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Abstract

Sentence representation learning is a fundamental task in NLP. Existing methods use contrastive learning (CL) to
learn effective sentence representations, which benefit from high-quality contrastive data but require extensive human
annotation. Large language models (LLMs) like ChatGPT and GPT4 can automatically generate such data. However,
this alternative strategy also encounters challenges: 1) obtaining high-quality generated data from small-parameter
LLMs is difficult, and 2) inefficient utilization of the generated data. To address these challenges, we propose a
novel adaptive reinforcement tuning (ART) framework. Specifically, to address the first challenge, we introduce
a reinforcement learning approach for fine-tuning small-parameter LLMs, enabling the generation of high-quality
hard contrastive data without human feedback. To address the second challenge, we propose an adaptive iterative
framework to guide the small-parameter LLMs to generate progressively harder samples through multiple iterations,
thereby maximizing the utility of generated data. Experiments conducted on seven semantic text similarity tasks
demonstrate that the sentence representation models trained using the synthetic data generated by our proposed

method achieve state-of-the-art performance. Our code is available at https://github.com/WuNein/AdaptCL.
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1. Introduction

Sentence representation learning is a fundamental
task in natural language processing (NLP), which
encodes sentences into fixed-dimensional vector
representations that capture their semantic mean-
ing or contextual information. These representa-
tions serve as a foundation for various downstream
NLP tasks such as text classification (Suresh and
Ong, 2021), question answering (Karpukhin et al.,
2020) and machine translation (Pan et al., 2021).
Existing sentence representation methods pri-
marily leverage the contrastive learning (CL)
paradigm to learn effective sentence representa-
tions, and the use of high-quality contrastive data
can significantly enhance the performance of sen-
tence representation models. The principle of con-
trastive learning involves guiding sentence rep-
resentation models to differentiate between pos-
itive (similar) and negative (dissimilar) sentences.
There are several approaches to obtain contrastive
data, including various data augmentation meth-
ods (e.g., dropout (Gao et al., 2021b), word repeti-
tion (Wu et al., 2022b), case switch and retrieved
negative (Wang et al., 2022c)) and direct utiliza-
tion of existing human-annotated datasets (e.g.,
QQP, Flicker30K, ParaNMT and NLI (Gao et al.,
2021b)). Among these approaches, direct utiliza-
tion of human-annotated NL/ data has yielded the
most favorable results. This highlights the impor-
tance of high-quality contrastive data, but anno-
tating such data demands substantial human ef-
fort. Therefore, a natural question arises: can we
explore the possibility of automatically generating
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high-quality contrastive data to further improve the
performance of sentence representation models?

Recently, large language models (LLMs), such
as ChatGPT (Ouyang et al., 2022) and GPT4 (Ope-
nAl, 2023), have achieved success as data gen-
erators in various NLP tasks (Zhang et al., 2023).
This achievement has opened up new possibilities
for automatically generating high-quality synthetic
contrastive data. However, existing methods heav-
ily rely on large-parameter LLMs ' for direct data
generation, resulting in significant APl expenses or
high costs for local deployment (Hsieh et al., 2023).
Even when utilizing medium-parameter LLMs, the
expenses remain substantial.

A more cost-effective strategy is to utilize small-
parameter LLMs to generate synthetic data and
enhance sentence representation models. How-
ever, this alternative strategy also encounters chal-
lenges:

« Firstly, obtaining high-quality data from small-
parameter LLMs is difficult. An intuitive ap-
proach is to directly generate data from the
small-parameter LLMs, However, the data
quality is poor: 1) the generated data may
contain errors. Requesting a positive sample
might result in a negative one, and vice versa.

'In this paper, we roughly categorize these large lan-
guage models by their model sizes: small-parameter
LLMs (less than 20B, such as WizardLM 7B (Xu et al.,
2023)), medium-parameter LLMs (between 20B and
100B, such as LLAMA 70B (Touvron et al., 2023)) and
large-parameter LLMs (over 100B, such as ChatGPT
and GPT4).

LREC-COLING 2024, pages 358-371
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0



2) The generated data might not be sufficiently
hard, leading to minimal improvements in the
performance of existing sentence represen-
tation models. An alternative approach is to
use the fine-tuned small-parameter LLMs to
generate data, but lack of supervised data.

