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Abstract
We developed a controllable paraphrase generation model for semantic and lexical similarities using a simple and
intuitive mechanism: attaching tags to specify these values at the head of the input sentence. Lexically diverse
paraphrases have been long coveted for data augmentation. However, their generation is not straightforward
because diversifying surfaces easily degrades semantic similarity. Furthermore, our experiments revealed two critical
features in data augmentation by paraphrasing: appropriate similarities of paraphrases are highly downstream
task-dependent, and mixing paraphrases of various similarities negatively affects the downstream tasks. These
features indicated that the controllability in paraphrase generation is crucial for successful data augmentation. We
tackled these challenges by fine-tuning a pre-trained sequence-to-sequence model employing tags that indicate
the semantic and lexical similarities of synthetic paraphrases selected carefully based on the similarities. The
resultant model could paraphrase an input sentence according to the tags specified. Extensive experiments on
data augmentation for contrastive learning and pre-fine-tuning of pretrained masked language models confirmed
the effectiveness of the proposed model. We release our paraphrase generation model and a corpus of 87 million
diverse paraphrases. (https://github.com/Ogamon958/ConPGS)
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1. Introduction

Paraphrases render the meaning of text using dif-
ferent words, phrases, and syntactic structures.
Paraphrase generation (Zhou and Bhat, 2021) con-
tributes to various downstream tasks, among which
data augmentation is one of the primary applica-
tions. Examples include data augmentation for
machine reading comprehension (Yu et al., 2018),
task-oriented dialog systems (Jolly et al., 2020; Gao
et al., 2020), machine translation (Effendi et al.,
2018), and spoken dialogue systems (Okur et al.,
2022). Lexically diverse paraphrases are crucial
in data augmentation because they enhance the
linguistic diversity of the original corpus (Qian et al.,
2019). However, generating lexically diverse para-
phrases is challenging because dynamic surface
changes easily make sentences semantically less
similar (Bandel et al., 2022).

Figure 1 visualises the distributions of seman-
tic and lexical similarities of existing paraphrases
as heatmaps; the former is measured by a fine-
tuned pre-trained model with the Semantic Textual
Similarity Benchmark (STS-B) (Cer et al., 2017)
while the latter by a sentence BLEU score (Pap-
ineni et al., 2002). These paraphrases were gen-
erated by round-trip translation, one of the com-
mon methods of automatic paraphrase generation
(Mallinson et al., 2017; Kajiwara et al., 2020), and
sampled from those in the existing large-scale cor-
pora: ParaNMT-50M (Wieting and Gimpel, 2018)
and Paracotta (Aji et al., 2021). Figure 1 reveals

that paraphrases generated by round-trip transla-
tion and Paracotta are semantically similar, yet their
lexical similarities are also high. Sentence pairs
in ParaNMT-50M are lexically diverse; however,
many of them are semantically too divergent as
paraphrases. These indicate that lexically diverse
yet semantically similar paraphrases are scarce.

Furthermore, our experiments (Section 5 and 6)
empirically reveal that appropriate levels of seman-
tic and lexical similarities for data augmentation
are dependent on downstream tasks and mixing
paraphrases of diverse similarities negatively affect
the data augmentation. These findings indicate
that the controllability in paraphrase generation is
crucial. Unfortunately, no previous studies have al-
lowed intuitive and easy control of these similarities
in paraphrase generation.

To tackle these challenges, we fine-tune a pre-
trained sequence-to-sequence model employing
tags indicating semantic and lexical similarities of
synthetic paraphrases. These tags allow control
of the similarities in generation in a simple and in-
tuitive manner (Johnson et al., 2017). Specifically,
we first generate numerous paraphrase candidates
of various similarities using round-trip translation
with sampling-based decoding. We select a subset
of desirable paraphrases based on the semantic
and lexical similarities as the fine-tuning corpus.
At inference, we can specify the desired similari-
ties of paraphrases using tags. Figure 1(d) shows
the distribution of paraphrases generated by our
model, where lexically diverse yet semantically sim-

https://github.com/Ogamon958/ConPGS
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ilar paraphrases are generated successfully.
We conduct extensive experiments to investigate

the effects of our model on data augmentation for
contrastive learning (Gao et al., 2021; Liu et al.,
2021) and pre-fine-tuning of pretrained language
models (Phang et al., 2018; Arase and Tsujii, 2019).
The experimental results confirm that data augmen-
tation with our controllable paraphrase generation
model boosts the performance of the downstream
tasks. In addition to our codes, we will release our
model so that users can generate paraphrases for
their own problems.1 Furthermore, we also publish
an 87 million paraphrase corpus generated by our
model for off-the-shelf usage of lexically diverse
paraphrases.

