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Abstract

The fine-tuning paradigm has been widely adopted to train neural models tailored for specific tasks. However, the
recent upsurge of Large Language Models (LLMs), characterized by billions of parameters, has introduced profound
computational challenges to the fine-tuning process. This has fueled intensive research on Parameter-Efficient
Fine-Tuning (PEFT) techniques, usually involving the training of a selective subset of the original model parameters.
One of the most used approaches is Adapters, which add trainable lightweight layers to the existing pretrained
weights. Within this context, we propose AdaKron, an Adapter-based fine-tuning with the Kronecker product. In
particular, we leverage the Kronecker product to combine the output of two small networks, resulting in a final vector
whose dimension is the product of the dimensions of the individual outputs, allowing us to train only 0.55% of the
model’s original parameters. We evaluate AdaKron performing a series of experiments on the General Language
Understanding Evaluation (GLUE) benchmark, achieving results in the same ballpark as recent state-of-the-art
PEFT methods, despite training fewer parameters.
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1. Introduction

The conventional approach to fine-tuning for down-
stream tasks requires the training of all parame-
ters of a neural model (Devlin et al., 2019; Liu
et al., 2019; Raffel et al., 2020). However, with
the recent increase of Large Pretrained Language
Models (PLMs) reaching billions of parameters
(Min et al., 2023), the traditional fine-tuning pro-
cess has become challenging due to large mem-
ory requirements. In response to this resource bot-
tleneck, Parameter-efficient Fine-Tuning (PEFT)
techniques have emerged as a new paradigm:
these methods have been designed with the ex-
plicit goal of training only a fraction of the original
model parameters while fine-tuning the model to a
downstream task, and keeping performance levels
comparable to traditional fine-tuning. These PEFT
methods can be divided into two categories: i)
those that add a new small set of parameters to be
trained on, e.g. Adapter-based methods (Bapna
et al., 2019; Houlsby et al., 2019; Pfeiffer et al.,
2020a,b, 2021; Wang et al., 2022; Li et al., 2023),
LoRA-based techniques (Hu et al., 2022; Zhang
et al., 2023; Xu et al., 2023), Diff-Pruning (Guo
et al., 2021) or UNIPELT (Mao et al., 2022), and ii)
those that train a small subset of the original model
parameters, e.g. BitFit (Ben Zaken et al., 2022).

In this work, we focus on the first category,
specifically on Adapter-based methods. Adapters
have been widely used in different tasks, such as
Natural Language Understanding and Inference
(Houlsby et al., 2019; Edalati et al., 2022; Pfeiffer
et al., 2021), Text Generation (Wang et al., 2022;

Xu et al., 2022), Named Entity Recognition (Pfeif-
fer et al., 2020b; Ansell et al., 2021), Retrieval-
based systems (Braga et al., 2023; Kasela et al.,
2024a) and Cross-Lingual Transfer (Pfeiffer et al.,
2020b), to name a few.

In general, Adapters consist of two fully con-
nected layers: the first one is a down projection
of the input vector into an intermediate dimension,
which is followed by a non-linear activation func-
tion and by an up projection to the hidden dimen-
sion of the model. The capability of an Adapter de-
pends on its intermediate dimension, and recent
empirical studies (Chen et al., 2022) suggest that
low-dimensional Adapter modules can give better
performances than high ones. Inspired by these
studies, we define a new PEFT technique called
AdaKron, where the Kronecker product is applied
to the output vectors of two small Feed-Forward
Networks (FFNs), which results in the creation of
a new vector whose dimensionality is the prod-
uct of the dimensions of the two individual FFNs.
The Kronecker product has been recently used to
improve PEFT techniques to reduce the number
of parameters as well as floating point operations
(Jiang and Zheng, 2023; Hameed et al., 2021;
Edalati et al., 2022; Karimi Mahabadi et al., 2021).
These approaches parameterize weights matrices
as Kronecker products of low-dimensional matri-
ces, e.g. Kronecker decomposition is used for
BERT (Tahaei et al., 2021) and GPT-2 compres-
sion (Edalati et al., 2021). In contrast, we use the
Kronecker product at a vector level, not at weight
matrix one. The use of the Kronecker product al-
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lows us to train fewer parameters in the down pro-
jection layer compared to a single FFN.

