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Abstract 
End-to-end automatic speech recognition (E2E ASR) systems often suffer from mistranscription of domain-specific 
phrases, such as named entities, sometimes leading to catastrophic failures in downstream tasks. A family of fast 
and lightweight named entity correction (NEC) models for ASR have recently been proposed, which normally build 
on phonetic-level edit distance algorithms and have shown impressive NEC performance. However, as the named 
entity (NE) list grows, the problems of phonetic confusion in the NE list are exacerbated; for example, homophone 
ambiguities increase substantially. In view of this, we proposed a novel Description Augmented Named entity Cor-
rEctoR (dubbed DANCER), which leverages entity descriptions to provide additional information to facilitate mitiga-
tion of phonetic confusion for NEC on ASR transcription. To this end, an efficient entity description augmented 
masked language model (EDA-MLM) comprised of a dense retrieval model is introduced, enabling MLM to adapt 
swiftly to domain-specific entities for the NEC task. A series of experiments conducted on the AISHELL-1 and 
Homophone datasets confirm the effectiveness of our modeling approach. DANCER outperforms a strong baseline, 
the phonetic edit-distance-based NEC model (PED-NEC), by a character error rate (CER) reduction of about 7% 
relatively on AISHELL-1 for named entities. More notably, when tested on Homophone that contains named entities 
of high phonetic confusion, DANCER offers a more pronounced CER reduction of 46% relatively over PED-NEC for 
named entities. The code is available at https://github.com/Amiannn/Dancer. 

Keywords: named entity correction, automatic speech recognition, domain adaption, nearest neighbor language 
model, masked language model 

1. Introduction 
Owing to the ease of scalability and the monolithic 
nature of end-to-end (E2E) neural models, gen-
eral-purpose E2E automatic speech recognition 
(ASR) models have seen remarkable success 
and surpassed conventional hybrid ASR models 
across a multitude of domains (Radford et al., 
2023). However, a well-known vulnerability of 
E2E ASR (Sainath et al., 2018) models is that they 
often cause mistranscription of domain-specific 
words or phrases, such as named entities (NEs), 
which occur infrequently in the training set. These 
NEs include personal names, locations, organiza-
tions, product names, and more, which are often 
transcribed into more common words in the vo-
cabulary.  
In recent years, a significant body of work has 
strived to address the NEC issue for ASR, which 
broadly falls into three categories: 1) post-training 
integration of external language models (LMs); 2) 
training-time integration of domain-specific con-
texts; 3) post-correction on ASR transcripts. Main-
stream NEC approaches in the first category in-
volve incorporating domain-specific information 
into the ASR model, for example on-the-fly 
rescoring (Hall et al., 2015; Kim et al., 2019) with 
a domain-specific n-gram or neural language 
models. Yet another similar method is to perform 
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shallow fusion with a domain-biased weighted fi-
nite-state transducer (WFST) (Williams et al., 
2018; Pundak et al., 2018; Mohri, 2018). In the 

 
Figure 1: Impact of the named entity list size on 
AISHELL-1 test set. When scaling up the NE 
list, the problems of phonetic confusion in the 
NE list increase substantially. Our proposed 
DANCER model can effectively leverage entity 
semantics to alleviate this problem. There is a 
sizable performance gap between DANCER 
and the phonetic edit-distance-based NEC 
method (PED-NEC) as the entity sizes in-
crease. 
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second category, popular methods include those 
stemming from neural contextual biasing (Bru-
guier et al., 2019; Chen et al., 2019; Jain et al., 
2020; Le et al., 2021; Chang et al., 2021; Sathy-
endra et al., 2022). These methods encode a list 
of domain-specific phrases or named entities into 
contextual embeddings interacting through cross-
attention mechanisms and jointly optimized with 
the ASR model. The third category, known as 
ASR error correction, focuses exclusively on re-
fining ASR transcripts and rectifying errors in the 
text space. Methods of this category typically 
frame NEC for ASR as a machine translation 
problem following an autoregressive sequence-
to-sequence (Seq2Seq) framework   (Mani et al., 
2020; Park et al., 2021; Wang et al., 2020). De-
spite the existing methods mentioned above have 
shown potential to significantly improve the per-
formance of various domain-specific ASR tasks to 
varying extents, each of them still has certain lim-
itations. For example, methods of the first cate-
gory normally require vast amounts of domain-
specific training data, making them tend to be 
data-intensive. As for methods of the second cat-
egory, when the customized list of domain-spe-
cific phrases including hundreds to thousands of 
entities curated from a huge catalog, the compu-
tational requirements of these contextual biasing 
methods become very demanding since they typ-
ically bias the ASR model towards the correct en-
tities through a cross-attention mechanism which 
is relatively computationally intensive. Finally, 
methods of the third category usually suffer from 
slow inference speed because of their autoregres-
sive nature and may produce excessive or hallu-
cinatory refinements since the models are only 
constrained by the text transcripts generated by 
an ASR model, causing the NEC results to deviate 
from the true lexical information of an input utter-
ance.  