2. Related Work

Diverse paraphrase generation has been actively
studied; however, the controllability has been out
of the scope. In addition to round-trip translation,
back-translation is a common approach to generate
paraphrases, as represented by ParaNMT (Wiet-
ing and Gimpel, 2018). ParaBank (Hu et al., 2019)
extended ParaNMT by adding lexical constraints
to the decoder (Hokamp and Liu, 2017; Post and
Vilar, 2018) derived from the Paraphrase Database
(Pavlick et al., 2015). Similarly, the methods of
Niu et al. (2021) and Zeng et al. (2019) increased
the lexical diversity in paraphrase generation by
forcing the decoder to avoid outputting tokens in
source sentences. There have been approaches
adding linguistic knowledge to input, i.e., parse
trees (Iyyer et al., 2018), sentence structures and
keywords that should be used in generation (Yang
et al., 2022), and exemplar sentences (Hosking
and Lapata, 2021; Chen et al., 2019; Bao et al.,
2019). Conversely, Maddela et al. (2021) have in-
creased the diversity in a training corpus by prepro-
cessing of word deletion and sentence splits, while
Goyal and Durrett (2020) explored pre-ordering of
source sentences for syntactic diversity. The other
approaches work in a latent space using reinforce-
ment learning with multiple paraphrase generation
models (Qian et al., 2019), conditional generative
adversarial networks (Cao and Wan, 2020), pertur-
bation of latent representations (Gupta et al., 2018),
and applying dropouts while specifying keywords
and styles (Chen et al., 2022).

Conversely, previous studies have aimed to col-
lect or generate paraphrases of specific similar-
ity values. ParaCotta (Aji et al., 2021) collected
paraphrases by selecting round-trip translation
pairs with low sentence BLEU scores. However,
Figure 1(a) confirmed that lexically diverse para-
phrases are hard to obtain by simple round-trip

1https://github.com/Ogamon958/ConPGS

(a) Round-trip translation

(b) ParaNMT-50M

(c) ParaCotta

(d) Ours: ⟨SIM95⟩ & ⟨BLEU0_5⟩

Figure 1: Heatmaps of semantic and lexical simi-
larities derived from 50k paraphrase samples gen-
erated by previous studies and our model. The
darker the colour of a cell becomes, the higher the
ratio of paraphrases of the corresponding semantic
and lexical similarities becomes.

translation. Chowdhury et al. (2022) train a model
with a corpus with a specific translation edit rate
(Snover et al., 2006) value, while Meng et al. (2021)

https://github.com/Ogamon958/ConPGS
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Figure 2: Overview of construction of our controllable paraphrase generation model

do so with a corpus of specific similarities.
None of these previous methods controls the

level of similarity in paraphrase generation. An ex-
ception is Bandel et al. (2022); their model first
learns to estimate expected semantic, syntactic,
and lexical similarities between paraphrases us-
ing existing paraphrase corpora, i.e., ParaBank.
Based on these values, their model allows to man-
ually specify ‘offsets’ relative to the estimated simi-
larities, determining how far these similarities can
differ in a generated paraphrase. There is no sim-
ple way to set their reasonable values because
these offsets depend on each input sentence. In
contrast, our semantic and lexical similarities are
absolute values, which can be set intuitively based
on how similar or diverse we want the generated
paraphrase to be. Also, unlike our study, which
conducts an extensive extrinsic evaluation to inves-
tigate the effects of generated paraphrases on data
augmentation, Bandel et al. (2022) showed only
intrinsic evaluation results.

3. Controllable Generation

Figure 2 shows the overview of the construction
of our model. We first construct a training corpus,
where semantic and lexical similarities are attached
as tags. We then fine-tune a pretrained sequence-
to-sequence model, on which we can control the
similarities in paraphrase generation using the tags.

3.1. Similarity Estimation
Sentence pairs are preprocessed before similarity
estimation to remove symbols other than a space,
comma, and period so that superficial differences
do not affect the estimation. Semantic similarity
is estimated by the DeBERTaV3 (He et al., 2023)2

in the range of [0, 1], which was fine-tuned with the
STS-B.3 Details of the model training are in the

2https://huggingface.co/microsoft/
deberta-v3-large

3DeBERTa outperformed BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) on the validation set in

Appendix A. Note that this model is used only for
labelling the training corpus, i.e., it is independent
of our paraphrase generation model itself. Lexical
similarity is measured by sentence BLEU after
lower-casing, which has been commonly used to
assess lexical similarity (diversity) (Chen and Dolan,
2011; Tian et al., 2017; Jiang et al., 2020).

Both semantic and lexical similarity scores are
multiplied by 100 to have a range of [0, 100]. We
define lexically diverse paraphrases as sentence
pairs having semantic similarity higher than 70 while
lexical similarity is smaller or equal to 45. We bin
semantic and lexical similarities by the interval of
5, whose tags are ⟨SIM70⟩, ⟨SIM75⟩, . . . , ⟨SIM95⟩
for the former (6 tags in total) and ⟨BLEU0_5⟩4,
⟨BLEU10⟩, ⟨BLEU15⟩, . . . , ⟨BLEU40⟩ for the latter
(8 tags in total), respectively.

3.2. Candidate Generation and Selection
Figure 1(a) revealed that simple round-trip transla-
tion may end up generating sentence pairs seman-
tically similar but with high lexical overlap despite
round-trip translation being one of the most com-
mon methods for automatically generating para-
phrases. Therefore, we employ Top-k sampling
(Fan et al., 2018) while applying the temperature in
the softmax computation in the decoder to increase
lexically diversity:

exp(zi/T )∑
j exp(zj/T )

,

where z is an input vector and T ∈ R+ is the tem-
perature that controls the softness of the output
probability distribution. The larger T makes the
probability split more evenly among the vocabulary.
Therefore, when combined with Top-k sampling,
the model tends to output diverse tokens.