Overall, we define a new PEFT method,
AdaKron, which combines the Adapter modules
and Kronecker product, showing that by training
only 0.55% of parameters, we reach performance
on par with recent state-of-the-art PEFT methods
that require more parameters to train. We make
our code publicly available. 1

2. Methodology

In this section, we first briefly present Adapters
and the Kronecker product (Section 2.1). Next,
in Section 2.2, we describe in detail our proposed
method, AdaKron.

2.1. Preliminaries
Adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020a) usually consist of a down projection Feed-
Forward layer Wdown ∈ Rr×d to project the in-
put d-dimensional vector to an intermediate dimen-
sion r ≪ d, followed with a non-linear activa-
tion function and an up Feed-Forward projection
Wup ∈ Rd×r to the original dimension d, coupled
with a residual connection. Adapters have been
studied (Chen et al., 2022) and successfully used
in different NLP tasks, such as Text Generation
(Wang et al., 2022; Xu et al., 2022) or Named En-
tity Recognition (NER) (Ansell et al., 2021).

The Kronecker product (Henderson et al., 1983),
denoted as ⊗, is an operation between two matri-
ces, A ∈ Rm×n and B ∈ Rp×q, whose result is a
block matrix of dimension m · p×n · q, where each
block is the product between an element of A and
the entire matrix B:

A⊗B :=


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
... . . . ...

am1B am2B . . . amnB

 ∈ Rm·p×n·q

When applied between vectors, x ∈ Rn and y ∈
Rm, the Kronecker product yields y⊗x = vec(xyT )
where vec is a mathematical operation that stacks
the columns of the matrix into a vector. Conse-
quently, the Kronecker product between two vec-
tors is represented as:

y⊗x = vec(xyT ) =
[
y1x . . . ymx

]
∈ Rn·m. (1)

The Kronecker product has recently been used
for parameter-efficient training in Adapter layers
or attention matrices (Jiang and Zheng, 2023;

1https://github.com/DetectiveMB/
AdaKron
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Figure 1: Architecture of a Transformer layer with
the integration of AdaKron. Left: We add the
Adapter module to a Transformer layer following
Pfeiffer et al. (2021). Right: Each AdaKron mod-
ule consists of two small Feed-Forward Networks
(Proj. Down 1 and Proj. Down 2) and one
Feed-Forward up projection matrix. The input
d−dimensional vector is fed into both the down
projection layers, which have two different out-
put dimensions, r

a and a. The outputs of the
two small Feed-Forward down projections are mul-
tiplied using the Kronecker product to obtain a
r−dimensional vector.

Karimi Mahabadi et al., 2021; Tahaei et al., 2021;
Edalati et al., 2021), usually adopted as a method
to decompose FFN weight matrices into smaller
low-dimensional ones, which are then multiplied
using the Kronecker product.

2.2. AdaKron
Our approach introduces the Kronecker product
in an Adapter module (Pfeiffer et al., 2020a), as
shown in Figure 1. But, in contrast to Karimi Ma-
habadi et al. (2021), where the Kronecker product
has been used to decompose the down and up pro-
jection weight matrices of the Adapter, our method
employs the Kronecker product between the out-
put vectors of two FFNs, which compose the down
projection of the Adapter, while the up projection
remains a unique FFN layer. The final output of
the down projection, as shown in Equation 1, is a
weighted concatenation of one of the two vectors.

Let y = Wx + b be the down projection Feed-
Forward layer, where x ∈ Rd, y ∈ Rr, W ∈ Rr×d

and b ∈ Rr. We define two different down projec-
tion layers, whose final outputs are

yi = Wix+ bi, i = 1, 2

where Wi ∈ Rri×d, bi ∈ Rri , yi ∈ Rri and r1, r2 ≪
d. Next, we apply the Kronecker product and the
GELU function (Hendrycks and Gimpel, 2016) to
obtain

output = GELU(y2 ⊗ y1) ∈ Rr1·r2

https://github.com/DetectiveMB/AdaKron
https://github.com/DetectiveMB/AdaKron
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Model # Params (M) MNLI
Acc

QNLI
Acc

SST2
Acc

QQP
F1

MRPC
F1

CoLa
Mcc

RTE
Acc

STS-B
Pearson Avg.