Post-correction methods are considered the most 
generic and suitable approach to NEC, especially 
when using a production ASR system running on 
the cloud, which makes it intractable to alter the 
model components of the ASR system. Recent 
work on developing post-correction methods con-
centrates on compensating for the downsides of 
slow inference speed and the absence of acoustic 
constraints mentioned earlier by employing non-
autoregressive models (Leng et al., 2021a; Leng 
et al., 2021b; Leng et al., 2023; Wang et al., 2022; 
Li, 2022), which involves forced-alignment be-
tween named entities and an input utterance (Kuo 
and Chen, 2022; Lin and Wang, 2023).  
Among these, fast and lightweight methods based 
on textual and phonetic similarity computed by 
edit distance algorithms have shown remarkable 
NEC performance (Raghuvanshi et al., 2019; 
Garg et al., 2020). However, as the NE list is en-
larged, the problems stemming from textual and 
phonetic confusion, especially for homophonic 
words or phrases, become substantially worse. 
We thus argue that incorporating the semantic 
meanings of named entities might help alleviate 
phonetic confusion. For this to work, the challenge 
boils down to how to effectively integrate entity 
knowledge into these models meanwhile balanc-
ing the contributions from semantic and phonetic 
matching information of named entities. Lan-
guage models, particularly non-autoregressive 
masked language models (MLMs) (Devlin et al., 
2019), can well encode the semantics of an entity; 
nonetheless, they store existing factual 
knowledge within their parameters solely, making 
it hard to adapt to unseen or rare named entities.  
In this paper, we present a novel description aug-
mented named entity corrector, dubbed 

 
Figure 2: A schematic illustration of our proposed DANCER method. 
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DANCER, which leverages entity descriptions1 to 
tackle the critical issue that the adverse impact of 
phonetic confusion in the NE list will become even 
worse when the NE list increases, as shown in 
Figure 1. Notably, our work also inherits the merits 
of the fast and lightweight edit-distance-based 
NEC model. On this basis, we further develop an 
efficient entity description augmented masked 
language model (EDA-MLM) to work around the 
inherent phonetic confusion among named enti-
ties in the NE list. EDA-MLM is composed of a 
dense retrieval model and entity-description 
memories, empowering it to adapt and accommo-
date well to unseen entities. A series of experi-
ments conducted on the AISHELL-1 (Bu et al., 
2017) and Homophone benchmark datasets 
seem to validate the effectiveness and practicality 
of our method and its associated modeling ap-
proaches.  

2. Methodology 
In this work, we focus primarily on addressing the 
phonetic confusion problem facing the ASR NEC 
process by leveraging entity semantics and their 
fusion with other information cues. Figure 2 illus-
trates the overview architecture of our DANCER 
model. We begin by elaborating on the problem 
formulation and  
the objective of our DANCER model. In the sub-
sequent subsections, we first discuss the strategy 
for detecting corrupted entities and then flesh out 
the model component for performing phonetic-
level retrieval of entities. We then delve into the 
details of the entity description augmented MLM 

 
1 We choose entity description since the text data is most 
easy to access, and the entity usually has a specific defini-
tion. 

(EDA-MLM). After that, we introduce a hyperpa-
rameter to regulate the balance between the use 
of semantics and phonetic  
information of named entities for ASR NEC. Fur-
thermore, we equip the DANCER model with an 
entity rejection mechanism to ensure it does not 
radically replace named entities that are already 
correctly recognized. 