On the flip side, the round-trip translation with
these settings produces semantically less similar
sentences that are no longer paraphrases. As a

our preliminary experiment.
4As we had a smaller number of candidates with BLEU

score less than 10, we merged them into one bin.

https://huggingface.co/microsoft/deberta-v3-large
https://huggingface.co/microsoft/deberta-v3-large
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straightforward remedy, we generate a huge num-
ber of paraphrase candidates and evaluate their
semantic and lexical similarities as described in
Section 3.1. Finally, we extract only lexically di-
verse paraphrases with similarity tags attached.

3.3. Training Corpus Construction

Following Kajiwara et al. (2020), we performed En-
glish to German then German to English round-trip
translation using the de facto standard translators
released by Ng et al. (2019).5 We empirically set
the size of the Top-k sampling and temperature T ,
which were searched in k = {10, 20, 30, 40} and
T = {1.0, 2.0, 3.0, 4.0} respectively. We observed
the distributions of semantic and lexical similarities
of generated candidates using held-out sentences
for development. Furthermore, we sampled small
sets of candidates and manually evaluated the flu-
ency and semantic and lexical similarities. Based
on these observations, we decided to use the 2 set-
tings of (k, T ) = (20, 3.0), (30, 2.0), which confirmed
to produce relatively larger numbers of candidates
being semantically similar while lexically diverse.
We applied these settings combinatorial with di-
rections of forward and backward translations, i.e.,
two settings times two directions, which gave us 4
candidates per input sentence.

As inputs to round-trip translation, we used
the English side of English-German WikiMatrix
(Schwenk et al., 2021) and about 30M English sen-
tences sampled from NewsCrawl (Akhbardeh et al.,
2021). Consequently, we obtained 120M of can-
didate pairs from which we selected lexically di-
verse paraphrases. Remind that we have 6 and
8 tags of semantic and lexical similarities, respec-
tively. We ensure that the distribution of numbers of
paraphrases for the combinations of semantic and
lexical similarities is balanced.6 Finally, we split the
corpus into a training set of 5M pairs and validation
and test sets of 2, 700 pairs each, respectively.

3.4. Paraphrase Generation Model

Our lexically diverse paraphrase generation model
was developed by fine-tuning BART (Lewis et al.,
2020)7 with the corpus constructed in Section 3.3.
At inference, we can input tags of desired lexical
and semantic similarities in generated paraphrases.
We set the beam size to 5 and constrained the
output length to be 0.75 to 1.5 times the input length.

5the wmt19-en-de and wmt19-de-en models un-
der https://huggingface.co/facebook/

6We sampled twice the number of paraphrases for
⟨BLEU0_5⟩ as this bin covers a two times larger range.

7https://huggingface.co/facebook/bart-
base

(a) ⟨SIM95⟩ & ⟨BLEU20⟩

(b) ⟨SIM95⟩ & ⟨BLEU40⟩

Figure 3: Distribution of semantic and lexical simi-
larities on paraphrases generated by our model

4. Profile of Our Paraphrases

Figures 1(d), 3(a), and 3(b) show the distribu-
tions of semantic and lexical similarities of para-
phrases generated by our model when specified
tags of ⟨SIM95⟩&⟨BLEU0_5⟩, ⟨SIM95⟩&⟨BLEU20⟩,
and ⟨SIM95⟩&⟨BLEU40⟩, respectively. The darker
the colour of a cell, the higher the ratio of para-
phrases with the corresponding semantic and lexi-
cal similarities is. For each setting, we generated
paraphrases for 50k sentences sampled from En-
glish Wikipedia8 and evaluated these similarities
as described in Section 3.1. Obviously, the darkest
cells match well with the specified tags. These fig-
ures indicate that our paraphrase generation model
preserves controllability.

Table 1 shows paraphrases generated by our
model with different semantic and lexical similari-
ties (see Appendix B for more examples). Spec-
ifying ⟨SIM95⟩ commands the model to generate
paraphrases with almost equivalent meanings to
the source. The examples show that generated
paraphrases satisfy this condition while achieving
lexical diversity according to the specified tags.
When ⟨SIM70⟩ was specified, which commands
the model to have moderate semantic diversity
in paraphrases, the expression “leg” is converted

8https://huggingface.co/datasets/
princeton-nlp/datasets-for-simcse/
resolve/main/wiki1m_for_simcse.txt

https://huggingface.co/facebook/
https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
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Source: Maria Sharapova has been forced to withdraw with a leg injury .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew with an injury to her leg.
⟨SIM95⟩ ⟨BLEU40⟩ Maria Sharapova had to pull out with a leg injury.
⟨SIM70⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew from the tournament with an ankle injury.
⟨SIM70⟩ ⟨BLEU40⟩ Maria Sharapova has been forced to pull out of the French Open with a leg injury.

Source: The group included four children, Turkish official says .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Four children were among the group, a Turkish government official said.
⟨SIM95⟩ ⟨BLEU40⟩ Four children were among the group, Turkish official says.
⟨SIM70⟩ ⟨BLEU0_5⟩ Four children were among the victims, a Turkish government official said.
⟨SIM70⟩ ⟨BLEU40⟩ Four children were among the victims, Turkish official says.

