
LREC-COLING 2024, pages 438–448
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

438

A Decade of Scholarly Research on Open Knowledge Graphs

Houcemeddine Turki∗,κ,ϕ, Abraham Toluwase Owodunni†,κ,
Mohamed Ali Hadj Taieb∗,κ, René Fabrice Bile‡,κ and Mohamed Ben Aouicha∗,κ

∗Data Engineering and Semantics Research Unit, University of Sfax, Sfax, Tunisia
turkiabdelwaheb@hotmail.fr, {mohamedali.hajtaieb, mohamed.benaouicha}@fss.usf.tn

†Masakhane, Abuja, Nigeria
owodunniabraham@gmail.com

‡National Polytechnic School of Maroua, University of Maroua, Maroua, Cameroon
bilerene@gmail.com

κSisonkeBiotik Research Community, Johannesburg, South Africa
ϕUniversity of the People, Pasadena, California, United States of America

Abstract
The proliferation of open knowledge graphs has led to a surge in scholarly research on the topic over the past
decade. This paper presents a bibliometric analysis of the scholarly literature on open knowledge graphs published
between 2013 and 2023. The study aims to identify the trends, patterns, and impact of research in this field,
as well as the key topics and research questions that have emerged. The work uses bibliometric techniques to
analyze a sample of 4445 scholarly articles retrieved from Scopus. The findings reveal an ever-increasing number
of publications on open knowledge graphs published every year, particularly in developed countries (+50 per
year). These outputs are published in highly referred scholarly journals and conferences. The study identifies
three main research themes: (1) knowledge graph construction and enrichment, (2) evaluation and reuse, and
(3) fusion of knowledge graphs into NLP systems. Within these themes, the study identifies specific tasks that
have received considerable attention, including entity linking, knowledge graph embedding, and graph neural networks.
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1. Introduction
The past decade has witnessed remarkable growth
in the use of open knowledge graphs, which has
led to an increase in associated scholarly research
(Hogan et al., 2021). Open knowledge graphs pro-
vide a structured representation of knowledge, mak-
ing it easier to access and analyze information, and
facilitating the development of intelligent applica-
tions (Hogan et al., 2021). During the last decade,
several broad-coverage lexico-semantic knowledge
resources (e.g., Wikipedia and WordNet) have
been processed to create large-scale open knowl-
edge graphs (Hogan et al., 2021). As a result, there
has been a surge in interest in understanding the
construction, evaluation, and integration of these
fully structured databases. In this context, sev-
eral literature surveys have been done to under-
stand how open knowledge graphs are constructed
(Hossain et al., 2020), represented (Cambria et al.,
2021), enriched (Färber et al., 2017; Hogan et al.,
2021), integrated (Mountantonakis and Tzitzikas,
2019), and validated (Paulheim, 2016). Several
bibliometric studies have been conducted as well
to study how scholarly research about knowledge
graphs has evolved over the years (Gandon, 2018;
Chen et al., 2021). However, these studies have
not emphasized the evolution of open knowledge
graphs and how they are currently used and devel-
oped. Open knowledge graphs are easily findable,

accessible, interoperable, and reusable semantic
resources that can provide lexical information in a
variety of natural languages for free (Färber et al.,
2017), making them extremely valuable resources
in computational linguistics.
In this paper, we present a bibliometric study about
scholarly research on open knowledge graphs be-
tween 2013 and 2022 based on Scopus, a large-
scale bibliographic database maintained by Else-
vier (Burnham, 2006). Our decision to utilize Sco-
pus as the primary data source was driven by
its status as the largest proprietary bibliographic
database, renowned for its human curation and em-
phasis on verified, peer-reviewed research (Baas
et al., 2020). The data quality in Scopus, known
for its cleanliness and reliability, is superior to that
of automatically generated databases like Google
Scholar (Baas et al., 2020). While we acknowledge
the potential value of including additional databases
and qualitative analyses, our study was intentionally
designed as an exploratory inquiry. Incorporating
extensive qualitative methods such as expert in-
terviews would have significantly broadened the
scope and extended the duration of our research.
Our primary objective was to provide a foundational,
quantitative overview of the field, setting the stage
for future research that could integrate these addi-
tional dimensions.
We begin by providing an overview of open knowl-
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edge graphs (Section 2). We restricted our anal-
ysis to Scopus because it is the largest human-
curated bibliographic database only including qual-
ity semi-structured bibliographic information for
peer-reviewed scholarly publications (Baas et al.,
2020). Then, we specify our approach for analyz-
ing the research outputs related to open knowledge
graphs (Section 3). After that, we present how the
scholarly production about the topic has evolved
from the perspective of quantity, scholarly impact,
country distribution, and source titles (Section 4).
Later, we identify the main topics of the consid-
ered publications based on the analysis of their
keywords and we study how these topics interacted
together over ten years through the evaluation of
their co-occurrence networks (Section 5). Subse-
quently, we discuss our results through comparison
with the research findings of previous publications
on this topic (Section 6). Finally, we draw conclu-
sions for this output and provide future directions
for open knowledge graph research (Section 7).