Fine-Tuning 110 83.2 90.0 91.6 87.4 90.9 62.1 66.4 89.8 82.7
Houlsby Adapter† 0.9 83.1 90.6 91.9 86.8 89.9 61.5 71.8 88.6 83.0

BitFit♢ 0.1 81.4 90.2 92.1 84.0 90.4 58.8 72.3 89.2 82.3
Prefix-tuning† 0.2 81.2 90.4 90.9 83.3 91.3 55.4 76.9 87.2 82.1

LoRA† 0.3 82.5 89.9 91.5 86.0 90.0 60.5 71.5 85.7 82.2
UNIPELT (AP)† 1.1 83.4 90.8 91.9 86.7 90.3 61.2 71.8 88.9 83.1
UNIPELT (APL)† 1.4 83.9 90.5 91.5 85.5 90.2 58.6 73.7 88.9 83.5
AdaMix Adapter△ 0.9∗ 84.7 91.5 92.4 87.6 92.4 62.9 74.7 89.9 84.5
Pfeiffer Adapter48 0.9 83.3 91.1 92.0 87.5 90.7 60.3 67.6 89.6 82.7
Pfeiffer Adapter32 0.6 83.2 90.9 92.1 87.4 90.1 60.5 69.1 89.4 82.8

AdaKron48 0.6 83.5 91.1 92.0 87.1 90.8 61.1 73.8 89.4 83.6
AdaKron32 0.4 83.7 90.9 92.2 87.1 89.5 60.7 74.1 89.5 83.5

Table 1: Main results on the GLUE development set with BERT-base. †, ♢ and △ denote that the reported
results are taken from Mao et al. (2022), Ben Zaken et al. (2022) and Wang et al. (2022) respectively.
# Params (M) refers to the number of updated parameters (in Millions). ∗ denotes that AdaMix requires
training twice the number of parameters because, during each training phase, each batch is processed
two times. Acc, Mcc and Pearson refer to Accuracy, Matthews correlation coefficient and Pearson corre-
lation, respectively.

that is then fed to the up projection layer. Thus,
the final intermediate dimension of our Adapter is
r1 · r2 ≪ d.

This design choice is informed by recent empiri-
cal studies (Chen et al., 2022), which suggest that
lower-dimensional adapter modules can give bet-
ter performances compared to higher-dimensional
ones.

The use of the Kronecker product allows us to
train fewer parameters in the down projection layer
compared to a single FFN layer. Specifically, in-
stead of a down projection layer with an output di-
mension of r, we have two FFNs with output dimen-
sions equal to r1 = r

a and r2 = a, where a ≤ r is
a reduction factor that corresponds to the number
of weighted repetition of the r

a -dimensional vector.
Since r1 ∈ N, a must be a factor of r. Finally, given
d the input dimensionality of the network, the num-
ber of parameters is reduced from r ·d to ( ra +a) ·d.

3. Experiments

In this section, we first describe the datasets and
baselines of our experimental evaluation (Section
3.1). Then, in Section 3.2 we present and discuss
the results of AdaKron, followed by an ablation
study (Section 3.3).

3.1. Experimental Setup
Benchmark We perform experiments on the
General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018), which
involves eight types of Natural Language Under-
standing tasks including Linguistic Acceptability

(CoLA (Warstadt et al., 2019)), Sentiment Analy-
sis (SST-2 (Socher et al., 2013)), Similarity and
Paraphrase tasks (MRPC (Dolan and Brockett,
2005), STS-B (Cer et al., 2017), QQP (Wang
et al., 2018)), and Natural Language Inference
(MNLI (Williams et al., 2018), QNLI (Rajpurkar
et al., 2016), RTE (Dagan et al., 2006; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009)). Following prior studies (Houlsby
et al., 2019; Devlin et al., 2019), we do not include
the WNLI dataset (Levesque et al., 2012).2