Table 1: Example paraphrases generated by our model with various semantic and lexical similarities
(bold words are not included in source sentences)

to “ankle” and generated sentences have the ad-
ditional phrases “the tournament” or “the French
open” which drifts the meaning of the source in the
first example. In the second example, the word
“group” is replaced by “victim”, which alters the orig-
inal meaning.

Lexically Diverse Paraphrase Corpus We fur-
ther constructed a large-scale English corpus con-
sisting of 87M of lexically diverse paraphrases for
off-the-shelf usages using our paraphrase gener-
ation model. Source sentences were sampled
from Wiki-40B (Guo et al., 2020). We first con-
ducted language identification9 and selected En-
glish sentences between 10 to 100 tokens. We input
these sentences with tags; combining four seman-
tic similarity tags of ⟨SIM80⟩, ⟨SIM85⟩, ⟨SIM90⟩,
and ⟨SIM95⟩, and four lexical similarity tags of
⟨BLEU0_5⟩, ⟨BLEU10⟩, ⟨BLEU15⟩, and ⟨BLEU20⟩.
In total, we have 16 different combinations of tags
and corresponding paraphrases.

5. Effects on Contrastive Learning

We evaluate the effects of our controllable para-
phrase generation on data augmentation for im-
proving sentence representations using contrastive
learning. As a representative method, we apply our
model to SimCSE (Gao et al., 2021).

5.1. Preliminary: SimCSE
SimCSE fine-tunes a pre-trained masked language
model using contrastive learning that pulls seman-
tically close embeddings together while pushing
apart semantically distant embeddings. SimCSE
can be conducted using either a raw corpus or a
natural language inference (NLI) corpus. When

9https://github.com/bsolomon1124/
pycld3

using the raw corpus, the same sentence is input
to the pretrained model twice and applied dropouts,
which serve as a positive pair. Conversely, nega-
tives are sampled from the mini-batch. When using
the NLI corpus, entailment pairs serve as positives
and contradictive pairs serve as negatives.

Following the original experimental settings of
SimCSE, in this evaluation, BERT-base10 was fine-
tuned using 1M sentences sampled from English
Wikipedia as the raw corpus and 280k pairs from
MNLI (Williams et al., 2018) and SNLI (Bowman
et al., 2015) as the NLI corpus. We used the official
implementation by Gao et al. (2021).11

The effect of SimCSE was evaluated on unsuper-
vised STS using STS12-16 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS-B, and SICK-R (Marelli
et al., 2014), where the evaluation metric is Spear-
man’s rank correlation coefficient (ρ) between esti-
mated similarities and human labels. In all experi-
ments, we report average scores of 5 training and
evaluation trials with random seeds.

5.2. Data Augmentation
We generated paraphrases to use as positive pairs
for SimCSE with the raw corpus instead of generat-
ing them by dropouts as the original SimCSE does.
For SimCSE with the NLI corpus, we paraphrased
pairs in the NLI corpus and added them to the orig-
inal corpus, which doubles the size of the training
corpus. Specifically, a sentence is paired with pos-
itive and negative samples in the NLI corpus, the
three of which were paraphrased and paired again.

We assumed paraphrases with high semantic
similarity are appropriate because SimCSE aims to
improve sentence embeddings for better represent-

10https://huggingface.co/bert-base-
uncased

11https://github.com/princeton-nlp/
SimCSE

https://github.com/bsolomon1124/pycld3
https://github.com/bsolomon1124/pycld3
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://github.com/princeton-nlp/SimCSE
https://github.com/princeton-nlp/SimCSE
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STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
SimCSE on Raw corpus

(Gao et al., 2021) 67.19 81.13 73.13 80.51 77.72 76.08 70.66 75.20
RTT 63.58 73.62 66.48 75.39 73.82 69.83 66.56 69.90

⟨BLEU0_5⟩ 69.10 77.17 71.21 80.66 79.28 77.82 71.78 75.29
⟨BLEU20⟩ 69.89 78.69 72.25 80.90 80.02 78.39 72.20 76.05
⟨BLEU40⟩ 68.91 78.99 72.05 80.67 79.63 77.65 72.13 75.72

SimCSE on NLI corpus
(Gao et al., 2021) 75.32 84.81 80.30 85.58 81.05 84.39 80.42 81.70

RTT 76.32 83.86 80.65 85.88 81.68 84.65 80.34 81.91
⟨BLEU0_5⟩ 76.82 84.84 80.76 86.31 81.72 85.03 80.63 82.30
⟨BLEU20⟩ 76.42 85.22 80.73 86.06 81.53 84.90 80.43 82.18
⟨BLEU40⟩ 76.19 84.96 80.57 85.87 81.58 84.76 80.61 82.07

Table 2: Spearman’s rank correlation coefficients (ρ× 100) measured on the test sets (Bold font indicates
the highest scores.)

ing semantic similarity. In data augmentation, we
fixed the semantic similarity as ⟨SIM95⟩ and varied
lexical similarities by combining tags of ⟨BLEU0_5⟩,
⟨BLEU20⟩, and ⟨BLEU40⟩, respectively. We also
compared data augmentation by round-trip transla-
tion (denoted as ‘RTT’ hereafter) as a baseline. For
RTT, we used the same machine translation mod-
els that generated our training corpus (Section 3.3).
We used a beam search of size 512 and constrained
the output length to be 0.75 to 1.5 times the input
length. This setting is identical to the decoding
method we adapted for our model.

