ABLE) model in two key stages. In Section 3.1,
we detail the creation of the Agency-Beliefs (AB)
Dataset, wherein agency and beliefs scores are
assigned to stereotyped sentences. In Section 3.2,
we outline the multi-task learning objective function
that the ABLE model uses to train.

3.1. AB Dataset
We generate the AB Dataset that consists of stereo-
typical sentences with corresponding agency and
beliefs scores. A total of 4,229 stereotypical sen-
tences containing 79 targets are sourced from the
publicly available portion of StereoSet (Nadeem
et al., 2021). StereoSet is a benchmark dataset
designed to evaluate the stereotypical associations
with targets in NLP models through fill-in-the-blank
style tasks. A sample from the dataset has a stereo-
typical sentence, “The football player was pretty
stupid” and a target, “football player”. These sen-
tences are drawn from both intrasentence and in-
tersentence tasks within StereoSet.

We assign agency and beliefs scores to each
sentence based on the demographic group and the
presence of stereotypical words in the sentence.
To develop the theory-grounded dataset, the de-
mographic groups are defined as the social groups
from Study 1 in the ABC theory (Koch et al., 2016).
For the AB dataset, the collected sentences are
labeled with the demographic groups in the ABC
theory using the target information in the StereoSet.
The example sentence, “The football player was
pretty stupid” has the target “football player” and,
hence, is mapped to the “Athletes” demographic
group. See Appendix A for the details of the map-
ping.
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Figure 2: ABLE Architecture. Given a stereotyp-
ical sentence s, the encoder f generates its em-
bedding e = f(s). The embedding e predicts the
agency and beliefs scores A(s) and B(s) using the
classifiers gA and gB as gA(e) and gB(e), respec-
tively.

To identify the stereotypical words, we employ
a dictionary developed by Nicolas et al. (2019).
The dictionary is constructed with an initial lexicon
sourced from social psychology papers, expanded
using WordNet. It contains 152 words for agency
and 34 words for beliefs. Each word in the dictio-
nary has a high or low direction, designated as +1
or -1, respectively. For example, under the agency
dimension, “smart” has a high direction, denoted
as +1, while “stupid” has a low direction, denoted
as -1.

Given a stereotypical sentence s, we use the
"target" feature in StereoSet as the demographic
group d. Then, we identify sets WA,WB of agency
and beliefs words appearing in s. The agency and
belief scores A(s) and B(s) are defined as:

A(s) =

{
A(d) if A(d) ̸= 0

1
|WA|

∑
w∈WA

A(w) otherwise

and

B(s) =

{
B(d) if B(d) ̸= 0

1
|WB |

∑
w∈WB

B(w) otherwise

where A(d) and B(d) are agency and beliefs scores
of the demographic group d derived from Study 1
in Koch et al. (2016). A(w) and B(w) are agency
and beliefs scores of the word derived from Nicolas
et al. (2019). We note that both A and B take
values in {−1, 0, 1}. Table 1 presents examples in
the resulting AB Dataset, and Table 2 shows the
distribution of the agency and beliefs scores.

3.2. ABLE Training
We train the ABLE model using a multi-task learning
objective, jointly optimizing for agency/beliefs score
prediction and contrastive loss. Our model consists
of an encoder f and two classifiers gA and gB as
depicted in Figure 2.

As described in Section 2.1, the agency and be-
liefs dimensions for a given demographic group
are effective predictors of stereotypes associated
with the group. Accordingly, our approach involves
encoding stereotypical bias into the model by train-
ing it to predict the agency and beliefs scores. We
use two classifiers gA and gB to predict agency
and beliefs scores, respectively. We formulate
these prediction tasks as classification problems
and employ cross-entropy losses, denoted as LA

and LB. Formally, LA = −
∑

s∈S A(s) · log(gA(s))
and LB = −

∑
s∈S B(s) · log(gB(s)), where s is a

sentence in the dataset S.
However, our objective extends beyond accurate

score prediction; it encompasses ensuring the co-
herence of the ABLE embedding space. In addition
to accurate score prediction, we aim to map similar
stereotypes to similar embedding vectors. Taking
inspiration from Kim and Johnson (2022), we lever-
age triplet-based contrastive learning to improve
the clustering of sentences related to the same
demographic group.