2. Open Knowledge Graphs
Knowledge graphs and ontologies are both seman-
tic databases that represent information as state-
ments in the form of triples: Subject, Predicate,
and Object. Statements can either be relational
(where both the subject and object are concepts)
or non-relational (where the object is a string, a
monolingual text, a value, a URL, a DateTime, or
an external identifier) (Turki et al., 2019). The dif-
ference between knowledge graphs and ontologies
is that the latter put semantic information about
all its concepts in a single file, mostly in the Web
Ontology Language (OWL) Format, while knowl-
edge graphs store semantic knowledge about every
concept in a separate file, mainly in the Resource
Description Framework (RDF) Format (Fensel et al.,
2020). This allows knowledge graphs to be more
voluminous than ontologies and to include a large-
scale variety of data, by contrast to ontologies that
are mainly domain-specific and focused on adding
support to relational statements rather than non-
relational ones (Turki et al., 2019). Due to their
triple-based structure, both knowledge graphs and
ontologies can be queried using SPARQL - a query
language ratified in 2008 by the World Wide Web
Consortium (Angles and Gutierrez, 2008). How-
ever, property constraints allowing intrinsic data
validation are differently represented in knowledge
graphs and ontologies. Knowledge graphs are val-
idated using Shape Expressions (ShEx) and the
Shapes Constraint Language (SHACL) (Turki et al.,
2022). As for ontologies, they are validated using
the Semantic Web Rule Language (SWRL) rules
(Liu et al., 2010).
Due to their extensible format, knowledge graphs
are currently used in many fields including natural

language processing (Schneider et al., 2022), ex-
plainable machine learning (Tiddi and Schlobach,
2022), and scholarly communication (Verma et al.,
2022). With the rise of the Internet, open knowl-
edge graphs have been released online under per-
missive licenses (e.g., Creative Commons) to pro-
vide access to large-scale structured and multi-
disciplinary knowledge for people willing to de-
velop knowledge-based systems using the seman-
tic web principles (Färber et al., 2017). DBpe-
dia (Created in 2007) is a knowledge base that
is generated through mapping Wikipedia infoboxes,
links, and categories as RDF triples using bot ed-
itors (Lehmann et al., 2015). YAGO (Created in
2008) is an ontological database that automatically
aligns Wikipedia entries to WordNet synsets and
GeoNames entities to generate multilingual items
including multiple statements combining all the in-
formation included in Wikipedia infoboxes and cat-
egories (real-world data), WordNet (lexical data),
and GeoNames (geographical data) (Rebele et al.,
2016). BabelNet (Created in 2012) is a lexical
database that automatically aligns language edi-
tions of the Wikipedia pages to WordNet synsets
to generate multilingual items that exactly maintain
the same relations as their WordNet equivalents
(Navigli et al., 2021). Wikidata (Created in 2012)
is a multilingual and multidisciplinary knowledge
graph that is collaboratively edited by a community
of volunteers and a set of bots and scripts allowing
the crowdsourcing of structured knowledge from ex-
ternal semantic resources across the Linked Open
Data Cloud (Vrandečić and Krötzsch, 2014). All
these knowledge graphs are growing over the years
and have proven their sustainability to remain oper-
ational across years, their scalability to grow in size,
and their extensibility to cover new topics. They
have also been upgraded to become Findable, Ac-
cessible, Interoperable, and Reusable (FAIR) using
a wide range of programmatic tools (e.g., APIs and
data dumps) and user interfaces (Turki et al., 2019).