5.3. Overall Results
Table 2 shows the results when trained SimCSE
with the raw and NLI corpora, respectively. The
first rows are the original SimCSE without data aug-
mentation reproduced by us. For SimCSE with the
raw corpus, our model achieved the best average
score when using the lexical similarity of ⟨BLEU20⟩.
Conversely, RTT largely degraded the score of the
original SimCSE. We conjecture this may be be-
cause lexical similarities between paraphrases by
RTT are too high, as shown in Figure 1(a).

For SimCSE with the NLI corpus, our model
again achieved the highest average scores with
the lowest lexical similarity of ⟨BLEU0_5⟩. These
results imply that the appropriate similarities are
task-dependent, which we dig into in Section 6.

5.4. Effects of Augmentation Scale
Next, we investigate the effects of the scale of data
augmentation. Specifically, we scale up the orig-

12We did not use the greedy decoding with sampling as
it generates lexically diverse but semantically dissimilar
sentences, which was empirically confirmed inferior to
beam search on data augmentation.

inal corpus by adding paraphrased pairs on Sim-
CSE with the NLI corpus; i.e., we generate multiple
paraphrases of a sentence by obtaining N -best
hypotheses with beam search.

Figure 4 shows the trends; the X-axis represents
the multiplier of the augmented corpus size relative
to the original size. The Y-axis shows the average
Spearman’s rank correlation coefficients measured
on the STS tasks after SimCSE training of BERT.
We started data augmentation from the half-sized
(used the first half of the corpus) and the full-sized
NLI corpus, which are indicated by dashed and
solid lines, respectively. We also evaluated the
setting that merges paraphrases generated using
different lexical similarity tags as one corpus, de-
noted as ‘Merge’ with yellow lines. Overall, our
paraphrase generation model consistently outper-
forms RTT. It is remarkable that on the half-sized
setting, SimCSE with the double-sized augmented
corpus by ⟨BLEU0_5⟩ is competitive to the original
NLI corpus.

In addition, we have the following observations:
(1) Mixing paraphrases with different lexical sim-
ilarities is harmful. We had an assumption that
combining paraphrases with various lexical similar-
ities further improves the performance. However,
the assumption does not hold for most settings.
We conjecture that lexically diverse paraphrases
benefit SimCSE on NLI corpus while the diversity
(similarity) level should be consistent in a corpus.
Further investigation constitutes our future work. (2)
Improvement gets saturated regarding the scale of
augmentation, which is consistent with previous
studies (Fadaee et al., 2017). Notably, the peak
size of the augmented corpus depends on the size
of the original corpus; double on the half-sized set-
ting (except ⟨BLEU40⟩) while quintuple on the full-
sized setting regardless of the lexical similarities.
Nonetheless, the performance tends to drop faster
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Figure 4: Effects of the scale of data augmentation

Average STS score Sentence BLEU vocabulary size perplexity
(Gao et al., 2021) 81.70 14.21 96,721 247.36

RTT 81.90 14.12 75, 631 184.53
⟨BLEU0_5⟩ 82.37 11.25 91, 318 135.58
⟨BLEU20⟩ 82.16 11.85 88, 032 155.73
⟨BLEU40⟩ 82.15 12.62 85, 597 178.39

Table 3: Linguistic diversities in the NLI corpus and its paraphrases, and average STS scores

on the half-sized setting when adding more para-
phrases.

5.5. Critical Features for Data
Augmentation by Paraphrasing

In this section, we further investigate what features
are crucial for effective data augmentation by lexi-
cally diverse paraphrasing for SimCSE. We mea-
sured linguistic diversities in the original NLI corpus
and their paraphrases generated by RTT and our
model with different tags, respectively. Specifically,
we use the average sentence BLEU between pairs,
vocabulary size, and the perplexity computed by
pre-trained GPT-2 (Radford et al., 2019)13. While a
lower sentence BLEU means paraphrase pairs are
lexically more diverse, a lower perplexity indicates
the corpus is less diverse (more uniform) (Moore
and Lewis, 2010) as a whole.

Table 3 shows the results. The first row corre-
sponds to the SimCSE trained with the original NLI
corpus, while others are trained with only the para-
phrased corpora of the same size. Remarkably,
all SimCSE models trained by our paraphrases,
⟨BLEU0_5⟩, ⟨BLEU20⟩, and ⟨BLEU40⟩, outper-
formed the original SimCSE despite that they are
trained only on synthetic sentences. They also out-
performed paraphrasing by RTT. Table 3 reveals
that our paraphrases have lower sentence BLEU
scores and perplexities than the ones generated by
RTT, while their vocabulary sizes are larger. These
results indicate that for improving SimCSE by data

13https://huggingface.co/gpt2

augmentation, the lexical diversity between sen-
tence pairs and uniformity as a corpus is important.

6. Effects on Pre-Fine-Tuning

We evaluate our paraphrase generation model
on data augmentation for pre-fine-tuning a pre-
trained language model. Specifically, we apply our
model to Supplementary Training on Intermediate
Labeled-data Tasks (STILTs) (Phang et al., 2018).

6.1. Preliminary: STILTs

Pre-fine-tuning improves the performance of the
pretrained language model on downstream tasks
by conducting additional training before fine-tuning.
Phang et al. (2018) showed that pre-fine-tuning
on BERT-large with the MNLI corpus is the best-
performing combination in STILTs.