Baselines We compare AdaKron to full model
Fine-Tuning and several PEFT methods, all ap-
plied to BERT-base (Devlin et al., 2019) (12-
layer, 768-hidden, 12-heads, 110M parameters)3

and RoBERTa-large (Liu et al., 2019) (24-layer,
1024-hidden, 16-heads, 355M parameters)4. We
compare our model against Houlsby Adapter
(Houlsby et al., 2019); AdaMix, which incorpo-
rates the Mixture of Experts paradigm (Fedus et al.,
2022) in an adapter layer (Wang et al., 2022); Bit-
Fit (Ben Zaken et al., 2022), which trains only a
subset of bias-terms; Prefix-Tuning (Li and Liang,
2021), which prepends several task-specific vec-
tors to the input of multi-head attention; LoRA
(Hu et al., 2022), which introduces low-rank matri-
ces and combines them with the original matrices
in the multi-head attention layer; UNIPELT (Mao
et al., 2022), which incorporates existing methods
(Adapters, LoRa and Prefix-Tuning) as submod-

2See (12) in gluebenchmark.com/faq.
3bert-base-uncased
4roberta-large

https://gluebenchmark.com/faq
https://huggingface.co/bert-base-uncased
https://huggingface.co/roberta-large
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Model # Params (M) MNLI
Acc

QNLI
Acc

SST2
Acc

QQP
Acc

MRPC
Acc

CoLa
Mcc

RTE
Acc

STS-B
Pearson Avg.

Fine-Tuning 355 90.2 94.7 96.4 92.2 90.9 68 86.6 92.4 88.9
Houlsby Adapter† 6 89.9 94.7 96.2 92.1 88.7 66.5 83.4 91 87.8
Houlsby Adapter† 0.8 90.3 94.7 96.3 91.5 87.7 66.3 72.9 91.5 86.4
Pfeiffer Adapter† 3 90.2 94.8 96.1 91.9 90.2 68.3 83.8 92.1 88.4
Pfeiffer Adapter† 0.8 90.5 94.8 96.6 91.7 89.7 67.8 80.1 91.9 87.9

LoRA† 0.8 90.6 94.8 96.2 91.6 90.2 68.2 85.2 92.3 88.6
AdaMix Adapter△ 0.8∗ 90.9 95.4 97.1 89.8 94.1 70.2 89.2 92.4 89.9

AdaKron16 0.6 90.2 94.8 96.9 91 90.9 69.2 87.4 92.1 89.1
AdaKron32 1.0 90.2 94.4 96.1 87.8 93.1 69.9 86.1 92.2 88.7

Table 2: Main results on the GLUE development set with RoBERTa-Large. † and △ denote that the
reported results are taken from Hu et al. (2022) and Wang et al. (2022) respectively. # Params (M) refers
to the number of updated parameters (in Millions). ∗ denotes that AdaMix requires training twice the
number of parameters because, during each training phase, each batch is processed two times. Acc, Mcc
and Pearson refer to Accuracy, Matthews correlation coefficient and Pearson correlation, respectively.

ules and automatically learn to activate, through a
gate mechanism, the appropriate submodules for
a given task. Moreover, we include two Adapter-
based baselines, i.e. Pfeiffer Adapter (Pfeiffer
et al., 2021), using our intermediate dimensions,
i.e. 48 and 32, but without the application of Kro-
necker product in the down projection layer.

AdaKron hyperparameters We implement
AdaKron in Pytorch (Paszke et al., 2019), using
an RTX 8000 GPU for our experiments, follow-
ing the hyperparameter configuration in Wang
et al. (2022). We use Adam with weight decay
(Loshchilov and Hutter, 2019) to optimize our
models. Adakron uses intermediate adapter
dimensions of 48 and 32, the dimensions of two
down projections layer are r1 = 12, a = 4 and
r1 = 8, a = 4 respectively. The number of FFNs
in the down projection layers is set to 2 for all the
tasks and experiments.

3.2. Results and Discussion
Table 1 shows the performance attained by our
models and several recent PEFT models, using
BERT-base as a PLM, on the GLUE develop-
ment dataset. Our direct competitors, i.e., Pfeiffer
Adapter48 and Pfeiffer Adapter32, score almost one
point lower than Adakron on average. This com-
parison shows the effectiveness of our proposed
PEFT method despite having a reduced number
of trainable parameters. Across the board, most of
the PEFT models achieve similar results. AdaKron
shows on average better performance compared
to the full Fine-Tuning, and Houlsby Adapter,
achieving improvements of 1.0, and 0.7 average
score, respectively. Moreover, AdaKron achieves
an average one point improvement over smaller
PEFT methods like BitFit, Prefix-tuning, and LoRA.