» Secondly, the methods for utilizing generated
data are inefficient. Existing methods typically
generate a large amount of homogeneous data
at once to ensure adequate model training.
However, only a small portion of this data is
eventually utilized. This approach not only re-
sults in a waste of computational resources,
but also fails to fully utilize the data generation
capabilities of language models.

To address these challenges, we propose a novel
adaptive reinforcement tuning (ART) framework.
This framework aims to optimize small-parameter
LLMs in a reinforcement learning manner to adap-
tively generate hard contrastive samples with mul-
tiple iterations. These samples are then used to
enhance the performance of existing sentence rep-
resentation models. Specifically, to address the
first challenge, we introduce a reinforcement learn-
ing approach for fine-tuning small-parameter LLMs,
enabling the generation of high-quality contrastive
data without human feedback. The key to this rein-
forcement learning approach lies in the creation of a
novel dual reward model, capable of automatically
assessing the correctness and difficulty of the data
generated by the LLMs. To address the second
challenge, we propose an adaptive iterative frame-
work to guide small-parameter LLMs to generate
progressively harder samples through multiple iter-
ations, thereby maximizing the utility of generated
sentence data.

Our main contributions can be summarized as
follows:

« Firstly, we propose a more cost-effective strat-
egy to leverage large language models for au-
tomatically generating high-quality synthetic
contrastive data to enhance the performance
of sentence representation models. This
strategy employs small-parameter LLMs, yet
achieves results comparable to or even sur-
passing those obtained by directly using large-
parameter LLMs.

» Secondly, we propose a novel adaptive rein-
forcement tuning framework to optimize small-
parameter LLMs in a reinforcement learning
manner. Through multiple iterations, this
framework adaptively generates hard con-
trastive samples, thereby maximizing the utility
of the generated data.

+ Finally, experiments conducted on seven se-
mantic text similarity tasks demonstrate that

the sentence representation models trained
using the synthetic data generated by our pro-
posed method achieve state-of-the-art perfor-
mance. We also conducted ablation studies to
showcase the critical roles played by the rein-
forcement learning approach and the adaptive
iterative framework within our proposed frame-
work.

2. Overview

In this section, we first formulate our problem, and
then introduce the framework of our system: adap-
tive reinforcement tuning (ART).

2.1.

Given the supervised training corpus X, unsuper-
vised corpus D and the existing supervised sen-
tence encoder fy, where X consists of a set of
labeled contrastive data {x;,z;",z; }, D consists
of a set of unlabeled sentences and the supervised
sentence encoder fy is initially trained with X’. Our
objective is to generate synthetic contrastive sen-
tence sample data X’ from unsupervised corpus D
to improve the performance of existing supervised
sentence encoder fy.

Problem Formulation

2.2. Framework

Our adaptive reinforcement tuning (ART) frame-
work for enhancing sentence representation is
shown in Figure 1, consisting of an initialization
backbone model training step followed by two adap-
tive iterative steps, namely the LLM fine-tuning step
and the sentence encoder training step.
Specifically, the backbone model training step
utilizes the NLI dataset to train an initial supervised
sentence encoder and an NLI discriminator. The
supervised sentence encoder serves as the model
targeted for optimization in this paper. Additionally,
both models play crucial roles in the subsequent
adaptive iteration steps. The LLM fine-tuning step
employs a reinforcement learning approach to fine-
tune the large language model. This involves a
dual reward model incorporating both the NLI dis-
criminator and a difficulty evaluator based on the
sentence encoder. The former is used to determine
the correctness of the generated data, while the lat-
ter assesses the difficulty of the generated data. By
combining the outputs of these two models, the final
reward score is determined. The Proximal Policy
Optimization (PPO) algorithm is applied to update
the parameters of the large language model. The
sentence encoder training step uses the synthetic
data generated by the fine-tuned large language
model to further train the sentence encoder. To en-
sure data quality, the NLI discriminator is employed
to filter out the incorrectly generated sentences.
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Figure 1: Our adaptive reinforcement tuning (ART) framework for enhancing sentence representation.

The two adaptive iteration steps can be executed
in multiple rounds to continuously improve the per-
formance of the sentence encoder.