The performance of pre-fine-tuned BERT was
evaluated on tasks from the GLUE benchmark
(Wang et al., 2018): CoLA (Warstadt et al.,
2019) for linguistic acceptability estimation, SST-2
(Socher et al., 2013) for binary sentiment classifica-
tion, MRPC (Dolan and Brockett, 2005) and QQP14

for paraphrase recognition, STS-B for semantic
textual similarity estimation, and MNLI, QNLI (Ra-
jpurkar et al., 2016)15, and RTE (Bentivogli et al.,

14https://www.quora.com/q/quoradata/
15Phang et al. (2018) used the older QNLIv1, whereas

we used the newer QNLIv2.

https://huggingface.co/gpt2
https://www.quora.com/q/quoradata/
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CoLA SST-2 MRPC QQP STS-B MNLI-m/mm QNLI RTE
BERT 58.5 94.3 88.3 72.4 86.8 86.5 / 85.6 92.7 69.0
STILTs 57.0 94.2 89.0 71.7 88.9 – / – 92.5 79.4
RTT 56.4 94.2 88.6 71.6 88.2 86.3 / 86.1 92.4 79.6
Ours 55.7 94.9 89.2 71.7 88.7 86.5 / 86.2 93.0 80.0

⟨SIM70⟩ ⟨SIM70⟩ ⟨SIM95⟩ ⟨SIM70⟩ ⟨SIM80⟩ ⟨SIM95⟩ / ⟨SIM95⟩ ⟨SIM95⟩ ⟨SIM95⟩
⟨BLEU20⟩ ⟨BLEU40⟩ ⟨BLEU0_5⟩ ⟨BLEU20⟩ ⟨BLEU40⟩ ⟨BLEU20⟩ / ⟨BLEU0_5⟩ ⟨BLEU0_5⟩ ⟨BLEU0_5⟩

Table 4: Test set scores computed in the GLUE benchmark server (Bold font indicates the highest scores.)

Figure 5: Heatmaps of the performance of models trained with augmented corpora by our paraphrases
with different semantic and lexical similarities compared to STILTs with the MNLI corpus

2009) for natural language inference.16 After fine-
tuning using the training sets of these tasks, the
test set scores were computed on the GLUE bench-
mark server17. An exception was MNLI, whose
training set was used for pre-fine-tuning, and thus
fine-tuning was skipped. For more details on the
fine-tuning settings, please refer to Appendix C.

6.2. Data Augmentation
We expanded the training set of the MNLI corpus
using our lexically diverse paraphrase generation
model and conducted pre-fine-tuning under the
same settings with STILTs.18 Paraphrases were
generated in the same manner as the NLI corpus
in Section 5.2 using three semantic similarity tags
of ⟨SIM70⟩, ⟨SIM80⟩, and ⟨SIM95⟩ and three lexi-
cal similarity tags of ⟨BLEU0_5⟩, ⟨BLEU20⟩, and
⟨BLEU40⟩, which produces nine tag combinations
in total. Again, we compared the performance to
data augmentation by round-trip translation (de-
noted as ‘RTT’ hereafter).

6.3. Results and Discussion
Table 4 shows the overall results; for our para-
phrase generation model, only the scores of the
best-performing tag combinations are listed.19 The

16WNLI was excluded because of the known problem:
https://gluebenchmark.com/faq

17https://gluebenchmark.com/leaderboard
18Only the batch size was expanded from 24 to 32 on

all models compared for training efficiency.
19When multiple tag combinations have the same best

score, only one sample is shown due to space limitation.

first row is direct fine-tuning of BERT, and the sec-
ond row is STILTs with the MNLI corpus. The re-
sults confirm that our model outperforms STILTs in
5 tasks and data augmentation by RTT in 8 tasks,
respectively. Figure 5 visualises the performance
variations of our model depending on the tag com-
binations on tasks of SST-2, MNLI-mm, and RTE,
compared to the original STILTs (see Appendix C
for other tasks). In these heatmaps, blue indi-
cates improvement, red indicates deterioration, and
grey represents comparable scores to the original
STILTs. These results clearly show that the appro-
priate tag settings are task-dependent. Therefore,
the controllability of semantic and lexical similari-
ties in paraphrase generation is crucial. Practically,
users may explore appropriate tag settings using a
small development set.

When we investigate the performance of our
paraphrase generation model on each task, it is
particularly effective on tasks like NLI and with a
smaller training corpus, such as MRPC and RTE.
This trend is consistent with the findings by Arase
and Tsujii (2019). While SST-2 does not satisfy
these characteristics, our model still improves its
performance. Considering that the lower semantic
similarities are preferred on this task, i.e., ⟨SIM70⟩
and ⟨SIM80⟩, BERT may have enhanced the robust-
ness for sentiment analysis through pre-fine-tuning
with the semantically more diverse augmented cor-
pus. In contrast, STILTs did not contribute to QQP
and CoLA, even if we applied data augmentation.
We conjecture this is because QQP have suffi-
ciently large fine-tuning corpora, and CoLA is too
distant from the pre-fine-tuning task.

https://gluebenchmark.com/faq
https://gluebenchmark.com/leaderboard
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7. Summary and Future Work

We developed a paraphrase generation model with
controllability of semantic and lexical similarities.
Extensive experiments confirmed the effectiveness
of our model. Furthermore, the results revealed
that appropriate levels of these similarities depend
on downstream tasks while mixing paraphrases of
different semantic and lexical similarities is harmful
to data augmentation.