3. Proposed Approach
As of March 26, 2023, we retrieved all the biblio-
graphic metadata of scholarly publications related
to open knowledge graphs between 2013 and 2022
from Scopus.1
After downloading the results, we manually re-
viewed them to isolate papers explicitly dedicated to
open knowledge graphs. This blend of automated
search and manual refinement ensured a focused

1Scopus query: TITLE-ABS-KEY ( "knowledge
graph" OR "knowledge graphs" OR "knowledge
base" OR "knowledge database" OR "semantic
base" OR "semantic database" OR "knowledge ba-
sis" OR "graph database" OR "graph databases"
) AND TITLE-ABS-KEY ( "Open" OR "FAIR" OR
"free" ) AND PUBYEAR > 2012.

https://www.scopus.com/results/results.uri?sort=plf-f&src=s&sid=39678d8e446a33e7105054e37d314844&sot=a&sdt=a&sl=273&s=TITLE-ABS-KEY+%28+%22knowledge+graph%22+OR+%22knowledge+graphs%22+OR+%22knowledge+base%22+OR+%22knowledge+database%22+OR+%22semantic+base%22+OR+%22semantic+database%22+OR+%22knowledge+basis%22+OR+%22graph+database%22+OR+%22graph+databases%22+%29+AND+TITLE-ABS-KEY+%28+%22Open%22+OR+%22FAIR%22+OR+%22free%22+%29+AND+PUBYEAR+%3e+2012&origin=searchadvanced&editSaveSearch=&txGid=080fee84730debdd324dd2d25ea08d7f
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and relevant dataset for our analysis. Papers that
are just using open knowledge graphs to assess
generic methods are consequently not included in
this bibliometric study. Then, we analyzed the publi-
cation years, research venues, citation counts, and
country affiliations for the considered publications
and we identified the most cited research publi-
cations and the most commonly used keywords.
Finally, to study the evolution of the topic coverage
of scholarly research on open knowledge graphs,
we construct the keyword co-occurrence networks
for five different periods: 2013-2014, 2015-2016,
2017-2018, 2019-2020, and 2021-2022.
For this purpose, we apply VoSViewer, an open-
source software for bibliographic mapping, to the
Author Keywords and Index Keywords of the re-
search publications as retrieved from Scopus (van
Eck and Waltman, 2009). The visualization pro-
cess assigns weight to the nodes according to their
total link strength, normalizes the network clus-
tering based on association strengths (Waltman
et al., 2010), and discards keywords only included
in less than eight research publications (van Eck
and Waltman, 2009). As well, only the 1000 co-
occurrence relations having the best association
strengths in networks are visualized. The clustering
of the nodes is based on the clustering technique
of VOSviewer, a modularity-based clustering algo-
rithm (Waltman et al., 2010). The resolution param-
eter in VOSviewer’s clustering technique was set
to the default value of 1.00. This parameter setting
aligns with the guidelines provided in van Eck and
Waltman (2014).

4. Time and Space Analysis
As revealed by Scopus, we identified 4445 scholarly
articles utilizing open knowledge graphs published
between 2013 and 2022. The yearly scholarly pro-
duction on this topic has linearly evolved over the
decade from 226 in 2013 to 751 in 2022 as shown
in Figure 1. The research outputs for every year
received an average of more than 4 citations per
paper except the ones for 2020-2022 which have
naturally fewer citations as they had less time to
accumulate them.
The analysis of the citation counts for every single
publication (Figure 2) shows that 31% of papers
are never cited and two-thirds have 5 or fewer ci-
tations. On the other hand, about 12% of papers
have accumulated 20 or more citations, suggest-
ing that they have been noticed and used by the
community. Finally, about 2% of papers became
very popular, with over 100 citations. When see-
ing the list of the most cited publications (Table 1),
we find out that they are descriptive papers for
common open knowledge graphs, particularly mul-
tidisciplinary ones (e.g., DBpedia and Wikidata),
biological ones (e.g., Reactome pathway knowl-

0 100 200 300 400 500 600 700
New publication count (▬▬

2022
2021
2020
2019
2018
2017
2016
2015
2014
2013

Pu
bl
ic
at
io
n 
 e

ar

0 1 2 3 4 5 6
Median citation count (●▬

Figure 1: Citation and publication counts as depen-
dent on the publication year.