For each stereotypical sentence s with demo-
graphic group d, we construct a single triplet (a, p, n)
where the anchor a set to be s. The positive sam-
ple p is randomly selected from the sentences with
the same demographic group, while the negative
sample n is drawn from sentences with a different
demographic group. The set of triplets is denoted
as T . Our contrastive loss is:

Lc =
∑

(a,p,n)∈T

L(a,p,n)

=
∑

(a,p,n)∈T

max (∥ea − ep∥ − ∥ea − en∥, 0) .

The final loss of the model is the sum of the
prediction losses and the contrastive loss:

L = LA + LB + λLC

where λ is a hyperparameter that controls the rel-
ative importance of the prediction losses and the
contrastive loss.

4. Model Validation

In this section, we conduct a comprehensive eval-
uation to ascertain the successful training of the
ABLE model. Our assessment focuses on several
key aspects: the model’s capacity to effectively clus-
ter sentences with the same demographic group,
the performance of agency and beliefs score pre-
dictions, and the model’s retained proficiency in
language modeling as demonstrated through its
performance on the GLUE benchmark.
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Stereotypical Sentence Demographic Group ScoreAgency ScoreBeliefs

The Muslim community is known for being
strongly religious.

Muslims 0 1

She used to be a performing artist. She votes
for liberal parties.

Artists -1 -1

The smart chess player looked at the pieces on
the board.

Educated 1 0

The football player was pretty stupid. Athletes -1 1

Table 1: Examples in the AB Dataset. We show examples with the corresponding demographic groups
and scores. Words from the agency dictionary are colored in magenta, and those from the beliefs
dictionary in teal.

Score
-1 0 1 Avg

Agency
Word 5.6 86.0 8.3 0.029
Demo 34.2 40.5 25.3 -0.089
Final 35.3 36.6 28.2 -0.071

Beliefs
Word 0.6 97.2 2.2 0.018
Demo 17.7 34.2 48.1 0.304
Final 17.8 33.7 48.6 0.306

Table 2: Score Distribution in the AB Dataset.
We show the percentage of each agency/beliefs
score in stereotypical words from the dictionary,
the demographic groups, and the aggregated final.
The right-most column is the average score.

4.1. Experimental Settings
We explain the datasets and models used for the
training and validation of the ABLE model. Imple-
mentation details are provided for reproducibility.
The data and code for the experiments are avail-
able at https://github.com/MSU-NLP-CSS
/ABLE.

Datasets. The AB Dataset comprises 4,229
stereotypical sentences representing 79 distinct
demographic groups. To rigorously evaluate the
ABLE model, we randomly select 10 of these demo-
graphic groups, which collectively account for 526
sentences, and designate them as the test set. The
remaining 3,706 sentences constitute the training
set for ABLE training.

Models. We use BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2020) in our experiments.
BERT and RoBERTa are transformer-based bidi-
rectional language models. For the classifiers used
for agency/beliefs score prediction, we use a linear
layer on top of the encoder. We use ABLEBERT and
ABLERoBERTa to denote the models after training
BERT and RoBERTa on the ABLE objective, re-
spectively. ABLE training starts from the pretrained
BERT and RoBERTa models.

Model Agency Beliefs
ABLEBERT 0.993 / 0.813 0.995 / 0.870

ABLERoBERTa 0.986 / 0.778 0.995 / 0.754

Table 3: Agency/Beliefs Score Prediction Perfor-
mance. We verify that the ABLE models achieve
strong performance for agency/beliefs score predic-
tion. Each entry reflects: training/testing accuracy.