In future work, we will further investigate the rela-
tionship between semantic and lexical similarities
and the effects of data augmentation. We will also
apply our model to data augmentation for para-
phrasing tasks with scarce resources, such as text
simplification (Sun et al., 2023) and style transfer
(Kajiwara et al., 2020).
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A. Implementation Details

We implemented our model using PyTorch20 and
Hugging Face Transformers21. For the semantic

20https://pytorch.org/ (ver. 1.11.0+cu113)
21https://huggingface.co/docs/

transformers/

similarity estimation model, we used the cross-
encoder architecture (Reimers and Gurevych,
2019). While fine-tuning used STS-B, the model
performance may vary depending on the initializa-
tion seed. Therefore, we trained the model with 10
different random seeds and used the best model
regarding Spearman’s rank correlation coefficient
measured on the validation set.

On fine-tuning BART to construct our lexically di-
verse paraphrase generation model, the batch size
was set to 128. AdamW (Loshchilov and Hutter,
2019) was used as the optimiser and the learning
rate was set to 5e-6 after the grid-search with 5e-6,
1e-5, and 2e-5, which showed the smallest valida-
tion loss. At the end of every epoch, the loss was
computed on the validation set and the training was
terminated when there was no improvement for 5
epochs.

B. Examples of Generated
Paraphrases

Table 5 shows more examples of generated para-
phrases. Furthermore, Table 6 demonstrates how
diverse paraphrases could be when specified vari-
ous tag combinations.

C. Details of Pre-Fine-Tuning
Experiments

For tasks with more than 10, 000 training samples
(SST, QQP, MNLI, QNLI), fine-tuning was con-
ducted for 3 epochs. BERT-large is known to have
training instability when a fine-tuning corpus is
small (Devlin et al., 2019). Therefore, for tasks
with smaller training sets (CoLA, MRPC, STS-B,
and RTE), we fine-tuned BERT for longer epochs
of 10 using 5 random seeds. From these 5 check-
points, we selected the one with the median valida-
tion score.22 The learning rate was set to 2e-5 and
the batch size was 32.

Figure 6 shows the all heatmaps of the perfor-
mance of data augmentation by our paraphrase
generation model compared to STILTs without data
augmentation. These heatmaps indicate that ap-
propriate tags are strongly dependent on down-
stream tasks.

22Phang et al. (2018) fine-tuned BERT with 20 random
seeds and selected the best model. We used the model
with the median validation score for better reproducibility
of our experiment results.

https://pytorch.org/
https://huggingface.co/docs/transformers/
https://huggingface.co/docs/transformers/
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Source: New Broadcasting House in central London took a decade to build .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ The construction of the new central London Broadcasting House took ten years.
⟨SIM95⟩ ⟨BLEU40⟩ The construction of the new Broadcasting House in central London took ten years.
⟨SIM70⟩ ⟨BLEU0_5⟩ The construction of the new station in the centre of London took ten years.
⟨SIM70⟩ ⟨BLEU40⟩ The construction of the new radio station in central London took a decade.

Source: Belle Gibson was awarded Cosmo’s Fun Fearless Female Award last year .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Belle Gibson won last year’s Cosmo Women’s Fun Fearless Award.
⟨SIM95⟩ ⟨BLEU40⟩ Belle Gibson was awarded the Fun Fearless Female Award by Cosmo last year.
⟨SIM70⟩ ⟨BLEU0_5⟩ Belle Gibson won the Cosmo Women’s Fun Fearless Award last year, which was awarded

to the best actress in the world.
⟨SIM70⟩ ⟨BLEU40⟩ Belle Gibson won Cosmo’s Fun Fearless Female Award last year for her role in the film.

Source: Rory McIlroy heads to the Masters hoping to complete a career grand slam .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Rory McIlroy is heading to the Masters in the hope of ending his career as a Grand Slam

winner.
⟨SIM95⟩ ⟨BLEU40⟩ Rory McIlroy is heading to the Masters hoping for a career grand slam.
⟨SIM70⟩ ⟨BLEU0_5⟩ Rory McIlroy is heading to the Masters in the hope of ending his career at the top of the

leaderboard.
⟨SIM70⟩ ⟨BLEU40⟩ Rory McIlroy goes into the Masters hoping to complete a career Grand Slam with a win in

the first round.

Source: The BBC is set to air a two-hour, real-time documentary following a boat .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ The BBC will broadcast a two-hour documentary in real time after a boat trip.
⟨SIM95⟩ ⟨BLEU40⟩ The BBC will broadcast a two-hour, real-time documentary after a boat.
⟨SIM70⟩ ⟨BLEU0_5⟩ The BBC will broadcast a two-hour documentary in real time after a boat accident.
⟨SIM70⟩ ⟨BLEU40⟩ The BBC is to broadcast a two-hour, real-time documentary about a boat crash.