0 20 40 60 80 100 ≤200 >200
Citation count

0%

5%

10%

15%

20%

25%

30%

Pu
bl
ic
at
io
n 
pr
op

or
tio

n 
(%

)

Figure 2: Distribution of accumulated citations of
each paper.

edgebase) and medical ones (e.g., ChestX-ray8).
Generic methods specifically developed for open
knowledge graphs are consequently not very im-
pactful and constitute a minority in the 2% most
popular publications.

Paper Cited
Wang et al. (2016) 1854
Lehmann et al. (2015) 1715
Vrandečić and Krötzsch (2014) 1617
Wang et al. (2017) 1541
Croft et al. (2014) 1176
Pawson et al. (2014) 777

Table 1: Most cited publications related to open
knowledge graphs.

When analyzing the country distribution of the re-
search publications (Figure 3), it appears that the
publishing landscape is dominated by developed
countries from North America and Europe (e.g.,
United States of America, Germany, United King-
dom, and Italy), Japan, South Korea, and BRICS
(i.e., Brazil, Russia, India, and China) nations.
When the research productivity of every country
is normalized to its population size, it seems that
developed countries from North America and Eu-
rope keep their prestigious place with a rate of five
publications or more per one million inhabitants
while Japan, South Korea, and BRICS countries
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Figure 3: Citation and publication count as depen-
dent on the country of affiliation. Demography data
is retrieved from the Countryinfo Python Library.
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Figure 4: Citation and publication count as depen-
dent on the conference names.

are lagging behind them with a rate of 2.5 publica-
tions or less per one million inhabitants. Particular
outliers in this perspective are the European coun-
tries of Austria, Switzerland, and the Netherlands.
When identifying the conferences where publica-
tions related to open knowledge graphs are pre-
sented (Figure 4), we found a plethora of publica-
tion venues where such works are regularly submit-
ted. These conferences are all of technical nature
and not linked to other domains like Biomedicine,
though some are oriented more towards text pro-
cessing (e.g., ACL, LREC, and EMNLP), artificial
intelligence (e.g., AAAI and IJCAI), data manage-
ment (e.g., CIKM and VLDB), and some towards
semantic web in general (e.g., ESWC, WWW, and
ISWC). That being said, the top three conferences
where open knowledge graph research is published
are semantic web ones: ESWC (First), ISWC (Sec-
ond), and WWW (Third). Despite the relative dom-
ination of semantic web conferences on the out-
puts of open knowledge graph research, the confer-
ences where scholarly works on the topic are most
impactful are Natural Language Processing (e.g.,
ACL and EMNLP) and Artificial Intelligence (e.g.,
KDD, AAAI) ones.
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Figure 5: Scimago Journal Rank (SCImago, 2023)
and publication counts for the most published schol-
arly journals.

When identifying the main scholarly journals pub-
lishing open knowledge graph research (Figure 5),
we find four main categories of source titles. The
first one is the set of application-oriented jour-
nals, featuring the applications of open knowl-
edge graphs in fields beyond computer science
like Biomedicine and mostly having a high cita-
tion impact (SJR ≥ 2). Examples of these jour-
nals are Nucleic Acids Research, British Journal
of Pharmacology, ISPRS International Journal of
Geo-Information, BMC Bioinformatics, Bioinformat-
ics, Database, Journal of Biomedical Informatics,
and Journal of Biomedical Semantics. The second
group includes specialized scholarly journals about
the Semantic Web, particularly Semantic Web Jour-
nal and Journal of Web Semantics. These jour-
nals do not have a very high citation impact (SJR
≤ 2). However, they publish a significant part of
the research outputs of this research field. The
third group is constituted of open-access mega-
journals, mainly PLoS One, IEEE Access, and Ap-
plied Sciences. These journals are not very im-
pactful (SJR ≤ 2). Finally, the fourth set concerns
the sources publishing knowledge-based systems
such as Knowledge-Based Systems, Expert Sys-
tems with Applications, and IEEE Transactions on
Knowledge and Data Engineering. These journals
have a high citation impact (SJR ≥ 2).