2.1 Overview 
Given an ASR hypothesis with 𝐿𝐿 character tokens 
represented by 𝐱𝐱 = (𝑥𝑥1, ⋯ , 𝑥𝑥𝐿𝐿), and a list of pre-
defined NE list consisting of 𝐶𝐶 entities denoted as 
𝓔𝓔 = {𝐞𝐞1,⋯ , 𝐞𝐞𝐶𝐶}, where 𝐞𝐞𝑐𝑐 is an entity composed 
from a list of character tokens. The goal of an NEC 
model is to identify the possible set of corrupted 
entities ℰ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝐞𝐞1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,   ⋯ ,  𝐞𝐞𝑀𝑀
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�  for the 

ASR hypothesis of a given utterance and replace 
each of them with their correct counterparts me-
ticulously selected from the NE List ℰ . Before 
delving into the detail of our DANCER model, we 
first briefly review the phonetic edit-distance-
based NEC (PED-NEC) model. PED-NEC refines 
an ASR hypothesis 𝐱𝐱 by first detecting all the cor-
rupted entity 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in 𝐱𝐱. PED-NEC then utilizes 
a phonetic-level matching mechanism based on 
the edit-distance algorithm to substitute the cor-
rupted entity by matching the most phonetically 
similar entity picked from the NE list ℰ.  
The intuition behind PED-NEC is that ASR sys-
tems typically mistranscribe entities to acousti-
cally similar words. Hence, a simple phonetic re-
trieval method is expected to be effective in 
achieving high performance. However, when the 
NE list increases, the phonetic confusion among 
entities in the NE list grows significantly, which 

 

Figure 3: A schematic illustration of the proposed entity description augmented masked language 
model (EDA-MLM). 
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leads to a significant performance drop of PED-
NEC. To remedy this, our DANCER model takes 
the description of each entity into account, which 
provides additional semantic clues to alleviate the 
phonetic confusion. This involves providing a list 
of entity-description pairs 𝒞𝒞 = {(𝐞𝐞𝑐𝑐, 𝐝𝐝𝑐𝑐)}𝑐𝑐=1…𝐶𝐶  to 
our model (cf. section 3.2), where 𝐝𝐝𝑐𝑐 is the corre-
sponding description of an entity 𝐞𝐞𝑐𝑐.  
Our proposed DANCER proceeds in four stages: 
1) a corrupted entity detection module is in charge 
of detecting the corrupted entities ℰ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 in the 
ASR hypothesis 𝐱𝐱 ; 2) we sweep through all 
𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 one by one and utilize a phonetic-level re-
triever to retrieve a subset of top-k phonetically 
similar entity candidates ℰℱ  from the NE list ℰ 
with respect to 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; 3) an EDA-MLM model is 
incorporated to rerank the entity candidates ℰℱ 
with their respective descriptions, the entity-de-
scription subset is denoted as 𝒞𝒞ℱ. It is also worth 
mentioning here that we introduce a hyperparam-
eter 𝛼𝛼 during the ranking process to regulate the 
contributions of the phonetic and semantic simi-
larity scores, and we select the entity candidate 
with the highest holistic score to substitute the cor-
rupted entity; and 4) an entity rejector is subse-
quently employed to avoid mistakenly replacing 
named entities that are already correctly recog-
nized. 

2.2 Corrupted Entity Detection 
We formulate corrupted entity detection (CED) as 
a sequence classification task. Given an input of 
ASR hypothesis 𝐱𝐱, the CED model, consisting of 
𝑈𝑈  layers of Transformer (Vaswani et al., 2017) 
blocks, is in charge for categorizing each 𝑥𝑥𝚤𝚤 from 
𝐱𝐱 into three classes with the BIO format. In this 
format, B and I indicate the beginning and interior 
of the corrupted entity, while O represents an un-
corrupted token. To optimize the CED model, we 
utilize cross-entropy loss. 

2.3 Phonetic-level Retrieval 
The phonetic-level retrieval component (i.e., the 
conditional probability 𝑃𝑃𝜂𝜂 ) can be approximated 
by applying Pin(⋅)2, and utilizing a normalized edit 
distance measure, ED(⋅) , to calculate the pho-
netic similarity between 𝐞𝐞𝑐𝑐  and 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , as de-
noted by: 

𝑃𝑃𝜂𝜂(𝐞𝐞𝑐𝑐 | 𝐞𝐞𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  

=
ED(Pin(𝐞𝐞𝑐𝑐), Pin(𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐))
∑ ED�Pin(𝐞𝐞�̃�𝑐), Pin(𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)��̃�𝐞𝑐𝑐∈ℰ
 . (1) 