Implementation. All models are implemented
with PyTorch (Paszke et al., 2019) and Hugging-
face’s Transformers (Wolf et al., 2020). For ABLE
training, we use the Adam optimizer (Kingma and
Ba, 2015) and set the learning rate from {2e −
05, 5e− 05}, an epoch from {1, 3, 5}, and a dropout
rate from {0.2, 0.5}. All experiments are conducted
on an Nvidia Quatro RTX 5000, 16 GB memory
GPU in a machine with Intel(R) Xeon(R) Silver 4214
CPU @ 2.20GHz.

4.2. Agency-Beliefs Predictions
This section validate the performance of the ABLE
model in predicting agency/beliefs scores. The
accuracy of agency/beliefs score prediction is a
critical indicator of the ABLE model’s ability to ef-
fectively encode stereotypical bias. Ensuring the
model’s proficiency in this prediction task is, there-
fore, a fundamental step in the validation process.

To enhance the robustness of our findings, each
experiment is conducted three times, and the accu-
racy for agency/beliefs score prediction is averaged.
Subsequently, this accuracy is averaged for each
demographic group. Finally, we aggregate these
accuracy once more to obtain the final accuracy,
which we report in Table 3. The results demonstrate
that the ABLE model achieves a reasonable perfor-
mance in both agency and beliefs score prediction
tasks.

For a more comprehensive analysis, we provide
visual representations of the agency and beliefs
scores for each demographic group. These visu-
alizations are derived by calculating the average

https://github.com/MSU-NLP-CSS/ABLE
https://github.com/MSU-NLP-CSS/ABLE
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Figure 3: Stereotypical Bias in the Agency-
Beliefs Dimension. The x-axis is the beliefs di-
mension, where the positive direction indicates con-
servative beliefs and the negative direction implies
progressive beliefs. The agency dimension is along
the y-axis, where higher agency means a higher
chance of socio-economic success.

agency/beliefs scores from the ABLE model’s out-
put for each demographic group, as depicted in
Figure 3.

Figure 3 supports the result of the ABC model
study done on U.S. participants and demographic
groups (We refer the readers to Figure 1 in Koch
et al. (2016)). Along the agency dimension, groups
“Business people,” “Lawyers,” and “White collar”
are observed as the ones with the highest agency,
namely, more likely to have socio-economic suc-
cess. On the other hand, groups “Criminals,”
“Blacks,” and “Hispanics” display low agency. As
for the beliefs dimension, the positive axis means
having conservative beliefs, while the negative sug-
gests progressive beliefs. The model predicted
high beliefs scores for “Muslims,” while low scores
for “Musicians” and “Artists.” Just as in the ABC
model, groups “Men,” “Women,” and “Whites” are
located in the origin. One difference is that the pre-
dicted agency score of “Hindu” is lower than that in
the ABC model study, where it ranked the highest
score among demographic groups. A possible rea-
son is the lack of seed words in the StereoSet data
that belong to the group “Hindu.”

4.3. Demographic Groups after ABLE
Training

The ABLE model trains to render consistent embed-
dings through contrastive learning. The contrastive
loss in the ABLE training encourages the sentences
within the same demographic group to stay close
to each other. To validate that the ABLE model
clusters the embedding vectors well, we measure
the isotropy following Arora et al. (2016); Mu and
Viswanath (2018).

A set of vectors are called isotropic if they are uni-

Model Train Isotropy Test Isotropy
BERT 1.30e-06 6.73e-08
ABLEBERT ↓ 1.08e-06 2.23e-07 7.35e-07
RoBERTa 3.58e-06 2.33e-06
ABLERoBERTa ↓ 3.50e-06 7.93e-08 ↓ 2.28e-06 4.53e-08

Table 4: Isotropy Measures. The isotropies of
the embedding space before and after the training
of the ABLE model are compared. Higher values
indicate strong isotropy.

formly distributed in all directions. If the embedding
vectors are more isotropic, then the embedding
vectors are less clustered. Therefore, we expect
our embedding vectors will have smaller isotropy
measure.