5. Keyword Analysis
When analyzing the main keywords included in
open knowledge graph research, we find that these
keywords include basic terminology of the seman-
tic web and knowledge engineering fields, several
renowned tasks for text processing, application
fields for open knowledge graphs, and the names
of hardware and software resources as shown in
Figure 6. The basic terminology of the semantic
web field like semantic web, ontology, knowledge
base, linked data, and graph database has been
featured in open knowledge graph research for all



442

the period between 2013 and 2022. As for the other
types of keywords, they can be classified based on
their years of onset. The first period (2013-2016)
is characterized by the use of open resources, in-
cluding Linked Open Data Cloud, Wikipedia, and
open data to construct open knowledge graphs.
DBpedia2 and Wikidata3 are two examples of open
knowledge graphs that have been initialized from
relation extraction from Wikipedia and data integra-
tion across the Linked Open Data. At that time, the
mainly used techniques range from classical ma-
chine learning algorithms to basic natural language
processing (e.g., named entity recognition) and in-
formation retrieval (e.g., text mining and relation
extraction) methods and data integration based on
the semantic alignment between multiple resources.
The main purpose of open knowledge graphs in
this period is knowledge representation, particularly
in the context of Big Data, and then data mining
to find specific information inside the generated
open resource using queries for question answer-
ing and customized recommendation purposes. In
this context, RDF (2014), SPARQL (2015), and
Neo4J (2016) have appeared as tools for enabling
open knowledge graph hosting and querying. The
second period (2017-2019) builds upon what has
been achieved during the first period by defining
new applications of open knowledge graphs, partic-
ularly digital humanities and cultural heritage, and
using the recent advances of artificial intelligence,
particularly deep learning to enhance the function-
ality of open knowledge graphs. Thanks to deep
learning, new techniques and tasks have appeared
like link prediction (2017), knowledge graph com-
pletion (2017), and knowledge graph embedding
(2018). The third period (2020-2022) is mainly char-
acterized by the beginning of the COVID-19 pan-
demic, a respiratory disease outbreak that began in
2020 and caused thousands of deaths, urging the
move towards open science and the mass devel-
opment and the increase of the scalability of open
knowledge graphs so that they can become struc-
tured databases for fighting the disease outbreak
and reduce its drawbacks on the worldwide human
population.
Between 2013 and 2014, it is clear that scholarly
research on open knowledge graphs was mainly
application-oriented. As shown in Figure 7, there
are three main keyword clusters. The one in blue
reveals the existence of scholarly works on the de-
velopment of knowledge-based systems driven by
open-source software for natural language process-
ing, information retrieval, knowledge engineering,
computational linguistics, decision support, and se-
mantic relation extraction where open knowledge

2Research already started in 2013.
3Wikidata was created in 2012. Research about it

only began in 2016.

Figure 6: Most common keywords in scholarly pub-
lications related to open knowledge graphs. Note
the split bars for knowledge graph.

graphs are both used as sources and targets of
such intelligent systems. Furthermore, it highlights
efforts for developing semantic web standards and
languages for knowledge representation in open
knowledge graphs. The red cluster shows signif-
icant interactions between the open knowledge
graph applications in Chemistry, Medicine, Genet-
ics, and Bioinformatics to build knowledge bases
for OMICS research and medical education. It also
finds a trend in utilizing open knowledge graphs
for processing bibliographic databases for informa-
tion retrieval and analyzing research production be-
haviours. As for the green cluster, it identifies the
integration of open resources, particularly Ontolo-
gies, Wikipedia, and Linked Open Data Cloud, for
constructing and enriching open knowledge graphs.
It also indicates the development of interesting ap-
plications of knowledge-based systems for social
network analysis and data mining in the medical
context. Later, such systems can be useful to cre-
ate customized open knowledge graphs reflecting
the trends and evolution of the analyzed inputs.
These clusters have significant co-occurrence as-
sociations as revealed by Figure 7, proving an im-
portant interdependence of the three topic clusters
in achieving the final result: The creation and sus-
tainability of open knowledge graphs.
When reproducing the network for 2015-2016 (Fig-
ure 8) and 2017-2018 (Figure 9), we find a simi-
lar behaviour of the topical coverage of scholarly
research on open knowledge graphs. Again, we
report a more compact integration of the open
knowledge graphs applications for clinical medicine,
molecular biology, and Bioinformatics to drive
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Figure 7: Keyword co-occurrence network for the
research works published in 2013-2014.