Interestingly, our approach also achieves better
performance than UNIPELT, which uses twice the
amount of parameters compared to AdaKron. It is
worth noting that even though Adamix achieves the
best average result compared to all PEFT meth-
ods, it adds 0.9 million parameters to the origi-
nal PLM during the inference stage only, however,
it updates a total of 1.8 million parameters dur-
ing training BERT. Nonetheless, AdaKron closely
matches AdaMix’s performance levels on specific
tasks such as QQP, STS-B and QNLI. On average,
AdaKron is one point lower than AdaMix, but train-
ing only one-third of AdaMix’s parameters.

Additionally, in Table 2 we report the average
performance on the GLUE development set using
RoBERTa-large as a PLM.In this case, to keep the
same number of trainable parameters as in the
BERT-base evaluation, we use 16 as our interme-
diate dimension, i.e. r1 = 4, and a = 4. Overall,
once again, AdaKron proves to achieve consistent
competitive performance, showing to be a compet-
itive alternative compared to its counterparts, de-
spite its reduced parameter numbers.

3.3. Ablation Study
We perform an ablation study on the RTE dataset
to assess the impact of different intermediate di-
mensions of the Adapter layers and the output di-
mensions of the two FFNs comprising the down
projections. The intermediate size and the reduc-
tion factor a, defined in Section 2.2, play a pivotal
role in controlling the parameter efficiency of an
Adapter: smaller intermediate sizes result in a re-
duced parameter count, but they may potentially
impact performance negatively, while a smaller re-
duction factor introduces more parameters. To ex-
plore this trade-off, we explore a range of different
intermediate sizes and reduction factors. Follow-
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Model # Params (M) Output dims.
a, r

a

RTE
Acc

AdaKron8 0.1 2,4 71.1
AdaKron16 0.2 2,8 71.8
AdaKron32 0.5 2,16 74.4
AdaKron48 0.7 2,24 74.7
AdaKron64 0.9 2,32 72.6
AdaKron256 3.6 2,128 73.6
AdaKron8 0.1 4,2 70.8
AdaKron16 0.2 4,4 70.4
AdaKron32 0.4 4,8 73.3
AdaKron48 0.6 4,12 75.6

Table 3: Ablation study on RTE development set
with BERT-base. Output dims. refers to the differ-
ent output dimensions of the two FFNs in the down
projection layers. Best model in bold, underlined
is the second-best one.

ing previous works (Houlsby et al., 2019; Wang
et al., 2022), we evaluate different intermediate
sizes, i.e. 8, 16, 32, 48, and 256, coupled with
two reduction factors, i.e. 2 and 4. Results are re-
ported in Table 3. The intermediate dimension of
48 achieves the best result overall, regardless of
the reduction factors. We note that for intermedi-
ate dimensions of 8 or 16, an output dimension of
2 outperforms 4, while maintaining an identical pa-
rameter count. Consequently, we opt for the opti-
mal configuration, featuring an intermediate dimen-
sion of 48 and a reduction factor of 4. Furthermore,
this setting involves training fewer parameters, as
shown by column # Params (M) in Table 3.

4. Conclusions and Future Works

In this paper we present AdaKron, a Parameter-
Efficient Fine-Tuning approach implemented
within an Adapter-based framework, augmented
with Kronecker product operations on output
vectors. By leveraging this technique, we manage
to fine-tune only 0.55% of the original BERT pa-
rameters, while consistently achieving competitive
performance results comparable to other state-of-
the-art PEFT methods, even with larger parameter
counts. As future work, we plan to improve our
approach by incorporating it within a Mixture of
Experts framework (Fedus et al., 2022; Kasela
et al., 2024b), extending our evaluation to different
datasets and tasks, in multiple languages.
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versarial attacks. We conclude that our work will
not likely have a negative ethical impact.

Limitations We focus on the GLUE dataset only,
with the following consequent limitations: (1) we
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data; (2) we lack a more comprehensive evalu-
ation using different NLP benchmarks and tasks,
e.g. SuperGLUE (Wang et al., 2019) for Text Clas-
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