 
2 Pinyin is the romanization system for standard Mandarin 
Chinese. 

2.4 Entity Description Augmented MLM 
The non-autoregressive masked language model 
(MLM) is renowned for its efficiency and capacity 
to derive rich contextual representations for an an-
chor mask. However, one drawback that MLM 
faced with is its insufficient capacity of adapting 
and accommodating to unseen phrases, as MLM 
merely retains all known factual knowledge within 
its parameter space. Our workaround, entity de-
scription augmented MLM (EDA-MLM), draws 
some inspiration from (Khandelwal et al., 2020; 
Lewis et al., 2020; Fu et al., 2022; Jong et al., 
2022; Wu et al., 2020) and employs a dense re-
trieval mechanism to aid MLM in retrieving se-
mantically similar entity-description pairs for the 
masked corrupted entity whose embedding is de-
rived based on its surrounding context.  
The EDA-MLM model (i.e., the conditional proba-
bility 𝑃𝑃𝜃𝜃) is computed by a bi-encoder neural ar-
chitecture comprising a context encoder F(⋅) and 
an entity encoder G(⋅). Figure 3 illustrates the ar-
chitecture of EDA-MLM. The probability of 𝐞𝐞 being 
the corresponding correct entity for the masked 
corrupted entity ASR hypothesis 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜 constrained 
on the entity-description candidates 𝒞𝒞ℱ  can be 
computed by: 

𝑃𝑃𝜃𝜃(𝐞𝐞 | 𝐱𝐱𝑚𝑚
𝑐𝑐𝑜𝑜𝑜𝑜)

=
exp(F(𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜) ⋅ G(𝐞𝐞, 𝐝𝐝))
∑ exp�F(𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜) ⋅ G(𝐞𝐞,̃ 𝐝𝐝)̃�(�̃�𝐞,𝐝𝐝)̃∈𝒞𝒞ℱ

 , (2) 

where ⋅  denotes the dot-product operation, 𝐞𝐞 ∈
ℰℱ and 𝒙𝒙𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜 = 𝒙𝒙 ∖ 𝒆𝒆𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

For example, when the corrupted entity 𝐞𝐞𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is 

“而在桓,” and the original ASR hypothesis 𝐱𝐱 is: “
韓國媒體報導稱而在桓確實人在日本 .” After 
masking out the corrupted entity, 𝐱𝐱 turns into 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜: 
“韓國媒體報導稱[MASK][MASK][MASK]確實人在

日本.” 

2.4.1 Context Encoder 
The context encoder, denoted by F(⋅), consists of 
𝑈𝑈  layers of Transformer blocks and is followed by 
a span encoder layer. Before passing 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜 into the 
context encoder, we prepend two special tokens 
[ES] and [EE] to mark the beginning and end posi-
tions of the corrupted entity 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  within 𝐱𝐱𝑚𝑚
𝑐𝑐𝑜𝑜𝑜𝑜 , 

which helps in extracting the context embedding 
of the masked entity 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. For example, given 
that the original 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜  is “ 韓 國 媒 體 報 導 稱

[MASK][MASK][MASK]確實人在日本 .” After in-
serting the special tokens, 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜 turns into “韓國媒

體報導稱 [ES][MASK][MASK][MASK][EE]確實人

在日本.” To extract the contextual embedding of 
the masked 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , we first pass 𝐱𝐱𝑚𝑚
𝑐𝑐𝑜𝑜𝑜𝑜  through 



4337

the Transformer blocks, resulting in H ∈ ℝ𝑇𝑇×𝑑𝑑 
which represents the d-dimensional embeddings 
of 𝑇𝑇  tokens in 𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜. Let 𝐡𝐡𝑖𝑖 ∈ ℝ𝑑𝑑 be the hidden em-
bedding of the i-th token. We then concatenate 
the embeddings of the [ES] and [EE] tokens and 
feed the resulting embedding into the span en-
coder to derive the final contextual embedding. 
The span encoder can be defined as follows: 

SpanEncoder([𝐡𝐡𝑜𝑜; 𝐡𝐡𝑒𝑒]) = W[𝐡𝐡𝑜𝑜; 𝐡𝐡𝑒𝑒], (3) 

where 𝑠𝑠  and 𝑒𝑒  denote the positions of the [ES] 
and [EE] tokens, respectively. W represents the 
weight matrix of a trainable linear transform, and 
[⋅ ; ⋅] serves as the concatenation of two embed-
dings.  