3. Method

In this section, we introduce our framework in detail.
The framework consists of an initialization back-
bone model training step followed by two adaptive
iterative steps, namely the LLM fine-tuning step
and the sentence encoder training step.

3.1. Backbone Model Training Step

The backbone model training step utilizes the NLI
dataset to train an initial supervised sentence en-
coder and an NLI discriminator.

Since our objective is to leverage synthesized
data to enhance the performance of existing sen-
tence representation models rather than propose
a new one, we directly employ existing sentence
encoders, such as SIMCSE (Gao et al., 2021b) or
GenSE (Chen et al., 2022b).

We also employ the existing NLI models as our
NLI discriminator, which is a three-class neural
network model that includes a pre-trained model
(e.g., RoBERTa-large) and a multi-layer perceptron
(MLP) layer with a hidden layer. The initial purpose
of the NLI discriminator is to determine whether a
given pair of sentences entail, contradict, or are
neutral to each other. In this paper, we leverage it

to assess whether the positive and negative sam-
ples generated by the small-parameter LLM for a
given sentence are correct. This assessment is
based on whether the anchor sentence and the
positive sample are entailment, and whether the
anchor sentence and the negative sample are con-
tradiction.

3.2. LLM Fine-tuning Step

The LLM fine-tuning step aims to improve the abil-
ity of the small-parameter LLM to generate hard
synthetic data from unlabeled sentences D. Due
to the lack of supervised data, we use reinforce-
ment learning to fine-tune the small-parameter LLM.
The LLM fine-tuning step involves a proximal policy
optimization (PPO) algorithm and a dual reward
model.

Positive Prompt: Generate a positive variation of Original Sentence,
ensuring it has same meaning, exhibits different syntactical and
grammatical structures. Original: “[X]" Positive:

Negative Prompt: Generate a negative variation of Original Sentence,
ensuring it has a completely different meaning, similar syntax and
grammar. Original: “[X]" Negative:

Table 1: Prompts used to generate hard positive
and negative samples, respectively. [X] refers to
the input (anchor) sentence.
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3.2.1. Reinforcement Learning Optimization

We employ the proximal policy optimization (PPO)
algorithm (Ouyang et al., 2022) to optimize the
LLM on our environment to generate harder sam-
ples. The environment is a bandit environment
that presents a positive/negative prompt and an
anchor sample x from the unlabeled training cor-
pora D and expects a positive/negative sample y to
the corresponding prompts. The prompts used to
generate hard positive and negative samples are
shown in Table 1. Given the prompts and anchor-
positive/negative sample pairs, it produces a re-
ward determined by the reward model and ends the
episode. In addition, we add a per-token KL penalty
from the reference model, which is the frozen LLM
before fine-tuning, at each token to mitigate over-
optimization of the reward model. The objective
function is defined as follows:

E(y yy~plro(z,y) — BDrr(mg (y | @)l (y | 2))],
(1)

where 7 is the learned RL policy, r4(z,y) is the
reward score for output y with given input z, 7! is
the reference model, and S is the KL penalty coef-
ficient. By fine-tuning LLMs with LoRA (Hu et al.,
2021), we only need to keep one LLM in GPU mem-
ory. We switch between the reference model and
the trained model by toggling LoRA components.

3.2.2. Dual Reward Model

Our dual reward model takes the input anchor z
and the generated positive/negative sample y, and
outputs a proper score ry(x,y). In this paper, we
introduce a novel dual-reward model to assess the
quality of samples generated by the LLM, which
consists of an NLI discriminator and a difficulty eval-
uator based on the sentence encoder. The former
is used to determine the correctness of the gener-
ated data, while the latter assesses the difficulty of
the generated data.