OMICS research and medical education (Blue in
Figure 8, Blue-Yellow in Figure 9). As in 2013-2014,
this cluster also includes the extraction of structured
data from scholarly publications to enrich and vali-
date open knowledge graphs. The only new update
has been the development of algorithms for the con-
struction of structured data from electronic health
records to automate disease and medical proce-
dure management since 2017-2018 (Yellow in Fig-
ure 9). Furthermore, we identify the stability of the
efforts towards the development of intelligent sys-
tems based on open knowledge graphs for various
purposes including natural language processing,
data mining, and information retrieval with a better
emphasis on new topics like question answering
and demography.4 We also identify the introduction
of a new trend of using machine learning algorithms
at the same period for training knowledge-based
systems based on open knowledge graphs and for
enriching and validating open knowledge graphs
(Yellow in Figure 8, Red in Figure 9). It is clear
as well that the trend towards data integration of
free resources (e.g., Wikipedia and Linked Open
Data) and semantic web standards for constructing
and enriching open knowledge graphs, allowing
to prevent the cold start problem in initiating such
databases, is still ongoing.4 Moreover, we report
a new and significantly growing tendency for de-
veloping a hardware and software infrastructure to
host and process open knowledge graphs (Green
in Figures 8 and 9). This includes the development
of query languages (e.g., SPARQL) and valida-
tion ones (e.g., ShEx), the optimization of query
endpoints, and the construction of big data infras-
tructures for large-scale open knowledge graphs.
This effort is mainly driven by the use of seman-
tic web standards (e.g., RDF) and open-source
software (e.g., Neo4J) and is supported by a theo-
retical work on upgrading the functionality of open
knowledge graphs based on computation theory
and graph theory. This work has partially been
done to support the emergence of open knowledge
graphs for new applications that require less run-
time and more advanced data complexity such as

4Red in Figures 8 and 9.

Figure 8: Keyword co-occurrence network for the
research works published in 2015-2016.

Figure 9: Keyword co-occurrence network for the
research works published in 2017-2018.

Robotics, Education, Virtual Reality, Web Services,
and Industry.
The generation of the keyword co-occurrence net-
work for 2019-2020 (Figure 10) and 2021-2022
(Figure 11) confirms the trends of open knowl-
edge graph research towards the development of
knowledge-based systems for various applications
(Red in Figures 10 and 11), the integration of free
resources for supporting open knowledge graphs,5
the applications of open knowledge graphs in Clin-
ical Medicine, Medical Education, Bioinformatics,
and information retrieval from scholarly publications
(Green in Figures 10 and 11), and the development
of algorithms for sustainable query processing and
optimization.5 The only difference in the efforts to-
wards data integration is the emphasis on the Find-
ability, Accessibility, Interoperability, and Reusabil-
ity (FAIR) principles of open knowledge graphs,
implying the resolution of multiple legal and techni-
cal barriers (Blue in Figures 10 and 11). As for the
medical applications of open knowledge graphs,
what differs is the interest of the research commu-
nity in the COVID-19 pandemic (e.g., COVID-19,
coronavirus disease 2019, and SARS-CoV-2). Be-
yond this, major differences between the trends
in open knowledge graph research before and af-
ter 2019 are the development of open knowledge
graphs for cultural heritage and digital humanities

5Blue in Figure 10, Yellow in Figure 11.
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Figure 10: Keyword co-occurrence network for the
research works published in 2019-2020.