2.4.2 Entity Encoder 
The entity encoder G(⋅) is constructed with 𝑈𝑈  lay-
ers of Transformer blocks. To obtain the semantic 
embedding of an entity, we concatenate its corre-
sponding character tokens 𝐞𝐞 and description to-
kens 𝐝𝐝 together. Two special tokens, [CLS] and 
[SEP], are used to separate them. This forms the 
input sequence for the entity encoder. For exam-
ple, when the entity 𝐞𝐞 is "朴泰桓", and the descrip-
tion 𝐝𝐝 is "韓國遊泳運動員出身於韓...", the input of 
the entity encoder turns into, " [CLS]朴泰桓[SEP] 
韓國遊泳運動員出身於韓...[SEP]." After passing 
the input sequence into G(⋅), we extract the em-
bedding of the [CLS] token as the final semantic 
representation G(𝐞𝐞, 𝐝𝐝) of the entity. 

2.4.3 Training 
The objective of EDA-MLM is to explicitly capture 
shared information between the context of the 
masked corrupted entity and the semantics of the 
correct entity description. Therefore, an effective 
approach is to maximize the mutual information 
between the contextual information residing in the 
contextualized representation of the masked cor-
rupted entity F(𝐱𝐱𝑚𝑚

𝑐𝑐𝑜𝑜𝑜𝑜) and the representation of the 
correct entity with its description G(𝐞𝐞, 𝐝𝐝).  

Given a mini-batch of 𝐵𝐵 triples, denoted as 𝓑𝓑 =
{(𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜, 𝐞𝐞𝑖𝑖, 𝐝𝐝𝑖𝑖)}𝑖𝑖∈𝓘𝓘 , where 𝓘𝓘 = {1, ⋯ , 𝐵𝐵}  repre-
sents the index of an arbitrary sample, and 𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜 
represents the masked ASR hypothesis along 
with its corresponding correct entity 𝐞𝐞𝑖𝑖  and de-
scription 𝐝𝐝𝑖𝑖 . The mutual information between 
these two views can be denoted as 
𝐼𝐼(F(𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜), G(𝐞𝐞𝑖𝑖, 𝐝𝐝𝑖𝑖)). To maximize the mutual in-
formation, we employ the infoNCE loss (Oord et 
al., 2018). The infoNCE loss serves as an estima-
tor of mutual information and can be represented 
as 𝐼𝐼�F(𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜), G(𝐞𝐞𝑖𝑖, 𝐝𝐝𝑖𝑖)� ≤ log(𝐵𝐵) −𝓛𝓛𝐵𝐵 . Here, 𝐵𝐵 
represents the size of the training samples, and 
minimizing the objective 𝓛𝓛𝐵𝐵 is equivalent to max-
imizing the lower bound on the mutual infor-
mation. The infoNEC loss can be expressed by: 

𝓛𝓛𝐵𝐵

= −
1
𝐵𝐵

� log
exp(F(𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜) ⋅ G(𝐞𝐞𝑖𝑖, 𝐝𝐝𝑖𝑖))
∑ exp(F(𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜) ⋅ G(𝐞𝐞𝑗𝑗, 𝐝𝐝𝑗𝑗))𝑗𝑗∈ℐ𝑖𝑖∈ℐ
 . (4) 

2.5 Interpolation 
We introduce a hyperparameter 𝛼𝛼 to regulate the 
contributions of the phonetic and semantic scores 
more precisely, and we select the entity with the 
highest holistic score to substitute the corrupted 
entity. The holistic score can be computed by: 
α log 𝑃𝑃𝜂𝜂(𝐞𝐞 | 𝐞𝐞𝑚𝑚

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) +(1 − α) log 𝑃𝑃𝜃𝜃(𝐞𝐞 | 𝐱𝐱𝑚𝑚
𝑐𝑐𝑜𝑜𝑜𝑜). 

2.6 Entity Rejection 
We incorporate an entity rejection mechanism into 
our DANCER model to ensure that it can avoid 

Model 
Test Set NE-Recall (%) 

≤ 0-shot ≤ 5-shot ≤ 100-shot 
Conformer 38.83 50.32 70.55 
PED-NEC 61.73 66.92 79.82 
DANCER 61.77 68.39 80.86 
 
Table 2: Analysis of few-shot generalization 
ability on the AISHELL-1 test set. 