Specifically, the NLI discriminator takes the (x, y)
pair as input and outputs the probabilities of three
labels, namely entailment, contradiction and neu-
tral. Our expectation is that the sentences gener-
ated using positive prompts are in an entailment
relationship with the anchor sentences, while the
sentences generated using negative prompts are
in a contradiction relationship with the anchor sen-
tences. Therefore, we use score r; to represent the
correctness of the generated data, which is defined
as follows:

= P(t|l‘,y) - Q7 (2)

where P(t|z,y) is the probability of the target label
for the (z,y) pair, Q is the lower bound of target
probability.
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The difficulty evaluator takes the (z,y) pair as
input and outputs the difficulty of the pair. In our con-
text, the hard positive samples of a given sentence
are those with less similar text content while still
preserving the same underlying semantic meaning,
while hard negative samples are those that exhibit
high text similarity but possess significantly differ-
ent semantic meanings. Therefore, we use score
ro 10 represent the difficulty of the pair (z, y), which
is defined as follows:

- (1 —sim(z,y™)) - sgn(sim(z,y*) — a™)
27 Y sim(z,y~) - sgn(a— — sim(z, y)),

)
where sim(z,y") and sim(z,y~) are the cosine
similarity between anchor sample = and the pos-
itive/negative sample calculated by the sentence
encoder, sgn is Sign function and ot and o~ are
the lower bound and upper bounds for filter noisy
positive and negative samples.

Finally, we combine both scores obtained from
the NLI discriminator and the difficulty evaluator as
the final reward score, which is defined as follows:

ro(2,y) = w1 X 1+ wp X T2, (4)

where w; and w- are the weights for the NLI discrim-
inator and the difficulty evaluator, respectively. The
PPO algorithm is applied to update the parameters
of the large language model.

3.3. Sentence Encoder Training Step

The sentence encoder training step uses the syn-
thetic data generated by the fine-tuned small-
parameter LLM to further train the sentence en-
coder, which consists of a data synthesis process
and an encoder training process. To ensure data
quality, the NLI discriminator is employed to filter
out the incorrectly generated sentences.

Following existing works (Gao et al., 2021b; Chen
et al., 2022b), we use the supervised SImCSE loss
as the objective function, which is defined as fol-
lows:

esim(h,; 7h;r)/'r

L= —log ~ - - - — ,
Zj:l (esnn(hi,hj )/ T + esun(hi,hj )/ T

(5)
where h;, h, and h; represent the representations
of the anchor, positive, and negative samples, re-
spectively, and 7 is a temperature hyper-parameter.
Through training with high-quality synthesized sam-
ples, the sentence encoder is able to learn a better
sentence representation.



4. Experiment

4.1. Experimental Setup

4.1.1. Data and Metrics

The training data is formatted as triplets, including
an anchor, a positive sample, and a negative sam-
ple. The data is sourced from two categories: 1)
supervised NLI dataset, which is a combination
of SNLI (Bowman et al., 2015) and MNLI (Williams
et al., 2018a) datasets. 2) synthetic data, gener-
ated by our large language model through multi-
round generation based on sentences from En-
glish Wikipedia. At each round, we generated
20k triplets. The development data is from the
development set of Semantic Textual Similarities
(STS) Benchmark (Cer et al., 2017). The testing
data consists of seven standard STS datasets, in-
cluding STS 2012-2016 (Agirre et al., 2012, 2013,
2014, 2015, 2016), STS Benchmark (Cer et al.,
2017), and SICK-Relatedness (Marelli et al., 2014)
datasets. Except for the synthetic data, all other
datasets were provided by SImCSE(Gao et al.,
2021b).

Following previous methods (Gao et al., 2021b;
Chen et al., 2022b; Zhang et al., 2023), we use the
rank-based Spearman correlation coefficient as the
evaluation metric.

4.1.2. Training Details

We conduct all the experiments on 2 Nvidia RTX
A6000 GPUs with PyTorch 2.0.0. The parameter
settings of our framework are as follows:

In the backbone model training step, we ini-
tialize sentence encoders from SimCSE super-
vised checkpoints of BERT-1large, and RoBERTa-
large, while GenSE checkpoint of T5-Base. And
we use RoBERTa-large for the NLI discriminator.

In the LLM fine-tuning step, we employ WizardLM
7B (Xu et al., 2023) as the small-parameter LLM,
and use LoRA (Hu et al., 2021) for efficient finetune,
with parameters r = 16 and « = 32. The KL penalty
coefficient was configured at 0.2, and the learning
rate was set to 1.41 x 107°. The weights for the
Reward Model, w; and w,, are set to 0.5.

In the sentence encoder training step, we adopt
the vLLM (Kwon et al., 2023) for fast sample gen-
eration. For each round, we train our sentence
encoder for 2 epochs with temperature = = 0.05.