as well as for Internet of Things-driven Industry
(Blue in Figure 10), the use of open knowledge
graphs as an input and output for deep learning
techniques (e.g., long short-term memory) and lan-
guage models (e.g., embeddings) (Red-Yellow in
Figure 10, Red in Figure 11) allowing the genera-
tion of novel machine learning algorithms for knowl-
edge graph processing (e.g., graph embeddings
and graph neural network), and the development of
open knowledge graphs including lexicons and mor-
phology data for natural languages and data about
social interactions across heterogeneous social net-
works (Purple in Figure 11). The latter serves for
language processing and social network analysis
and requires robust cybersecurity algorithms for en-
suring network security and preventing adversarial
attacks (Purple in Figure 11). The purple cluster
emphasizes the interconnection between trustwor-
thy artificial intelligence and machine learning in
the context of knowledge graph creation and de-
velopment (Tiddi and Schlobach, 2022; Schramm
et al., 2023). This involves using knowledge graphs
to elucidate machine learning outputs (Tiddi and
Schlobach, 2022) and demonstrating the applica-
tion of trustworthy machine learning in the evolu-
tion of knowledge graphs (Schramm et al., 2023).
Trustworthy machine learning is grounded in the
development of algorithms designed to ensure that
the output of machine learning models is ethical,
robust, responsible, explainable, secure, and fair,
fostering a comprehensive approach to AI develop-
ment (Liu et al., 2022). The only facets covered by
the cluster are robustness and security, proving that
more efforts should be provided by the scientific
community to ensure that research about machine
learning for knowledge graph development con-
tributes to society and human well-being, avoids
harm, and upholds professional standards of con-
duct and ethical practice.

6. Discussion
The increasing productivity of research outputs
about open knowledge graphs (Figure 1) reflects

Figure 11: Keyword co-occurrence network for the
research works published in 2021-2022.

the growth of interest of the scientific community
in such open resources. With the development of
open science, particularly following the COVID-19
pandemic (Homolak et al., 2020), open knowledge
graphs are more involved as resources for repro-
ducible and trustworthy knowledge-based artificial
intelligence (Edelstein et al., 2020). As well, the
rise of open knowledge graph research is signifi-
cantly linked to the evolution of scholarly research
on the semantic web (Gandon, 2018) and knowl-
edge graphs (Hogan et al., 2021) over the years.
The stable rate of around 4 citations per publication
for open knowledge graph research is acceptable
when compared to ones of other research fields
like economics (Li and Ho, 2008) and chemistry
(Yi et al., 2008) and confirms the interest of the
scientific community in this research field. The dis-
tribution of citations between publications where a
few papers receive a significant number of citations
(Figure 2) goes in line with the shifted Lotka function
that characterizes how citations are allocated to a
set of scholarly publications (Egghe and Rousseau,
2011). The higher citation impact of the descrip-
tion papers of open knowledge graphs (Table 1) is
quite surprising as the most-cited publications in
computer science are mainly literature reviews or
widely used generic algorithms (Ha, 2022). When
seeing the source titles for all the considered re-
search publications, we find that the target journals
for open knowledge graph research are quite the
same as for knowledge graphs research in gen-
eral where major scholarly journals in knowledge
engineering, semantic web, and applied informat-
ics as well as open-access mega-journals are fea-
tured as the most published source titles (Chen
et al., 2021). The only difference is the existence
of Database, a specific journal for open data cu-
ration, among the top publication venues for open
knowledge graph research. As for scholarly con-
ferences, they are mainly CORE A or A* highly-
referred ones except for several CORE B (BigData
[BD], TPDL, and ICWE), CORE C (LREC), and
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unclassified (CCKS, JIST, and SEMANTICS) schol-
arly conferences (Padgham et al., 2021). These
CORE A* and A venues are considered the most
important scholarly conferences for knowledge en-
gineering (Vahdati et al., 2020). Publications in
these highly-referred conferences except ESWC
have a citation rate that is largely above the av-
erage (≥ 4 citations per publication) while other
conferences have a limited citation impact. This
confirms the tendency of CORE A* and A confer-
ences to include more impactful research publi-
cations than other sources due to their empha-
sis on timely innovation-driven research that pro-
vides game-changing breakthroughs (Vrettas and
Sanderson, 2015).