Drawing upon Mu and Viswanath (2018), we first
define the partition function

Z(u) =

N∑
i=1

eu
Twi ,

for each unit vector u. Then, the isotropy mea-
sure of the embedding matrix W = [w1, ..., wN ] is
defined as

I(W ) =
min∥u∥=1 Z(u)

max∥u∥=1 Z(u)
.

We compare the isotropy of the ABLE models
to the pretrained models. The results are shown
in Table 4. As expected, the ABLE space has
lower isotropy measures in the stereotype embed-
ding spaces compared to the pretrained models.
That is, after learning stereotypes, the embedding
space becomes more anisotropic. The difference
in isotropy is more significant in RoBERTa than
in BERT. As for RoBERTa, after fine-tuning, the
isotropy drops 10−2 times when computed with the
embeddings of training data groups. The isotropy
declines in a similar ratio when computed with the
embeddings of test data groups. Based on the de-
crease of isotropy after fine-tuning, we infer that
the ABLE model pushes the same demographic
groups closer in the ABLE space.

The visualization of embedding space also sup-
ports our inference. Figure 1 displays the projection
of embeddings of texts that mention stereotypes of
the chosen demographic groups: Asians, Blacks,
Hispanics, Artists, Lawyers, Musicians, Scientists,
and White Collar. The left figure reveals that embed-
dings of the pretrained model are spread out across
the space. On the other hand, in the right figure,
the embeddings within the groups are closer. The
agency and beliefs directions can also be observed
based on the positions of demographic groups. On
the lower side, the groups Musicians and Artists
with liberal beliefs are positioned; on the upper
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BERT ABLEBERT RoBERTa ABLERoBERTa

CoLA 0.544 0.550 0.559 0.555
MRPC 0.833 0.817 0.872 0.877
RTE 0.656 0.651 0.692 0.684
SST 0.924 0.926 0.940 0.942
STS-B 0.888 0.886 0.893 0.895
WNLI 0.563 0.563 0.563 0.563

Table 5: GLUE Benchmark. We report the Spear-
man correlation for STS-B, Matthew’s correlation
for CoLA, and the accuracy for all other tasks. Re-
ported results are averaged over three runs.

side, the groups with conservative beliefs, such
as Lawyers and Hispanics. The groups with high
agency are placed on the left side, e.g., Asians
and Scientists, while those with low agency, for
example, Blacks, are on the right.

4.4. GLUE Benchmark
Finally, we check if the ABLE model retains the pro-
ficiency of language models by testing on the GLUE
benchmark (Wang et al., 2018). Following Omrani
et al. (2023) and Kaneko and Bollegala (2021), the
GLUE benchmark tasks with small-scale training
data are chosen to demonstrate that the debiased
models have minimal effects due to task-specific
fine-tuning. We report the performance of the ABLE
model on the six tasks in Table 5. On all six tasks,
the ABLE model performs competitively. The aver-
age accuracy when using ABLE drops slightly on
the RTE task for both ABLEBERT and ABLERoBERTa.
Yet we also observe improved performance in other
tasks such as COLA and STS-B for ABLEBERT.
Based on these experimental results from GLUE,
we conclude that the ABLE model maintains the
language models’ proficiency and does not lose
their generalization ability.

5. Model Applications

In this section, we delve into the utilization of ABLE
models for tasks that can leverage stereotype infor-
mation. Specifically, we focus on toxicity detection
and hate speech detection as our chosen tasks for
analysis.