4.1.3. Baselines

We compare our method to several state-of-the-
art approaches based on two existing supervised
sentence representation methods, namely Sim-
CSE (Gao et al., 2021b) and GenSE (Chen et al.,
2022b). The distinction among these methods lies
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in the usage of different datasets for training the
sentence encoders.

SimCSE uses the NLI dataset as the training
data. Based on SimCSE, SimCSE* additionally
uses 270K synthesized data generated from Wiz-
ardLM as the training data; SynCSE (Zhang et al.,
2023) only uses 270K synthesized data generated
from ChatGPT; while our method additionally uses
3 x 20K synthesized data generated from the opti-
mized WizardLM.

GenSE uses 61M synthetic sentences from C4
and English partitions (Raffel et al., 2020) as the
training data. Based on GenSE, GenSE* addition-
ally uses 270K synthesized data generated from
WizardLM as the training data; GenSE+ addition-
ally uses 4M QA pairs; while our method addi-
tionally uses 3 x 20K synthesized data generated
from the optimized WizardLM. PromCSE (Jiang
et al., 2022), current SOTA method, is a prompt-
based contrastive Learning for sentence embed-
dings framework.

4.1.4. Research Questions

To evaluate the performance of our method, we de-
sign experiments to answer the following research
questions:

RQ1: How effective is our method compared to
existing baselines?

RQ2: How effective is our adaptive iterative
framework?

RQ3: How effective is our dual reward model in
the reinforcement tuning framework, especially for
generation accuracy and difficulty?

In RQ1, we investigate whether our model out-
performs the baselines of sentence representation.
In RQ2, we further investigate whether our adaptive
iterative framework can continuously improve the
sentence encoder. In RQ3, we analyze whether
our dual reward model in the reinforcement tuning
framework can continuously improve the quality of
synthetic data.

4.2. RQ1: Performance Comparison

We perform a performance comparison between
our method and several state-of-the-art methods.
To be specific, we use BERT-large, RoBERTa-
large, and T5-base as pre-trained models, and
Table 2 displays the performance on seven STS
tasks. The detailed analysis is as follows.

Using BERT-large as the base model, our
method outperforms all other methods on 4 out
of 7 STS datasets and achieves the highest av-
erage Spearman correlation across all datasets.
Compared to SimCSE, our method shows signif-
icant improvements of 1.44-3.22 points on multi-
ple datasets. With RoBERTa-1arge, our method
achieves the highest scores on STS12 and STS15,



Methods | ExtraData [ STS12 STS13 STS14 STS15 STS16 STS-B  SICK-R [ AVG.
BERT-large
SimCSE - 75.78  86.33 80.44 86.06 80.86 84.87 81.14 | 82.21
SimCSE* | 270K Raw-LLM | 77.50  87.11 8144 87.09 8296 8545 80.74 | 83.18
PromCSE - 78.43 87.31 82.09 87.85 83.16 85.62 80.74 | 83.60
SynCSE | 270K ChatGPT | 78.30 87.26 81.27 86.87 8288 85.44 80.73 | 83.25
Ours 3*20K RL-LLM 79.00 87.85 8225 8742  83.51 85.35 80.17 | 83.65
RoBERTa-large
SimCSE - 7746 8727 8236 86.66 83.93 86.70 81.95 | 83.76
SimCSE* | 270K Raw-LLM | 79.98 8757 8280 86.67 84.64 86.03 81.58 | 84.18
PromCSE - 79.14  88.64 83.73 87.33 8457 87.84 82.07 | 84.76
SynCSE | 270K ChatGPT | 77.13 87.61 8282 87.67 85.66 87.22 82.45 | 84.37
Ours 3*20K RL-LLM 80.38  88.63 83.61 87.70 85.05 86.45 80.78 | 84.66
T5-base

GenSE - 80.72  87.43 83.96 88.63 8519 87.65 79.87 | 84.78
GenSE* | 270K Raw-LLM | 80.84 87.54  84.23 88.72  85.31 87.72 79.63 | 84.86
GenSE+ 4M QA (Real) 80.65 88.18 84.69 89.03 8582 87.88 80.10 | 85.19
Ours 320K RL-LLM 81.21 87.93 84.41 88.83 85.36 87.87 80.21 85.12

Table 2: Results on seven STS datasets. (Bold: the best. Underlined: the second best.)