 

Model 
AISHELL Test Set (%) Homophone Test Set (%) 

CER NNE  
CER 

NE 
CER 

NE 
Recall CER NNE 

CER 
NE 

CER 
NE 

Recall 
Conformer 4.62 4.00 11.12 78.36 8.41 5.27 15.58 70.25 

PED-NEC 4.34 4.01 8.14 84.63 10.08 5.35 20.88 56.72 

   - w/o rejection 4.90 4.65 8.22 85.61 10.67 6.05 21.42 56.14 

DANCER 4.29 4.00 7.57 85.85 7.17 5.30 11.33 79.84 

   - w/o rejection 4.84 4.64 7.63 86.81 7.87 6.12 12.04 78.68 

Table 1: Main results of our DANCER model on the AISHELL-1 and Homophone test set. 
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mistakenly replacing named entities that are al-
ready correctly recognized. Our entity rejection 
operates in a manner similar to (Garg et al., 2020) 
and utilizes the n-best ASR hypotheses to deter-
mine whether to accept or reject an entity candi-
date generated by the DANCER model. The text 
span of the entity in each ASR hypothesis pro-
vides additional phonetic information about the 
original audio. If the phonetic information of the 
entity candidate proposed by the DANCER model 
significantly differs from that of the entity span in 
the corresponding locations of all n-best hypothe-
ses, it should be rejected since it might deviate 
from the original audio. 
Given the corrupted entities ℰ1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  in the top-
one hypothesis detected by the corrupted entity 
detector (CED), we first align the corresponding 
corrupted entities with the other top-n hypotheses. 
For example, ℰ𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = (𝐞𝐞1,𝑛𝑛
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ⋯ , 𝐞𝐞𝑀𝑀,𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
represents the corrupted entities in the n-th best 
ASR hypothesis, with 𝐞𝐞𝑚𝑚,𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  denoting the m-th 
corrupted entity within it. The rejection score can 
be calculated as follows: 

Reject(𝐞𝐞𝑚𝑚)
= � 𝑝𝑝𝑛𝑛 ⋅ ED(Pin(𝐞𝐞𝑚𝑚,𝑛𝑛

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), Pin(𝐞𝐞𝑚𝑚))
𝑛𝑛∈𝒩𝒩

, (6) 

where 𝑝𝑝𝑛𝑛  represents the beam search score of 
the top n-th ASR hypothesis, and 𝒩𝒩 = {1, ⋯ , 𝑁𝑁} 
signifies the index of any arbitrary hypothesis in 
the n-best list. If the rejection score Reject(𝐞𝐞�̂�𝑚) for 
the entity hypothesis 𝐞𝐞�̂�𝑚  generated by the 
DANCER model is higher than the rejection score 
Reject(𝐞𝐞𝑚𝑚,1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  of the original corrupted entity 
𝐞𝐞𝑚𝑚,1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 proposed by the CED model, we reject re-
placing the corrupted entity with 𝐞𝐞�̂�𝑚. 

3. Experiments Setup 
3.1 Dataset and Evaluation Metrics 
3.1.1 Dataset 
Our experiments were conducted on AISHELL-1 
and a Homophone test set containing high pho-
netic confusion data sampled from AISHELL-1. 
AISHELL-1 is a commonly used open-source 
speech corpus for evaluating Chinese ASR sys-
tems, containing over 170 hours of Mandarin 
speech data across diverse  
domains, such as “Finance,” “Science and Tech-
nology,” “Sports,” “Entertainment,” and “News.” 
We also utilized the AISHELL-NER dataset (Chen 
et al., 2022), which was constructed based on 
AISHELL-1, to obtain the tagging information of 
named entities. The NE list ℰ  was initially con-
structed from the whole training, development, 
and test sets of AISHELL-1. After filtering out the 

 
3 https://github.com/espnet/espnet 

entities where we could not find their correspond-
ing descriptions (cf. section 3.2), the NE list ℰ con-
tained 16,168 distinct named entities. To con-
struct the Homophone test set, we followed two  
procedures using the AISHELL-1 dataset to sam-
ple high phonetic confused utterances. Firstly, we 
applied  
the Pinyin transformation and the normalized edit 
distance algorithm to calculate the pair-wise pho-
netic similarity score for any two entities in the NE 
list ℰ. If the similarity score between two entities 
was equal to 1, we identified them as a pair of 
phonetically confusing entities. In the second 
step, we collected all distinct phonetic confusing 
entities from the NE list. Next, we curated the ut-
terances containing these confusing entities from 
the AISHELL-1 test set to form the Homophone 
test set. The final Homophone test set contains 
115 highly phonetically confusing speech utter-
ances. 