The most published countries are mainly nations
with high traditions in knowledge graph research
(Chen et al., 2021), led by the United States of
America, China, and Germany. These countries
can be classified into two categories (Figure 3):
European and North American developed coun-
tries, and other countries, including fast-growing
mostly over-populated countries including BRICS
(Brazil, Russia, India, and China), South Korea,
and Japan. European and North American coun-
tries have a high rate of publications per capita
(≥ 2.5 per one million inhabitants) by contrast to
other most productive countries. This fact is mainly
explained by the better funding provided to re-
searchers in Europe and North America (Shashnov
and Kotsemir, 2018). The topics of open knowl-
edge graph research, emphasizing the develop-
ment of knowledge-based systems based on these
resources (Gandon, 2018), the applications of open
knowledge graphs in natural language processing,
data mining, and biomedicine (Schneider et al.,
2022; Gandon, 2018; Ristoski and Paulheim, 2016),
and the integration of open resources for generat-
ing open knowledge graphs (Mountantonakis and
Tzitzikas, 2019) (Figures 7 to 11), are common
in the overall knowledge graph research. The oc-
currence of the COVID-19 pandemic in 2020 en-
couraged the development of these three topics
in practice (Chatterjee et al., 2021). The empha-
sis of Wikidata and DBpedia as large-scale open
knowledge resources (Table 1) is mainly due to
the existence of a research and development com-
munity that collaboratively contributes to these two
knowledge graphs (Mora-Cantallops et al., 2019;
Färber et al., 2017). The shift towards establish-
ing new applications of open knowledge graphs in
fields like industry (2017-2018), cultural heritage
(2019-2020), and applied linguistics (2021-2022)
and the use of new techniques, particularly query
processing (2015-2016), logical reasoning (2015-
2016), knowledge graph embeddings (2019-2020),
graph neural networks (2021-2022), and network
security (2021-2022) simultaneously occurred with

the general trends of knowledge graph representa-
tion and reasoning (Cambria et al., 2021), learning
(Chen et al., 2021), and processing (Gandon, 2018;
Hogan et al., 2021). However, it seems that these
aspects appeared in open knowledge graph de-
velopment before scholarly research. Query (e.g.,
SPARQL) and validation (e.g., ShEx and SHACL)
languages have been created between 2008 and
2017 and used in practice since that period (Gan-
don, 2018; Xue and Zou, 2022; Paulheim, 2016).
The development of lexical knowledge graphs be-
gan before 2020 with large knowledge resources
like BabelNet (Navigli et al., 2021) (Created in 2011)
and Wikidata lexicographical data (Nielsen, 2019)
(Created in 2018). The use of relational machine
learning for constructing and validating knowledge
graphs is also an old topic that has been trans-
formed thanks to the advances in deep learning
and pre-trained models (Xia et al., 2021). Such
behavior is not common in the other computer sci-
ence subfields such as machine learning where
scholarly research is ahead of the industry (Kumar
et al., 2020).

7. Summary

In this research paper, we focus on studying the
quantitative evolution of scholarly research on open
knowledge graphs between 2013 and 2022. We
have observed that works in the field is becom-
ing increasingly important and new concepts are
emerging. Since 2019, there has been more in-
terest in developing the interaction between open
knowledge graphs and advanced machine-learning
techniques for better coverage and quality of these
open resources. However, we have observed that
the development of breakthroughs in the field be-
gins with development and industry applications
instead of research projects. This should encour-
age the community to rethink the triple helix relation
(Leydesdorff and Deakin, 2011) between govern-
ment, research, civil society, and industry in open
knowledge graph research.
The enhancement of open knowledge graph re-
search can be enabled in the next few years by en-
couraging cross-disciplinary research to integrate
open knowledge graphs into various scientific dis-
ciplines. Future directions for this work can be
the extension of this bibliometric study to include
a broader range of data sources, such as other
academic databases, preprint servers, and grey
literature, to provide a more comprehensive anal-
ysis of the field. We also envision incorporating
qualitative analysis, such as interviews or surveys
with researchers in the field, to provide a more nu-
anced understanding of the research themes and
directions.
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8. Data Availability
For reproducibility purposes, source code and
data are made available at https://github.
com/Data-Engineering-and-Semantics/
OpenKGBiblio/.
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