Base Model Methods | STS12 STS13 STS14 STS15 STS16 STS-B SICK-R | AVG.
Round 0 | 75.78 86.33 80.44 86.06 80.86  84.87 81.14 | 82.21

BERT-large Round 1 78.36 87.26 81.66 87.22 83.15  85.51 80.85 | 83.43
Round2 | 78.66 87.64 82.08 87.39 83.37  85.52 80.47 | 83.59

Round3 | 79.00 87.85 8225 8742  83.51 85.35 80.17 | 83.65

Round 0 | 77.46 87.27 82.36 86.66 83.93 86.70 81.95 | 83.76

RoBERTa-large Round 1 78.98 88.43 83.54 87.61 85.00  86.81 81.25 | 84.52
Round2 | 79.42 88.64  83.62 87.69 85.27  86.64 80.95 | 84.60

Round 3 | 80.38 88.63 83.61 87.70 85.05 86.45 80.78 | 84.66

Round 0 | 80.72 87.43 83.96 88.63 85.19 87.65 79.87 | 84.78

GenSE-T5-Base Round 1 81.07 87.80 84.33 88.75 85.34 87.75 79.81 84.98
Round2 | 81.42 88.18  84.53 88.67 85.44  87.53 79.70 | 85.07

Round 3 | 81.21 87.93 84.41 88.83 85.36  87.87 80.21 85.12

Table 3: Results of each round on seven STS datasets.

and the highest average score among fine-tuning
models. Notably, it outperforms SimCSE consis-
tently on STS12-16, showing gaps of 1.12-2.92
points. This again verifies the advantage of our
method over raw LLM data. Compared to ChatGPT
data, our method achieves better overall perfor-
mance, despite being weaker on STS-B and SICK-
R. In comparison, PromCSE enjoys better perfor-
mance with the prompt-based method (namely P-
Tuning v2) on STS-B and SICK-R datasets. Such
method optimizes the model by adding additional
parameters, resulting in a sentence representation
that is different from the checkpoint in our dual re-
ward model. Thus, our sentence encoder cannot
integrate prompt-based method. For the smaller
T5-base model, our method surpasses the GenSE
baseline on all datasets, with improvements of 0.34-
0.79 points. Compared to GenSE+ which uses
400M additional QA data, our method achieves
comparable results using much less synthetic data.
This shows the data efficiency of our approach.

In all, our method achieves strong overall results
with far fewer data, yet achieves results comparable
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to or even surpassing those obtained by directly
using large-parameter LLMs.

4.3. RQ2: Performance Comparison of
Adaptive Iterative Framework

To demonstrate the benefits of our adaptive iter-
ative framework, we provide an overview of the
results achieved at each round. Table 3 presents
the performance of three pre-trained models on
seven STS tasks at each round of training.

Our results show an adaptive enhancement in
the model’'s performance with each successive
round. As expected, a stronger baseline gains
fewer performance upraise. Specifically, for BERT-
large, at round 1, round 2, and round 3, the av-
erage Spearman correlations in the seven STS
datasets are 1.22%, 1.38%, and 1.44% higher than
SimCSE, respectively. For RoBERTa-large, the
gains are 0.76%, 0.84%, and 0.9% higher correla-
tions versus SimCSE for the three rounds. Addition-
ally, based on T5-Base, a stronger baseline, gains
plateau at 0.34% higher correlation. In those mod-



Round | Pos. Acc. Neg. Acc. | Avg. Acc. Syn Data | Wizard SynCSE GenSE Ours
Round 0 85.96% 78.72% 82.34% x, T cos) 0.94 0.91 0.85 0.84
Round 1 92.89% 95.67% 94.27% r,r~ COST 0.57 0.60 0.51 0.83
Round 2 | 93.54% 96.52% 95.03%

Round 3 | 93.51% 96.68% 95.09% Table 5: Result of average synthetic sample diffi-

Table 4: Result of synthetic sample accuracy,
based on RoBERTa-large sentence encoder.

els, round 3 always contributes the smallest gains,
thus, we choose to stop at this round. From the per-
spective of the variation between tasks, our results
show a consistent improvement in the STS tasks
after multiple rounds of training. This maximizes
the utility of the data generated. We observed a
consistent decline in the SICK-R task, up to 1.0.
We believe that this discrepancy may be due to
biases in the distribution of our synthesized data.
These issues are also reflected in the performance
of GenSE+ (Chen et al., 2022b) models. In all,
these experimental results validate the effective-
ness of our adaptive iterative framework.