3.1.2 Evaluation Metrics  
We will evaluate the performance levels of dispar-
ate NEC methods with respect to four metrics: 1) 
CER: overall character error rate on the whole test 
set; 2) NNE-CER: character error rate for the non-
entity characters in the utterance; 3) NE-CER: 
character error rate for entities characters in the 
utterance; and 4) NE-Recall: the recall of the en-
tity in the utterance that are correctly recognized. 

3.2 Entity Description Construction 
To construct entity-description pairs 𝒞𝒞, we utilized 
Chinese Wikipedia and Baidu Baike as our 
sources of knowledge. Initially, we used a given 
entity as the query to search for the most relevant 
article from these two sources. Subsequently, we 
applied a text normalization process to eliminate 
semi-structured data from the acquired article, 
such as those composed of only information 
boxes, tables, and lists. The entity description was 
then formed by extracting the first 100 words from 
the article, as the initial few words generally serve 
as the abstract and can meet our requirements.  

3.3 Baseline and Model Configuration 
3.3.1 Baseline 
Our ASR model comprised a Conformer encoder 
(Gulati et al., 2020) and a Transformer decoder 
(Vaswani et al., 2017) (denoted by Conformer for 
short), trained on the training set of AISHELL-1 
using the ESPnet toolkit3. We utilized the same 
hyperparameter setting as the recipe provided in 
the toolkit. The method proposed in this paper will 
be compared against the phonetic edit-distance-
based named entity corrector (PED-NEC) method 
(Raghuvanshi et al., 2019) (with phonetic features 

https://github.com/espnet/espnet
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and n-best list), which is taken as the strong base-
line in this paper. 

3.3.2 Model Configuration 
We trained each component in the DANCER 
model separately and utilized the n-best ASR 
transcripts of the utterances in the training set of 
AISHELL-1 as additional noisy data to enhance 
our system. Here, we set 𝑁𝑁 = 10. In the entity de-
scription augmented MLM model (EDA-MLM), we 
used 12-layer Transformer blocks initialized with 
the BERT base pre-trained parameters for use in 
the context encoder and the entity encoder. We 
employed a single linear transform with 768 hid-
den dimensions for the span encoder layer.  
To construct the training set for EDA-MLM, we uti-
lized the n-best transcripts of the utterances in the 
training set of AISHELL-1 to form the masked ut-
terance 𝐱𝐱𝑖𝑖

𝑐𝑐𝑜𝑜𝑜𝑜 and the corresponding correct entity 
𝐞𝐞𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. We used open-sourced DPR toolkit4 for 
training our EDA-MLM model with a batch size 
𝐵𝐵 = 32. Before evaluation, we extracted all the 
entity-description embeddings from the 𝒞𝒞  using 
the entity encoder G(⋅) and formed the entity-de-
scription memories. An efficient inner product 
search method was employed to accelerate the 
masked prediction procedure during inference.  
For the corrupted entity detector (CED), we uti-
lized the same BERT base architecture. As there 
were no corrupted entity datasets available, we 
first assigned the BIO tag to the n-best hypothe-
ses from AISHELL-1 training set by aligning them 
with the manuscript. Then, we utilize the aligned 
hypotheses with their corresponding BIO tag to 
form our corrupted entity dataset. When tested on 
the hypotheses of AISHELL-1 test-set transcribed 
by the ASR model, the Precision, Recall and F1 
score of the CED model is 91.49%, 92.66% and 
91.52%, respectively. Finally, through an empiri-
cal study on the effect of alpha 𝛼𝛼 and top-k using 
the development set, we set 𝛼𝛼 = 0.6 and 𝑘𝑘 =  10. 
For the baseline model PED-NEC, we utilize the 

 
4 https://github.com/facebookresearch/DPR 

same CED model, phonetic-level retrieval, and 
entity rejector settings as in DANCER. 