Datasets. For toxicity, we use the Jigsaw Unin-
tended Bias in Toxicity Classification Dataset 2. Jig-
saw is a crowd-sourced toxicity dataset of over 2 mil-
lion public comments. Each comment is assigned
a toxicity score and labeled as toxic if the score
is greater than or equal to 0.5. For hate speech,

2https://www.kaggle.com/competitions/
jigsaw-unintended-bias-in-toxicity-class
ification/data
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Figure 4: Toxicity in the Agency-Beliefs Dimen-
sion. Agency and belief dimensions of target
groups in the toxicity dataset Jigsaw are shown.

the Measuring Hate Speech Dataset (Kennedy
et al., 2020; Sachdeva et al., 2022) is utilized. The
Measuring Hate Speech corpus (MHS) consists of
50,070 social media comments spanning YouTube,
Reddit, and Twitter, labeled with a hate speech
score by 11,143 annotators. Similar to Jigsaw,
a comment is labeled as hate speech if its hate
speech score is greater than 0.5.

5.1. Stereotyping and Toxicity
We discuss the relationship between stereotyp-
ing and toxicity. Using the trained ABLE model,
we measure the agency and beliefs scores of the
groups in Jigsaw that overlap with those in the
ABC study. Similar to the mapping done on the
AB dataset for Figure 1, the target groups in Jig-
saw are mapped to the demographic groups in the
ABC model for better analysis. The details of the
mapping are provided in Appendix A.

The average agency and beliefs scores of each
group are plotted and shown in Figure 4. Interest-
ingly, we observe many overlaps in the groups’ po-
sitions in Figures 3 and 4. These overlaps suggest
that stereotypical biases are reflected in the toxicity
data. Namely, when a comment mentions a stereo-
type of a particular group, the comment is likely to
be considered toxic. Although most demographic
groups showed overlaps, a few groups, such as
“Asians” and “Hindu,” are not plotted in a similar lo-
cation as in Figure 3. The ABLE model’s prediction
of agency and beliefs scores of these groups do
not align with stereotypical biases of the groups.
We surmise that the reason for this misalignment
may come from the fact that the majority of toxic
comments on those groups have low agency and
high beliefs scores. That is, comments with low
agency and high beliefs scores had high toxicity
scores.

Next, we take a more detailed look into the
agency and beliefs predictions on toxicity data. Ta-

https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/data
https://www.kaggle.com/competitions/jigsaw-unintended-bias-in-toxicity-classification/data
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BERT ABLEBERT
10k 20k 40k 80k 10k 20k 40k 80k

Gender
Men 0.716 0.814 0.825 0.896 0.698 0.768 0.857 0.866

Women 0.750 0.826 0.851 0.922 0.713 0.789 0.864 0.890
Trans 0.716 0.791 0.806 0.881 0.612 0.761 0.821 0.851

Religion

Chrisitan 0.752 0.845 0.870 0.951 0.702 0.814 0.882 0.916
Jewish 0.788 0.827 0.863 0.906 0.663 0.820 0.827 0.886
Muslim 0.725 0.748 0.770 0.824 0.633 0.750 0.760 0.810
Hindu 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Buddhist 1.0 0.667 0.667 1.0 1.0 1.0 0.667 1.0
Atheist 0.736 0.868 0.934 0.983 0.777 0.810 0.942 0.893

Race/ Black 0.659 0.714 0.730 0.778 0.604 0.680 0.735 0.754

Enthic.

White 0.659 0.722 0.751 0.790 0.615 0.684 0.756 0.776
Asian 0.794 0.856 0.875 0.975 0.669 0.806 0.869 0.95
Latino 0.7 0.843 0.843 0.929 0.671 0.814 0.829 0.914
Other 0.625 0.875 0.625 0.875 1.0 0.875 0.75 0.875

Table 6: Toxicity Prediction Among Demographic Groups. On gender, religion, and race/ethnicity
biases, we compare the distribution of accuracy of BERT and ABLEBERT according to the training data
size (10k, 20k, 40k, and 80k).