Source: European pilots must fill out forms that ask about mental and physical illnesses .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ European pilots are required to fill in forms asking for mental illness and physical illness.
⟨SIM95⟩ ⟨BLEU40⟩ European pilots must complete forms asking for mental and physical illnesses.
⟨SIM70⟩ ⟨BLEU0_5⟩ European pilots are required to fill in forms asking for mental health and physical health

information, which can be submitted to the European
⟨SIM70⟩ ⟨BLEU40⟩ Pilots must fill out forms asking for mental and physical health information.

Source: Newcastle were denied a penalty against Liverpool on Monday night .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Newcastle were not awarded a penalty in Monday night’s game against Liverpool.
⟨SIM95⟩ ⟨BLEU40⟩ Newcastle were denied a penalty in Monday night’s game against Liverpool.
⟨SIM70⟩ ⟨BLEU0_5⟩ Newcastle were not awarded a penalty in Monday night’s 3-0 win over Liverpool.
⟨SIM70⟩ ⟨BLEU40⟩ Newcastle were denied a penalty in the 3-1 win over Liverpool on Monday night.

Table 5: Paraphrases of various source inputs generated by our model
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Source: Maria Sharapova has been forced to withdraw with a leg injury .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew with an injury to her leg.
⟨SIM95⟩ ⟨BLEU10⟩ Maria Sharapova was forced to pull out due to a leg injury.
⟨SIM95⟩ ⟨BLEU25⟩ Maria Sharapova had to withdraw due to a leg injury.
⟨SIM95⟩ ⟨BLEU40⟩ Maria Sharapova had to pull out with a leg injury.
⟨SIM90⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew from the tournament with an injury to her leg.
⟨SIM90⟩ ⟨BLEU10⟩ Maria Sharapova had to pull out of the tournament due to a leg injury.
⟨SIM90⟩ ⟨BLEU25⟩ Maria Sharapova had to pull out of the tournament with a leg injury.
⟨SIM90⟩ ⟨BLEU40⟩ Maria Sharapova has been forced to pull out of the tournament due to a leg injury.
⟨SIM80⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew from the tournament with an injury to her leg.
⟨SIM80⟩ ⟨BLEU10⟩ Maria Sharapova was forced to pull out of the tournament due to a leg injury.
⟨SIM80⟩ ⟨BLEU25⟩ Maria Sharapova was forced to pull out of the tournament with a leg injury.
⟨SIM80⟩ ⟨BLEU40⟩ Maria Sharapova was forced to retire with a leg injury.
⟨SIM70⟩ ⟨BLEU0_5⟩ Maria Sharapova withdrew from the tournament with an ankle injury.
⟨SIM70⟩ ⟨BLEU10⟩ Maria Sharapova was forced to pull out of the French Open due to a leg injury.
⟨SIM70⟩ ⟨BLEU25⟩ Maria Sharapova has been forced to pull out of the tournament due to a thigh injury.
⟨SIM70⟩ ⟨BLEU40⟩ Maria Sharapova has been forced to pull out of the French Open with a leg injury.

Source: Nike have launched the new World Cup uniforms for the US women’s team .
Tags Generated paraphrases
⟨SIM95⟩ ⟨BLEU0_5⟩ Nike has unveiled new uniforms for the U.S. women’s team at the World Cup.
⟨SIM95⟩ ⟨BLEU10⟩ Nike has unveiled the new U.S. women’s World Cup uniforms.
⟨SIM95⟩ ⟨BLEU25⟩ Nike has launched new World Cup uniforms for the U.S. women’s team.
⟨SIM95⟩ ⟨BLEU40⟩ Nike has unveiled the new World Cup uniforms for the U.S. women’s team.
⟨SIM90⟩ ⟨BLEU0_5⟩ Nike has unveiled the new uniforms for the women’s World Cup.
⟨SIM90⟩ ⟨BLEU10⟩ Nike has unveiled the new uniforms for the U.S. women’s World Cup.
⟨SIM90⟩ ⟨BLEU25⟩ Nike has unveiled the new uniforms for the US women’s national team at the World Cup.
⟨SIM90⟩ ⟨BLEU40⟩ Nike has unveiled the new World Cup uniforms for the U.S. women’s team.
⟨SIM80⟩ ⟨BLEU0_5⟩ Nike has launched new uniforms for the women’s World Cup in the United States.
⟨SIM80⟩ ⟨BLEU10⟩ Nike has unveiled the new uniforms for the U.S. women’s national team.
⟨SIM80⟩ ⟨BLEU25⟩ Nike has launched the new uniforms for the women’s World Cup.
⟨SIM80⟩ ⟨BLEU40⟩ Nike has launched the new World Cup uniforms for the U.S. women’s national team.
⟨SIM70⟩ ⟨BLEU0_5⟩ New U.S. women’s World Cup uniforms have been unveiled by Nike.
⟨SIM70⟩ ⟨BLEU10⟩ Nike has unveiled the new uniforms for the women’s World Cup in Rio de Janeiro.
⟨SIM70⟩ ⟨BLEU25⟩ Nike has launched the new World Cup uniforms for the women’s team of the United States,

which will compete in the World Cup.
⟨SIM70⟩ ⟨BLEU40⟩ Nike has launched the new World Cup uniforms for the US women’s team, which will be

available in the coming weeks.

Table 6: Paraphrases with various tags’ combinations by our model
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Figure 6: Heatmaps of the performance of our paraphrase generation model on all tasks, compared to
STILTs using the original MNLI corpus
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