4.4. RQ3: Synthetic Data Quality

4.4.1. Ablation Study 1: Accuracy of

Synthetic Data

Here we examine the effectiveness of NLI discrim-
inator in our dual reward model. Table 4 shows
the accuracy of the synthetic positive and neg-
ative samples improves over multiple rounds of
adaptive training. After round 1, the positive accu-
racy increases to 92.89% from 85.96% for the raw
LLM. The negative accuracy rises to 95.67% from
78.72%. The overall average accuracy improves
by 12.33% t0 94.27%. In round 2, the positive ac-
curacy reaches 93.54% and the overall average
hits 95.03%. By round 3, the negative accuracy
peaks at 96.68%, and the overall average reaches
95.09%. The steady accuracy improvements ver-
ify that with the dual reward model, our method
not only generates more challenging samples but
also significantly improves content accuracy. With
the dual reward model incorporated, the steady im-
provement in accuracy confirms that our method
not only generates more challenging samples but
also significantly enhances content accuracy.

4.4.2. Ablation Study 2: Difficulty of
Synthetic Data

Here we examine the effectiveness of the difficulty
evaluator in our dual reward model. Shown in Table
5, we compare the ability of different LLMs to create
challenging samples for semantic textual similarity.
Lower cosine similarity indicates greater difficulty
for positives, and vice versa. Our model achieves
a lower average positive cosine similarity score

culty, ours from round 3, calculated by supervised
SimCSE RoBERTa-large, Wizard stands for Wiz-
ardLM.

of 0.84, indicating it creates the most challenging
positives. Most importantly, our model obtains the
highest average negative cosine similarity score of
0.83, meaning it generates negatives of the highest
difficulty compared to using frozen LLMs and previ-
ous synthetic methods like GenSE. In summary, our
proposed model produces harder samples which
better enhances the capability of semantic similarity
modeling.

4.4.3. Case Study

Here is the overall analysis of the case study con-
ducted on the hard positive and negative sentences
generated in different rounds, as shown in Table 6.
Several trends emerge. First, the generated sam-
ples aim to preserve sentence structure and vocab-
ulary as much as possible, while making minimal
edits to convey entailment or contradiction. Lexi-
cally, negative samples primarily involve antonym
substitutions like changing “sitting" to “standing"
and color adjective changes like changing “girl" to
“boy". Such positive samples provide additional
details like mentioning the slope of the mountain.

Syntactically, negative samples have minimal
variations to appear highly similar and difficult to
distinguish from the anchor. Positive samples ex-
hibit greater syntactic changes like modifying tense
and switching subject and object positions. For
the first case, the positive sample of round 1 is a
simple change in word order. In contrast, the posi-
tive samples of round 2 and 3 modifies the syntax
significantly, by converting to passive voice and sep-
arating the subject (“a girl") from the main clause.
In essence, the adaptive training pushes the LLM
beyond simple word order changes to produce var-
ied lexical, syntactic, and semantic paraphrases of
the anchor sentence.

5. Related Work

5.1. Contrastive Learning for Sentence
Representation

Existing sentence representation methods primar-
ily use the contrastive learning (CL) paradigm to
learn effective sentence representations. These
methods can be divided into unsupervised and
supervised approaches. Unsupervised methods
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Round | Positive Sample

| Negative Sample

\ Anchor: A girl is sitting on the side of a mountain.

Round 1 \ Aside the mountain, a girl is sitting.

\ A girl is standing on the side of a mountain.

Round 2 \ She sat on the side of the mountain, a girl.

\ A boy is sitting on the side of a mountain.

Round 3 | The slope of the mountain is where a girl is seated.

\ Boy is sitting on the side of a mountain.

\ Anchor: A man is kneeling down and using a paintbrush.

Round 1 \ Painting with a brush, a man knelt down.

\ A man is standing up and using a paintbrush.

Round 2 \ He is painting with a brush while standing on his knees. \ A paintbrush is kneeling down and using a woman.