4.  Experimental Results 
4.1 Main Results 
The main results shown in Table 1 demonstrate 
that our approach, which utilizes the semantics of 
the entity, leads to a better reduction in CER for 
both datasets. Particularly on the Homophone test 
set, which contains highly phonetic-confused 
data, our DANCER model achieved an additional 
character error rate (CER) reduction of 28.87% 
relatively over the phonetic edit-distance-based 
NEC (PED-NEC) model.  
Incorporating the entity rejection mechanism may 
slightly decrease the NE recall rate. The inclusion 
of this cautious process allows our model to sig-
nificantly reduce the CER pertaining to the non-
entity parts of test utterances. As such, it benefits 
the overall CER, which could otherwise be ad-
versely affected by errors arising from the misi-
dentification made by the corrupted entity detec-
tor. 

4.2 Detailed Analysis 
4.2.1 Few-shot Generalization 
Table 2 displays the few-shot generalization abil-
ity of both the baseline and our proposed models. 
In this context, 0-shot refers to unseen entities 
during model training, while 5-shot and 100-shot 
indicate entities that appeared within five and one 
hundred times, respectively, in the utterances of 
the training set. Our DANCER model consistently 
outperforms the PED-NEC model. Additionally, 
our EDA-MLM module can effectively adapt and 
accommodate to unseen entities by leveraging 
the entity-description memories, demonstrating 
promising zero-shot ability. 

4.2.2 Impact of the Entity List Size 
This subsection further showcases that when the 
NE list grows, the problem incurred by phonetic 
confusion in the NE list will increase substantially. 
When scaling up the NE list, as shown in Figure 
1, we observe that PED-NEC decreases the entity 
recall rate on the AISHELL-1 test set more se-
verely than DANCER. The gap between PED-
NEC and DANCER increases as the size of the 
entity list increases. 

4.2.3 Impact of the Different Settings of the 
𝜶𝜶 and Top-k 

Figure 4 illustrates an empirical study conducted 
on the AISHELL-1 test set to examine the impact 
of different combinations of 𝛼𝛼 and top-k values on 
the overall CER performance. The hyperparame-

 
Figure 4: Impact of the different settings of 𝛼𝛼 
and top-k on the AISHELL-1 test set. 
 

https://github.com/facebookresearch/DPR
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ter 𝛼𝛼 controls the percentage of the phonetic sim-
ilarity score with the semantic similarity score pre-
dicted by the EDA-MLM. Meanwhile, top-k deter-
mines the initial size of the entity candidates se-
lected by the phonetic-level retriever. As can be 
observed from Figure 4, incorporating the seman-
tic information of entities, wherein (1 − 𝛼𝛼)  is 
greater than zero, reduces the overall CER. The 
combination of equally-weighted phonetic and se-
mantic scores appears to best balance their ef-
fects. However, increasing the number of re-
trieved entities (namely, value of k) leads to in-
creasing instability, which could be attributed to 
the inclusion of entities that deviate significantly 
from the input utterance. Therefore, setting the 
value k equal to 10 seems to be a reasonable 
choice. 

5. Conclusion and Future Work 
In this paper, we have designed and implemented 
a novel entity description augmented named en-
tity corrector for ASR, dubbed DANCER, which 
leverages entity descriptions to provide additional 
information that helps mitigate the problems of 
phonetic confusion incurred by ASR NEC. Specif-
ically, an efficient entity description augmented 
masked language model (EDA-MLM) has been 
proposed to incorporate a dense retriever and en-
tity-description memories to enable adapting and 
accommodating ASR NEC to domain-specific en-
tities. Empirical experiments conducted on the 
AISHELL-1 and Homophone datasets validate the 
effectiveness of our approach. In future work, we 
plan to explore alternative entity modeling re-
gimes, such as graph-based modeling, and incor-
porate the NE list ahead of time into the corrupted 
entity detector to reduce the search space since 
we care more about the corrupted entities whose 
correct counterparts are included in the NE list for 
practical use cases. 

Limitations 
While our model achieves better entity correction 
performance over PED-NEC, it still has several 
limitations. Firstly, the entity description needs to 
be defined in advance to help alleviate the pho-
netic confusion in NEC model. Second, the cor-
rection ability of DANCER is bounded by the de-
tection quality of the CED model. Though effec-
tive, more sophisticated corrupted entity detection 
methods are expected to further improve the per-
formance, which can be a future direction. 
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