ble 6 reports the accuracies of toxicity prediction on
each demographic group. BERT and ABLEBERT are
trained on different sizes of training data: 10,000,
20,000, 40,000, and 80,000. As expected, we ob-
serve an improvement in performance as the train-
ing data size increases for both models. The perfor-
mance of the models is also compared according to
the stereotypical bias types: gender, religion, and
race/ethnicity. In all bias cases, ABLEBERT shows
a more even performance across demographic
groups than BERT. For instance, for religion predic-
tions of the models trained on 10k, the maximum
difference across groups for BERT is 1.0, while the
maximum difference for ABLEBERT is 0.367. Yet in
other training settings, we acknowledge that the
difference between BERT and ABLEBERT is not as
significant.

Our proposed method, ABLE, displays competi-
tive performance across experiments on toxicity de-
tection. When toxic comments are projected onto
the ABLE space, they display overlaps with the
stereotyping plot, allowing an understanding and
analysis of the spectrum of stereotypical biases.
Also, ABLEBERT performs competitively across dif-
ferent stereotypical biases in different training set-
tings. These results suggest that there are high
correlations between toxicity and stereotyping and
that the ABLE architecture can be expanded to
tasks pertinent to stereotypical biases.

5.2. Stereotyping and Hate Speech

To further examine the application of the ABLE
model on tasks related to stereotypical biases, we
compare the performance of ABLE across demo-
graphic groups on hate speech detection. BERT

and ABLEBERT are fine-tuned with the training data
of size 20. The models’ prediction accuracies
on test data are measured to compare the perfor-
mance.

As shown in Table 7, the proposed ABLE model
improves hate speech detection throughout all de-
mographic groups except “Jewish”. For the bias
type gender, accuracy improves the most in “Men”.
The performance of "Atheist" shows the sharpest in-
crease in the context of religion. For race/ethnicity,
the greatest improvement occurs in “White”.

We observe that the ABLE model, enriched with
stereotype information, demonstrates outstand-
ing performance on the Measuring Hate Speech
Dataset. Our hypothesis posits that comments con-
taining or amplifying stereotypes are more likely to
be classified as hate speech.

6. Conclusion

Our proposed Agency-BeLiefs Embedding (ABLE)
model represents a proactive approach to learn-
ing stereotypical biases within the model’s embed-
ding space. ABLE stands in stark contrast to the
conventional bias-oblivious methods used to ad-
dress stereotypical biases. Motivated by the latest
social psychology research on stereotyping, the
ABLE model acquires stereotypical biases in the
dimensions of agency and beliefs. To maintain con-
sistency within the embedding space, we employ
contrastive learning, encouraging sentences shar-
ing the same target groups to be closer to each
other.

Through extensive empirical evaluations, we val-
idate that the ABLE model effectively learns to pre-
dict agency/beliefs scores while preserving its lan-
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BERT ABLEBERT

Gender
Men 0.809 0.956
Women 0.739 0.844
Trans 0.852 0.985

Religion

Chrisitan 0.847 0.991
Jewish 0.418 0.355
Muslim 0.865 0.998
Hindu 0.792 0.896
Buddhist 0.767 0.933
Atheist 0.696 0.957

Race/ Black 0.623 0.664

Enthic.

White 0.819 0.947
Asian 0.617 0.678
Latino 0.691 0.773
Other 0.802 0.924

Table 7: Hate Speech Prediction Among De-
mographic Groups. On gender, religion, and
race/ethnicity biases, we compare the distribution
of accuracy of BERT and ABLEBERT.

guage modeling proficiency. Furthermore, we il-
lustrate the practical significance of incorporating
stereotypes with experiments on downstream tasks:
toxicity and hate speech detection. The experimen-
tal results hint at the broader potential applications
of the ABLE model, encompassing the curation of
stereotype data, the analysis of stereotypes within
texts and language models, and more. This evi-
dence underscores the notion that addressing bias
through awareness may indeed yield more substan-
tial benefits than attempting to mitigate it blindly.

7. Limitations

Our work focuses on datasets and models that are
entirely in the English language. Moreover, the
stereotypes in our study are mostly U.S.-based and
are expressed in English. We call for the replication
of our work on multi-lingual datasets with diverse
cultural backgrounds.

Moreover, our AB dataset is constructed based
on various hand-designed rules and the authors’
judgments. We leave the automatic procedure to
encode stereotypical biases into language models
as future work.

8. Ethical Considerations

The data and code for the ABLE model are open to
the public and thus can be used to study stereotypi-
cal bias. The AB dataset, used for both training and
testing of the ABLE model, assumes a particular
framework for coding stereotypes. However, this
framework may not encompass the full range of
stereotypes, limiting the dataset’s scope. There-
fore, while valuable, the AB dataset offers a narrow

perspective on stereotypes. Researchers should
approach its findings with caution, supplementing
them with other methodologies to achieve a more
comprehensive understanding of stereotypes.

Finally, we advise not to use this research for ma-
licious intentions, such as amplifying and spreading
stereotypical biases.
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A. Mapping of the StereoSet and the
ABC Model

The target groups of the StereoSet, the Jigsaw, and
the MHS are mapped to one of the 80 demographic
groups in the ABC model for the visualization of
Figures 3 and the experiments in Section 5. The
mappings of the Steresoet are shown in Table 10.
The mappings of the Jigsaw are shown in Table 8.
Finally, the mappings of the MHS are shown in
Table 9.

Asians asian
Atheist atheist
Blacks black
Buddhist buddhist
Christians christian
Women female
Hindu Hindu
Hispanic latino
Jewish jewish
Men male
Muslims muslim
Trans transgender
Whites white

Table 8: Mappings of the Target Groups of the
Jigsaw and the Demographic Groups in the
ABC Model. The first column lists the demographic
groups in the ABC model. The second column is
the target groups of the Jigsaw that are assigned
to the corresponding demographic group.
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Asians asian
Atheist atheist
Blacks black
Buddhist buddhist
Christians christian
Women female
Hindu Hindu
Hispanic latinx
Jewish jewish
Men male
Muslims muslim
Trans transgender men

transgender women
transgender unspecified

Whites white

Table 9: Mappings of the Target Groups of the
MHS and the Demographic Groups in the ABC
Model. The first column lists the demographic
groups in the ABC model. The second column
is the target groups of the MHS that are assigned
to the corresponding demographic group.

Artists performing artist
Asians Japanese, Vietnam
Blacks African, Ethiopian, Somalia,

Sierra Leon, Ethiopia,
Eriteria, Ghanaian, Eritrean,
Cameroon, Cape Verde

Blue collar plumber, policeman, butcher,
mover, delivery man, tailor

Business peo-
ple

entrepreneur

Children schoolgirl, schoolboy
Christians Bible
Criminals prisoner
Educated chess player, psychologist,

historian, researcher,
mathematician

Elderly grandfather
Employed manager, assistant,

commander, producer
Hindu Bengali, Brahmin, Bangladesh
Lawyers prosecutor
Hispanics Columbian, Ecuador, Hispanic
Men gentlemen, male, himself
Musicians guitarist, musician
Muslims Lebanon, Saudi Arabian

Afghanistan, Syria, Muslim,
Iranian, Morocco, Yemen,
Persian people, Iraq, Arab

Scientists chemist, physicist
Politicians politician
Techies software developer, engineer
White collar civil servant
Whites Russian, Italy, Britain, Spain,

Crimean, Ukrainian, Norway,
Norweigan

Women mommy, sister, mother, herself
Athletes football player

Table 10: Mappings of the Target Groups of the
StereoSet and the Demographic Groups in the
ABC Model. The first column lists the demographic
groups in the ABC model. The second column is
the target groups of the StereoSet that are assigned
to the corresponding demographic group.
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