Round 3 | A man is on bended knee, daubing with his brush.

\ A woman is kneeling down and using a paintbrush.

Table 6: Comparison of different data synthesis results at different rounds for RoBERT-large

use various data augmentation strategies to gener-
ate contrastive data. For example, SimCSE (Gao
et al.,, 2021b) uses dropout to generate posi-
tive pairs while taking other sentences as neg-
atives. ESImCSE (Wu et al., 2022b) employs
word repetition positives and retrieved negatives
data augmentation strategies. However, by us-
ing human-annotated natural language inference
(NLI) data, the supervised models significantly out-
perform the unsupervised models. GenSE (Chen
et al., 2022b), stands as a semi-supervised sen-
tence representation learning approach that gen-
erates and discriminates a substantial dataset
from a single T5 model (Raffel et al., 2020).
SynCSE (Zhang et al., 2023), synthesizes data
from ChatGPT (Ouyang et al., 2022) for training
sentence embeddings, demonstrating the potential
of utilizing LLM-generated datasets for this task.

5.2. Data Augmentation with LLMs

Data augmentation is a popular technique in NLP
that involves generating new text through the appli-
cation of various transformations. Recently, large
language models (LLMs), such as ChatGPT and
GPT4 (Ouyang et al., 2022; OpenAl, 2023), have
become available. This opened up new possibilities
for automatically generating high-quality synthetic
contrastive data. Existing methods rely heavily on
large-parameter LLMs for data augmentation. (Dai
et al., 2023) propose a text data augmentation ap-
proach based on ChatGPT to improve language
comprehension abilities. (Zhang et al., 2023) syn-
thesizes data from ChatGPT for training sentence
embeddings. These methods require crafting mul-
tiple prompts to generate proper samples, which
is costly at scale. Using these models leads to
substantial APl expenses or high costs for local
deployment (Hsieh et al., 2023). Even when using
medium-parameter LLMs, the cost remains high.
However, using small-parameter LLMs (Touvron
et al., 2023; Xu et al., 2023) for data augmentation
has not been thoroughly explored. Still, the quality
of data generated by small-parameter LLMs is con-
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siderably poorer than larger ones. Therefore, we
propose a more cost-effective strategy to optimize
small-parameter LLMs to generate synthetic data.

5.3. Reinforcement Learning in LLMs

Recently, extending pre-trained language models
by increasing the number of parameters, and train-
ing data (Kaplan et al., 2020) can make LLM pow-
erful in various language tasks (Brown et al., 2020).
Moreover, recent investigations have further identi-
fied the potential of LLMs through supervised fine-
tuning (SFT) and reinforcement learning based on
human feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022; OpenAl, 2023). Our approach is in-
spired by the RLHF method. RLHF was originally
developed for training simple robots in simulated
environments and games (Christiano et al., 2017).
It also is applied to fine-tuning language models to
summarize text (Ziegler et al., 2019). With RLHF,
language models can be better aligned with hu-
man preferences, i.e., better follow human instruc-
tions. Learning improved language models from hu-
man feedback through reinforcement learning tech-
nigues has been explored in (Ouyang et al., 2022;
Korbak et al., 2023). Most of the existing studies
employ the PPO algorithm to fine-tune LLMs (Schul-
man et al., 2017). Here, we introduce a novel rein-
forcement learning approach for fine-tuning small-
parameter LLMs, enabling the generation of high-
quality contrastive sentence data without human
feedback.

6. Conclusion

In this paper, we proposed a cost-effective strategy
to utilize small-parameter LLMs to generate syn-
thetic data and enhance sentence representation
models. Specifically, we propose a novel adaptive
reinforcement tuning (ART) framework to optimize
small-parameter LLMs in a reinforcement learn-
ing manner to adaptively generate hard contrastive
samples with multiple iterations. These samples



are then used to enhance the performance of exist-
ing sentence representation models. Experiments
conducted on seven semantic text similarity tasks
demonstrate that the sentence representation mod-
els trained using the synthetic data generated by
our proposed method achieve state-of-the-art per-
formance. We also conducted ablation studies to
showcase the critical roles played by the reinforce-
ment learning approach and the adaptive iterative
framework within our proposed framework.
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