
LREC-COLING 2024, pages 3490–3506
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

3490

CollabKG: A Learnable Human-Machine-Cooperative Information
Extraction Toolkit for (Event) Knowledge Graph Construction

Xiang Wei, Yufeng Chen, Ning Cheng, Xingyu Cui, Jinan Xu and Wenjuan HanB

Beijing Key Lab of Traffic Data Analysis and Mining,
Beijing Jiaotong University, Beijing, China

{22120436, chenyf, ningcheng, 22120357, jaxu, wjhan}@bjtu.edu.cn

Abstract
In order to construct or extend entity-centric and event-centric knowledge graphs (KG and EKG), the information
extraction (IE) annotation toolkit is essential. However, existing IE toolkits have several non-trivial problems, such as
not supporting multi-tasks, and not supporting automatic updates. In this work, we present CollabKG, a learnable
human-machine-cooperative IE toolkit for KG and EKG construction. Specifically, for the multi-task issue, CollabKG
unifies different IE subtasks, including named entity recognition (NER), entity-relation triple extraction (RE), and
event extraction (EE), and supports both KG and EKG. Then, combining advanced prompting-based IE technology,
the human-machine-cooperation mechanism with Large Language Models (LLMs) as the assistant machine is
presented which can provide a lower cost as well as a higher performance. Lastly, owing to the two-way interaction
between the human and machine, CollabKG with learning ability allows self-renewal. Besides, CollabKG has several
appealing features (e.g., customization, training-free, and label propagation) that make the system powerful and
high-productivity. We holistically compare our toolkit with other existing tools on these features. Human evaluation
quantitatively illustrates that CollabKG significantly improves annotation quality, efficiency, and stability simultaneously.
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1. Introduction

Entity-centric and event-centric knowledge graphs
(KG and EKG, collectively referred to as (E)KGs)
are structured semantic knowledge bases for de-
scribing concepts and their relations in the phys-
ical world (Zou, 2020; Guan et al., 2022). These
(E)KGs are playing an increasingly important role in
many downstream tasks and applications, such as
search engine (Zhao et al., 2021; Yang et al., 2020),
question-answering (Bao et al., 2016; Souza Costa
et al., 2020) and commonsense reasoning (Lin
et al., 2019). With the dynamic changes in the
Internet content, existing (E)KGs still need to be
completed in the general domains, and even need
to be constructed from scratch in emerging and
specialized domains (Kejriwal, 2022; Chen et al.,
2020). In this regard, the information extraction (i.e.,
IE) is an effective way to construct or complement
(E)KGs (Luan et al., 2018; Li et al., 2020).

There are tons of existing open-source tools for
IE labeling, both automatically and manually. How-
ever, these tools still have some non-trivial issues
that hinder the applicability and effectiveness of
real-world applications. First, there are various IE
tasks, such as named entity recognition (NER),
entity-relation triple extraction (RE), and event ex-
traction (EE). However, most tools only support
one or two of these tasks (Nghiem and Ananiadou,
2018; Islamaj et al., 2020; Stewart et al., 2019; Li
et al., 2021). To our knowledge, very few open-
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source manual annotation toolkits function EE an-
notation. Hence, KG and EKG often use individ-
ual tools instead of a unified one while parts of
KG and EKG share similar architecture. Secondly,
most tools only support either automatic or man-
ual labeling (Stenetorp et al., 2012; Zhang et al.,
2022; Bikaun et al., 2022; Jin et al., 2021; Tang
et al., 2020). However, a human-machine cooper-
ative system has proven to outperform both stan-
dalone agents and humans working alone (Bien
et al., 2018). Lastly, even if some tools support
both automatic and manual labeling, the machine
itself cannot learn from human annotations as feed-
back (Klie et al., 2018; Abrami et al., 2019). Besides
the above three major issues, minor issues exist like
requiring large amounts of data for training, which
makes labeling time-consuming and not suitable for
low-resource scenarios (Jin et al., 2021). Therefore,
it is crucial to build an IE toolkit that is multi-tasking,
human-machine-cooperative, training-free, etc.

Based on the above clues, we propose
CollabKG1 (Fig.1), a learnable human-machine-
cooperative IE annotation toolkit for KG and EKG
construction. The main contributions are described
as follows:

1 CollabKG is an open-source IE annotation
toolkit that unifies NER, RE, and EE tasks,
integrates KG and EKG, and supports both
English and Chinese languages.

1Video: https://www.youtube.com/channel/
UCsadiRvhW9dsmn4KtRDCaFg Code: https://github.com/
cocacola-lab/CollabKG

https://www.youtube.com/channel/UCsadiRvhW9dsmn4KtRDCaFg
https://www.youtube.com/channel/UCsadiRvhW9dsmn4KtRDCaFg
https://github.com/cocacola-lab/CollabKG
https://github.com/cocacola-lab/CollabKG
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Figure 1: Illustration of the human-machine-cooperative workflow for CollabKG.

2 CollabKG combines automatic and manual la-
beling to build a learnable human-machine co-
operative system. In particular, humans bene-
fit from machines and meanwhile, manual la-
beling provides a reference for the self-renewal
of the machines online. Additionally, CollabKG
is designed with many other appealing features
(Sec.2) making it more powerful and produc-
tive.

3 Extensive human evaluation suggests that
CollabKG can significantly improve the effec-
tiveness and efficiency of manual annotation,
as well as reduce variance (Sec.4).

2. Core Functions

We compare CollabKG quantitatively with existing
open-source IE annotation tools in Tab.1 and per-
form the following summary about the functions:

Unification: Only 22% of the tools support all
three IE tasks for KG and EKG construction.

Human-machine-cooperation: Only 22% of
the reviewed tools support both automatic and man-
ual labeling, but they do not support learnability or
unification feature.

Learnability: Only on 11% of the reviewed tools,
human labeling can provide a reference for the
machine to help annotate more effectively and effi-
ciently.

Other functions: Only our toolkit CollabKG along
with Quickgraph support annotation propagation

and document clustering2. But the annotation
propagation of Quickgraph cannot be applied to
Chinese texts. Additionally, CollabKG is training-
free, suitable for low-resource scenarios, and flexi-
ble for customization (Sec.2.2 and App.H).

2.1. Implementation of Unification

CollabKG is designed to unify three IE tasks in-
cluding NER, RE, and EE (Fig.2 and App.D). We
uniformly model and integrate the schemes into
a series of triples (S-Type:S,R,O-Type:O). To
fit the unified scheme, we design the annotation
mode of Entity and Relation. Entity mode
considers entities in NER, subjects, and objects in
RE, arguments, and triggers in EE. Similarly, Re-
lation mode considers relations in RE and roles
in EE.

Figure 2: Illustration of unifying NER, RE, and EE
tasks.

2AP: Sub-string offset matching to perform rela-
tion/entity propagation (Bikaun et al., 2022). DC: Cluster-
ing documents to promote annotator consistency (Bikaun
et al., 2022).
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NER RE EE Auto Manual Learn TF. AP. DC.
CollabKG (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DeepKE (Zhang et al., 2022) ✓ ✓ - ✓ - - - - -
CogIE (Jin et al., 2021) ✓ ✓ ✓ ✓ - - - - -

Quickgraph (Bikaun et al., 2022) ✓ ✓ - - ✓ - - ✓ ✓
BRAT (Stenetorp et al., 2012) ✓ ✓ ✓ - ✓ - - - -

WebAnno (Yimam et al., 2013) ