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Abstract
Differential diagnosis (DDx) is vital for physicians and challenging due to the existence of numerous diseases and
their complex symptoms. Model training for this task is generally hindered by limited data access due to privacy
concerns. To address this, we present DDxGym, a specialized OpenAI Gym environment for clinical differential
diagnosis. DDxGym formulates DDx as a natural-language-based reinforcement learning (RL) problem, where
agents emulate medical professionals, selecting examinations and treatments for patients with randomly sampled
diseases. This RL environment utilizes data labeled from online resources, evaluated by medical professionals for
accuracy. Transformers, while effective for encoding text in DDxGym, are unstable in online RL. For that reason
we propose a novel training method using an auxiliary masked language modeling objective for policy optimization,
resulting in model stabilization and significant performance improvement over strong baselines. Following this
approach, our agent effectively navigates large action spaces and identifies universally applicable actions. All
data, environment details, and implementation, including experiment reproduction code, are made publicly available.

Keywords: Reinforcement Learning, Masked Language Modelling, Knowledge Graphs, Transformers

1. Introduction

Differential diagnosis (DDx) is a crucial yet chal-
lenging task requiring doctors to sequentially nar-
row down potential diseases through various ex-
aminations, each revealing different symptoms.
This process is complex due to the multitude of dis-
eases with similar symptoms and the challenges
associated with time, cost, and risks of differ-
ent diagnostic procedures like CT-scans and la-
paroscopy, which might expose patients to radi-
ation, surgery, and potential complications. Fur-
thermore, access to powerful diagnostic tools such
as an MRI might be limited, thus other avenues
of examination might have to be considered first.
Depending on the disease, the patient’s condi-
tion might also deteriorate while different examina-
tions are applied. Therefore, a quick diagnosis is
paramount.

We approach the task of differential diagnosis
as a single-agent reinforcement learning problem.
Recent research has demonstrated the benefit of
RL agents with long-term planning capabilities,
both in challenging games such as chess(Silver
et al., 2017) and go(Silver et al., 2016), as well
as in real-world applications(Kalashnikov et al.,
2021). Uniquely, we frame this task as a natural-
language-based online-learning problem.

Framing differential diagnosis (DDx) this way

presents an implicit set reduction problem where
the agent aims to identify the patient’s actual dis-
ease from possible diseases via a process of elim-
ination. Strategic planning is essential as both dis-
ease and symptom composition are unknown, with
intricate interactions between symptoms and pro-
cedures. Naively choosing examinations that elim-
inate the most disease candidates might not yield
a diagnosis before the patient ultimately deteriori-
ates. Therefore, considering complete trajectories
given disease priors is needed.

Beyond diagnosing the patient’s condition, the
agent should learn to remedy symptoms that are
particularly severe and harmful, because these
might lead the patient’s condition to deteriorate be-
fore the main diagnosis and treatment of the dis-
ease can be achieved. We aim to capture these
dynamics in our created environment DDxGym
where the agent, acting as a doctor, diagnoses
and treats one such patient per episode.

Medical Text and Transformers for RL We fo-
cus specifically on creating a text-based environ-
ment for this task, since most of the information
necessary for doing differential diagnosis is nat-
urally text-based in the form of the patient’s his-
tory or doctor’s notes. We choose transformer
language models as a baseline to solve this en-
vironment, since they have been shown to be the
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Patient

Agent

State update

        = "... symptoms: nausea, jaundice ..."

Reward 

Action : 
Physicial Examination

RL-GYM

----Initial State-------------------------------
List of symptoms   : nausea 

----step 1 [physical examination]---------------
List of symptoms   : nausea, jaundice, fatigue 
Treated symptoms   : 
Applied procedures : physical examination

----step 2 [run test - bloodtest]---------------
List of symptoms   : nausea, jaundice, fatigue
Treated symptoms   : 
Applied procedures : physical examination, 
                     run test - bloodtest

----step 3 [use device - ct]--------------------
List of symptoms   : nausea, jaundice, fatigue,
                     liver cancer discovered 
Treated symptoms   : 
Applied procedures : physical examination,
                     run test - bloodtest,
                     use device - ct

----step 4-[procedure - radiotherapy]-----------
List of symptoms   : ...
Treated symptoms   : liver cancer discovered
Applied procedures : ...

Figure 1: Left: Overview of DDxGym and the reinforcement learning setup. Given an initial observation
that includes a symptom ”nausea”, the agent chooses a0(physical examination). This results in an addi-
tional symptom ”jaundice” being discovered, as seen in observation O1 with the corresponding reward
r1. Right: A full example episode of our best agent interacting with DDxGym treating liver cancer.

strongest architectures for many natural language
processing tasks.

However, Transformers struggle with instability
in online reinforcement learning problems when
acting as a policy(Parisotto et al., 2020). To ad-
dress this issue, we propose a novel training ap-
proach based on an auxiliary masked language
modelling objective that complements the rein-
forcement learning training. Using this approach,
we outperform other baselines including a stan-
dard transformer, but we show that our environ-
ment remains challenging in this online setting.

Analysis with Medical Professionals We cre-
ate our OpenAI-Gym based environment with data
from online medical resources curated by medical
professionals. We further evaluate this data and
the resulting environment with medical profession-
als. Lastly, we perform an in-depth quantitative
and qualitative analysis on trajectories of our best-
performing agent to highlight strengths and short-
comings of the learned policy. In this analysis,
we also show that symptom-examination overlap
among diseases is a major factor contributing to
the difficulty of this task.

To summarize, the contributions of this paper
are as follows:

1. To the best of our knowledge, we are the first
to phrase the differential diagnosis problem as
an online text-based RL task. We expand this
task with the treatment of the patient.

2. We create an environment and release it to-
gether with the underlying data labelled with

the help of medical professionals1.

3. We propose a masked language model (MLM)
objective as concurrent loss to improve online
RL with transformers: namely, environment
modelling and regularisation. We show that
this approach outperforms other baselines. 2

4. We provide an in-depth qualitative analysis on
the trajectories of our best model.

The remainder of this paper is structured as fol-
lows: in Section 2 we discuss related research, in
Section 3 we detail both the DDxGym environment,
and the knowledge graph it is based on, and in
Section 4 we describe our model and training ap-
proach. Then, in Section 5 we detail our experi-
ments, in Section 6 we discuss our experimental
and analysis results, and we close with Sections 7
and 8 in examining limitations of our work, propos-
ing future work, and our conclusions.

2. Related Work

RL in Automated Diagnosis Systems Given
the interactive nature of the clinical diagnostic pro-
cess, RL has been used as a suitable framework to
solve it. (Tang et al., 2016) proposed an ensem-
ble of neural networks corresponding to anatomi-
cal parts of the body which questions the patient
for symptoms and diagnoses diseases. They fol-
low up on this work by introducing hierarchical rein-

1The data and code for the RL environment
are available at https://github.com/DATEXIS/
Medical-Gym/tree/afigueroa/rayupgrade

2The source code to reproduce our experiments
can be found at https://github.com/DATEXIS/
Medical-RL/tree/afigueroa/rayupgrade

https://github.com/DATEXIS/Medical-Gym/tree/afigueroa/rayupgrade
https://github.com/DATEXIS/Medical-Gym/tree/afigueroa/rayupgrade
https://github.com/DATEXIS/Medical-RL/tree/afigueroa/rayupgrade
https://github.com/DATEXIS/Medical-RL/tree/afigueroa/rayupgrade
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forcement learning (HRL), contextual demograph-
ics, as well as hereditary and medical history in-
formation (Kao et al., 2018). Similarly, (Yuan and
Yu, 2021) decomposed the diagnostic process by
aligning an RL agent trained to uncover symptoms
with a classification objective for the diagnosis step.
Furthermore, an automatic symptom detection sys-
tem based on a graph-memory-network agent was
proposed (Luo et al., 2020). In contrast to these
works, we define the environment to produce only
natural language observations and approach the
training of the agents purely with NLP methods.
Further, we add the additional process of treat-
ment to the patient episodes and we don’t make
a distinction between the action spaces of exami-
nations and treatments.

Structured Medical Knowledge Several au-
thors have focused on creating language defini-
tions to express the medical, structured knowledge
in computer interpretable guidelines for clinical de-
cision support systems (CDSSs) (Shiffman et al.,
2001; De Clercq et al., 2001; Boxwala et al., 2004;
Fox et al., 1998). We don’t focus on the formalism
surrounding medical knowledge representation, in-
stead we create an RL environment. An agent
trained in this environment then proposes exami-
nations and treatments analogous to a CDSS.

Curated knowledge bases are at the core of
many commercial CDSSs (Hirsch et al., 2020; Nor-
don et al., 2019; Razzaki et al., 2018). More gen-
erally, approaches such as UMLS (Lindberg et al.,
1993) or SNOMED (Rothwell and Cote, 1996) aim
to unify several biomedical concepts into abstract
general-purpose knowledge graphs. Being ac-
cordingly general, these are not specific enough
for the symptom-procedure relations required by
DDxGym. We differ by letting an RL environ-
ment be defined by a simple, yet extensible, knowl-
edge base that encompasses multiple diseases
with very concrete edges and semantic descrip-
tions which we make openly available.

Transformers and Reinforcement Learning
Following their success in supervised settings,
transformers are increasingly used in RL. Trans-
formers used as policies face challenges such
as learning stability and low sample efficiency (Li
et al., 2023). (Parisotto et al., 2020) highlight the
problem of stability and tackle memorization tasks
with a gating architecture replacing residual con-
nections. In our approach, we don’t modify the
transformer architecture but rather add a concur-
rent objective to stabilize the policy learning.

Generative language models can be used to
initialize a policy for learning in environments
adapted to yield textual observations (Li et al.,
2022). Similarly, (Yao et al., 2020) use language

Uncovered by

Belongs to

Treated with

Symptom

Treatment

Disease

Examination

Figure 2: Disease relations in the DDxGym knowl-
edge graph. Procedures might connect to different
symptoms and therefore multiple diseases.

models which are fine-tuned on human gameplay
to filter for admissible actions to serve as input to
a policy. These works focus on leveraging the
common-sense grounding the language models
acquired during pre-training, yet don’t use them as
policies. Our approach differs by fully modelling
and learning a policy with a transformer.

(Chen et al., 2021) rephrase RL as a supervised
learning problem solved by an auto-regressive
model of reward, states, and actions. Similarly,
(Carroll et al., 2022) model reward, state, and ac-
tions with bidirectional transformer encoders and
masked language modelling. In our work we don’t
fine-tune the LMs in a supervised setting. We train
our policies exclusively in an online setting.

More recently, in systems such as Instruct-
GPT (Ouyang et al., 2022) and ChatGPT (Schul-
man et al., 2022) transformers have incorporated
RL mechanisms to yield impressive results in inter-
active settings. In contrast, we train our models di-
rectly in an online RL environment with an explicit
reward, hence we don’t utilize a reward approxima-
tion model(RLHF).

3. DDxGym Environment

We understand the problem of diagnosing, and
subsequently curing a patient, as a partially ob-
servable Markov decision process (POMDP) de-
scribed by (S,A, Pa, Ra). Figure 1 shows an
overview of the DDxGym environment as well as
an example episode trajectory.

3.1. Environment Definition

States and Observations Each state s ∈ S con-
sists of: The patient’s disease d ∈ D, the pa-
tient’s symptoms z ∈ Zdisease with their respec-
tive states (hidden, discovered, cured), a main
symptom zmain, the history of actions the agent
has taken, and a decaying value H denoting the
“health” of the patient.
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The observation O given to the agent is a text
sequence that describes the patient’s discovered
and cured symptoms, and the applied procedures.
This emulates an electronic health record (EHR).
The hidden symptoms, the value of H, and the dis-
ease d are not observable, which makes the envi-
ronment as a whole partially observable. An exam-
ple episode with such observations can be seen in
Figure 1 Right.

Actions The action space encompasses all the
procedures that are available to the agent. There
is no way to distinguish actions of examination
from treatment. The actual diagnosis of the dis-
ease occurs implicitly with the examinations. This
is in contrast to other works (Yuan and Yu, 2021),
which model the disease prediction separately.
Our definition of the action space doesn’t reveal
any structure of the problem to the agent which
makes it more challenging.

Episode Dynamics Each episode begins with a
patient with one randomly sampled disease. The
value of H is initialized to a positive integer, in our
case 200. This is a hyperparameter that mainly de-
termines the budget of interactions that the agent
has with the patient. The initial observation in-
cludes one symptom and no procedures. This
symptom is sampled by occurrence probabilities
from the set of all symptoms which are not the main
symptom and have an initial onset. This emulates
the chief complaint i.e. the reason for the patient
to visit the doctor.

Each step in the environment constitutes choos-
ing exactly one procedure to apply to the patient.
With every action, symptoms may be detected or
treated, and the observations and reward are up-
dated accordingly. With each step, regardless of
which procedure the agent applies, the patient de-
teriorates i.e. H is reduced. How quickly the value
deteriorates depends on the severity of the dis-
ease, and the severity of the untreated symptoms
of the patient. This incentivizes the agent to learn
a policy that treats very severe symptoms (e.g.,
internal bleeding), before focusing on diagnosing
the underlying disease. Each episode terminates
when the value of H becomes negative, or if the
disease is detected and treated.

Reward Our environment features a sparse re-
ward structure. The largest positive rewards are
given only when the disease is diagnosed and sub-
sequently treated. Smaller positive rewards are
given for uncovering and treating symptoms that
are not the main symptom. The value of this re-
ward depends on whether the symptoms are diag-
nosed or treated, and on how severe they are. In
each step where the chosen action does not lead

Environment Concept # distinct entities
Diseases 111
Symptoms 384
Examinations 154
Treatments 176

Table 1: DDxGym knowledge graph statistics. Ex-
aminations and treatments result in a total of 330
actions.

to the detection or treatment of any new symptom,
a negative reward is given with the value of the
deterioration of H for this step. This steady nega-
tive reward encourages the training of policies that
treat the patient in the smallest amount of steps
possible, which is desirable.

To summarize, the reward structure of the DDx-
Gym environment is

rt =



1000 if zmain is cured
100 if zmain is discovered
(50, 20, 10) if z ̸= zmain is cured
(20, 10, 5) if z ̸= zmain is discovered∑

zs otherwise
(1)

with rt being the step-wise reward, and
∑

zs being
the sum of the severity of all untreated symptoms
of the patient and zs ∈ (−5,−2,−1). Values in
parenthesis are for high, medium, and low sever-
ity symptoms respectively. This reward structure
results in a lower bound of cumulative reward that
is equal to−H (−200), and an upper bound of 1200
for our data.

3.2. DDxGym-Knowledge Graph

In order to create the DDxGym environment as de-
scribed in the previous section, we need a struc-
tured data definition that captures the medical con-
cepts and interactions of procedures, symptoms,
and diseases, i.e., a knowledge graph. Finding
this type of data is challenging. While there are
a few proprietary knowledge graphs available that
contain this type of information, they are not freely
available for research ((Nordon et al., 2019; Hirsch
et al., 2020) or the work of Infermedica3). Widely
used open medical knowledge graphs such as
UMLS (Lindberg et al., 1993) and SNOMED (Roth-
well and Cote, 1996) don’t capture the treatment-
symptom, or examination-symptom relations that
would be needed to specify the environment. For
that reason, we decide to label our own data and

3https://developer.infermedica.com/
docs/v3/medical-concepts

https://developer.infermedica.com/docs/v3/medical-concepts
https://developer.infermedica.com/docs/v3/medical-concepts
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Symptom Examination Treatment Severity Onset Probability Is main?
A. pancreatitis Run test - blood lipase & amylase IV (Fluids) high initial always yes
Fever Physical Examination - Body temp. antipyretics mid short medium no
Nausea Interview - nausea antiemetics mid short medium no
Jaundice Interview - visual low short medium no

Table 2: Acute Pancreatitis in our knowledge graph. Four symptoms are associated, with the disease
identifier being the main symptom. Each symptom is revealed through at least one examination. The
probability field dictates which non-main symptoms appear, potentially with delayed onset. Though the
primary treatment goal is pancreatitis, addressing fever and nausea may be crucial due to their severity
accelerating patient deterioration. Notably, no direct treatment exists for jaundice in our data.

create a suitable knowledge graph4.

Labelling process. Our knowledge graph is de-
rived from educational disease resources5 curated
by medical professionals. Experts in biomedi-
cal NLP extracted and labeled diseases, symp-
toms, examinations, treatments, and their rela-
tions. Semantic descriptions for symptom entities
were added, detailing probability of occurrence,
their onset, and severity. The interaction of the
entities can be seen in Figure 2. This data was
refined through review and fine-tuning by medi-
cal doctors who normalized entities, disambiguat-
ing acronyms, merged duplicates and completing
missing values. Table 2 displays an example of
labeled entities in the graph.

Knowledge Graph Statistics Table 1 shows the
results of this labelling process. After clean-up and
quality assessment, the environment is comprised
of 111 diseases that are diagnosed and treated
with a sum total of 330 unique procedures. This
represents a relatively large action space and one
of the main factors that make this environment
challenging. This complexity grows as more dis-
eases and procedures are added, as is the case
of highly curated commercial knowledge bases.
While we are limited in this work to our knowl-
edge graph, our approach is generally applicable
to these much larger commercial alternatives.

4. Reinforcement Learning

Learning to solve DDxGym, involves solving the
POMDP described in Section 3. To this end,
we train an agent using online RL. Generally,
DDxGym can be parallelized to yield a large
amount of sampled episodes because of the low
environment-step cost. This is very suitable for RL

4The knowledge graph is available as part of the
RL environment in https://github.com/DATEXIS/
Medical-Gym/tree/afigueroa/rayupgrade

5www.nhsinform.scot, www.mayoclinic.org,
www.nhs.uk

Policy
Language

Model

[CLS] The [MASK] has the following
[MASK]: Nausea, [MASK] ... [SEP]

[CLS] The patient has the following
symptoms: Nausea, Fever ... [SEP]

Vₜ aₜ D
Masking

MLM

Figure 3: Model Architecture: Each environment
step involves two forward passes. First, state
value Vt, next action at, and optionally patient’s dis-
ease are predicted from observation ot. Second,
the masked observation trains the MLM objective.

algorithms such as IMPALA (Espeholt et al., 2018)
in contrast to more sample-efficient algorithms like
PPO (Schulman et al., 2017). Nevertheless, our
implementation of the environment and our usage
of the transformer encoder are algorithm agnostic.
IMPALA expects a model that encodes the obser-
vations and produces an action distribution and a
value estimation of the current environment state.
Since our observations are text-based, we chose
a transformer language model as the encoder.

Transformer Encoder We encode the textual
observations of the environment with a trans-
former. We don’t require generating natural lan-
guage to interact with the environment, thus we
consider encoder-based language models from
the BERT (Devlin et al., 2018) family. To com-
pute the action distribution and value estimation,
the [CLS] embedding of the Transformer encoder
is projected through a corresponding separate lin-
ear layer.

Transformers have been shown to be unstable
as RL policies(Parisotto et al., 2020; Li et al., 2023).
To address this issue, rather than modifying the en-
coder, we add parallel learning objectives. We ex-
plore objectives where they already perform well
in a (self-)supervised setting(Devlin et al., 2018):
masked language modelling and text classification.
The model learns these additional objectives con-
currently with the reward-based IMPALA objec-
tive while interacting with the environment. Fig-
ure 3 illustrates this process.

https://github.com/DATEXIS/Medical-Gym/tree/afigueroa/rayupgrade
https://github.com/DATEXIS/Medical-Gym/tree/afigueroa/rayupgrade
www.nhsinform.scot
www.mayoclinic.org
www.nhs.uk
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Masked Language Modelling(MLM) This task
is motivated by the aim of aligning the model to
the idiosyncrasies of the medical terminology as
well as the way the information is conveyed in the
observations of DDxGym. With this parallel objec-
tive, we believe that we keep the model from over-
fitting to the purely control-based aspect of mod-
elling DDx.

For MLM, we follow the pre-training of
BERT (Devlin et al., 2018). Specifically, for
each environment observation, we mask at ran-
dom 15% of the tokens and task the encoder
with predicting them. These predictions are
then compared to the ground-truth tokens using
token-wise cross-entropy, which is aggregated as
the loss for this objective. Since the computation
of the action distribution and value estimation
require the unmasked observations, we perform
two distinct forward passes, then sum the IMPALA
loss and this objective’s loss. This combined loss
is then applied in a single backward pass.

Disease Prediction Objective We add a super-
vised objective for the model to classify the dis-
ease of the patient in each step. The motivation for
this objective is two-fold. Firstly, we believe that it
is a useful additional signal to model associations
of state spaces and diseases. Secondly, this su-
pervised objective could be used at test time for
explainability: knowing which disease the agent is
predicting in each step could serve as an explana-
tion of why certain procedures are chosen. In con-
trast to the MLM objective, this objective does not
require a second forward pass through the model,
and instead we reuse the [CLS] embedding, and
project it through yet another linear layer. Similar to
the MLM objective, this cross entropy loss is then
summed with IMPALA’s loss.

5. Experiments

We evaluate the different objectives described in
Section 4 using the mean episode reward and the
mean episode length as metrics. Both criteria are
proxies for how well the agent learned to diagnose
and treat a patient. Ideally, a good agent achieves
both, high mean rewards, solving a large subset
of diseases, as well as low episode lengths, treat-
ing patients in an efficient manner. For our exper-
iments we tokenize the observations and truncate
sequences above 128 tokens. Due to time and
resource constraints, we limit the training of our
agents to a maximum of 80M steps.

Transformer Comparison We evaluate three
different models to use one as our policy: BERT-
base(Devlin et al., 2018), the domain adapted

0 20 40 60 80
Million Steps

200

100

0

100

200

300

Re
wa

rd

Encoder Comparison

bert-small
BERT-base
ClinicalBERT

Figure 4: Different pre-trained encoders in the en-
vironment as a policy (see 5, T). Although all mod-
els achieve similar reward, bert-small converges
with higher stability. We show EMA with α = 0.85.

ClinicalBERT(Huang et al., 2019), and BERT-
small (Turc et al., 2019), a compressed version of
BERT. Results of these experiments are illustrated
in Figure 4. All models converge to a mean reward
between 100 and 200, which is poor considering
that the upper bound is approximately 1200. While
ClinicalBERT with its domain adaptation performs
slightly better than the other two models, both Clin-
icalBERT and BERT-base drop sporadically to the
lower bound reward of -200, highlighting their in-
stability. BERT-small performs similarly to BERT-
base, while exhibiting more stability, possibly due
to the regularisation caused by the lower number
of parameters. Further, with BERT-small we are
able to process episodes ≈1.5x faster than with
the larger models. For these reasons we chose
BERT-small for subsequent experiments.

Models and Baselines We assess different
baselines and model variations to evaluate the im-
pact of our methods:

T : We employ a transformer encoder as outlined
in Section 4 with only two added linear layer out-
puts to predict the action distribution and the value
function. This basic variant excludes additional ob-
jectives, and functions as our baseline.

T+PD : We expanded T with one additional lin-
ear layer for the disease prediction objective.

T+MLM : We extended T with an additional MLM
objective as described in Section 4.

T+PD+MLM : Uses both the additional super-
vised disease prediction and the MLM objectives.
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Text-sequence LSTM : We evaluate an
LSTM(Hochreiter and Schmidhuber, 1997) be-
cause of their known sequence modelling abilities
and wide usage in RL. This 3-layer bidirectional
LSTM, with dropout and 256 hidden layer size,
mirrors the vocabulary and word embedding layer
of the transformers for fair comparison.

Random : We evaluate this fully random policy
to set a lower bound.

6. Results and Discussion

6.1. Quantitative Results
Figure 5 shows the results of evaluating the ex-
periments previously described. All of our base-
lines beat the random policy by a wide margin
in mean episode reward. However, some of the
compared models, T in particular, barely achieve
shorter episode lengths. That means these mod-
els learn to diagnose and treat symptoms, but fail
to actually cure the disease. T+MLM significantly
outperforms all models in both reward and episode
length. We also observe this model’s reward is
significantly more stable than T+PD, T+MLM+PD,
and the LSTM models. Additionally, the mean
episode length is the most stable in comparison
to the other models. While the LSTM outperforms
BERT-small without any auxiliary objectives, it falls
short of T+MLM. This is an interesting result since
transformers have superseded LSTMs in super-
vised learning, the RL setting keeps being chal-
lenging and DDxGym is no exception. The ad-
ditional disease prediction objective in T+PD and
T+MLM+PD leads to increased instability, and did
not achieve improved performance. We believe
that this objective distracts the agent from the ac-
tual control problem of diagnosing and treating.

6.2. Qualitative Results
We simulate 5000 episodes of inference with a
checkpoint of T+MLM that achieves the highest
mean reward. To group the diseases we use
episode lengths as they can be easily discretized
and, as shown by previous results, strongly corre-
late with the reward.

Successful diseases We examine the distribu-
tion of the diseases with respect to the episode
lengths Figure 6 Left. We notice that the agent
achieves the near maximal reward for episodes
with 6 steps or less. Threre are 50 such diseases,
almost half of the total. We expand on the action
distributions of this group of diseases at the top
row of Figure 6 (Right). The agent learns to
uniquely use examinations in the first step (only

Figure 5: Five policies on DDxGym, (T+MLM) out-
performs in mean reward (top), episode length
(both), and learning stability treating patients
quicker and more successfully.

blue actions), while in the intermediate steps
the agent continues trying diagnostic actions to
finally treat the main symptom in the last step of
the episode (only magenta actions). Thus, for
these 50 diseases the agent learns the correct
trajectories of examining symptoms, considering
diagnostics, and proposing treatments. We show
one such successful episode of our agent treating
liver cancer in Figure 1.

Notably, the agent learns to discriminate be-
tween diagnostic and treatment actions even
though they are not explicitly distinguishable within
the action space. It is also noteworthy that the
agent learns to treat the disease only once the
main symptom is uncovered, which is evident
since the intermediate steps involve mostly diag-
nostic actions. We believe that this awareness
regarding the action space and episode state is
enabled by the coexisting MLM objective while
training, since via this mechanism recall of past
episodes is tightly coupled to the reward.

Unsuccessful diseases For episodes longer
than 6 steps the rewards are mostly negative (sec-
ond row of Figure 6 Right), which means the agent
is not succesful at uncovering nor treating the dis-
ease. We highlight how for these diseases there’s
no discrimination by the agent of diagnosis and
treatment actions in any of the steps (both ma-
genta and blue actions are present).
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Figure 6: Inference on 5000 episodes with the best T+MLM model. Left: distribution of diseases across
episode lengths. For 50 diseases the agent solves the environment in under 6 steps. A high mean reward
(orange) correlates to a short episode length. Doctor performance shown for comparisson. Right: Action
distributions of episodes solved under 6 steps (top), and in [19, 20] steps (bottom). For solved diseases
the agent learns to uncover symptoms initially (blue) and then follows these with treatments(magenta).
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Figure 7: Mean episode lengths (left) and rewards
(right) distribution based on overlap in examina-
tion actions revealing the main symptom. Dis-
eases with higher overlap have shorter episodes
and higher rewards, while those with low over-
lap present longer episodes, indicating that dis-
eases with narrowly applicable diagnostic actions
are more challenging to diagnose and treat.

Examination Overlap To investigate what
makes certain diseases successful or unsuccess-
ful we analyzed the examinations that uncover
their main symptoms. We construct a disease-
pairwise comparison for the simulated episodes.
We group the diseases with respect to the size of
the intersection of their examinations and denote
this the examination overlap. Figure 7 Left shows
the distributions of the mean episode lengths for
these overlap groups. In the same manner we ex-
amine the behavior of the mean reward in Figure 7
Right. We note that the groups with higher overlap
present both lower episode lengths as well as
higher rewards. The decrease of the examination
overlap leads to a higher episode length, a lower
reward, and a noticeably higher variance for both.
We believe that this relation of the episode length-
/reward and main-examination overlap supports

the idea that diseases are particularly challenging,
when the examinations required to diagnose them
are incresingly specific. We have similar findings
evaluating the environment with medical doctors.

Human Expert Trajectories We sample the per-
formance of a medical doctor in DDxGym for 16
diseases, marking the mean reward and mean
episode length in Figure 6. This experiment shows
a medical professional can achieve almost ideal re-
wards even without prior experience with the envi-
ronment. The doctor identified and used many of
the same actions that were also discovered by our
best agent as being the most generally applicable,
such as running a generic blood test, and phys-
ical examinations. However, as episodes went
longer, the doctor was much more capable than
our agent of choosing procedures that comple-
ment each other to further narrow the set of pos-
sible diseases, failing only in one episode.

7. Limitations and Future Work

Despite aiming to realistically model differential di-
agnosis, resource constraints necessitated simpli-
fications. These limitations, mostly relate to data
collection and granularity, and can be addressed
for enhancement of the DDxGym environment.
For example, the current version only incorporates
text modality, ignoring complex, multimodal patient
data like lab results and images, and it does not
account for disease interactions or comorbidities.
This would require further data labelling and mod-
els beyond transformer encoders.
Additionally, incorporating risks and costs associ-
ated with examinations and treatments is essential.
This would also necessitate additional labels and
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reward structure adjustments, but it would lead
the learning policy to more strongly consider pa-
tient comfort, risks, and costs, opting for specific
actions only when imperative. Finally, improving
the observation generation process through en-
hanced templating or generative models is crucial
due to the challenging nature of Electronic Health
Records (EHRs), which in the natural language
sense are complex and heterogeneous.

8. Conclusion

We present DDxGym, a novel text-based reinforce-
ment learning environment for the core medical
task of differential diagnosis. In addition, we pro-
vide for the community a medical knowledge graph
with 111 diseases and their symptoms, proce-
dures, and their interactions. Further, we propose
a novel masked language modelling objective to
address problems of learning instability and the
overall performance of transformer language mod-
els in online RL. This approach significantly outper-
forms a regular pre-trained transformer and other
baselines. Our analysis shows that our agent ap-
proaches Differential Diagnosis in a similar way as
our medical expert discovering generally effective
examinations, discriminating among procedures
and remedying secondary symptoms.

9. Ethics statement

Differential diagnosis is a challenging and complex
problem, with a direct and immense impact on hu-
man lives. While research in this direction may
yield promising results in terms of accuracy, this
is not sufficient for these models to be applied in
the real world. The major ethical and moral hurdles
that will have to be overcome are transparency, ac-
countability, and fairness. Much more research
has to be done in making sure that such models
can be interpreted, and that they are unbiased, to
understand their exact limitations and where and
why they fail. We also believe, that this research
should not be done to replace medical profession-
als, and only to support them.
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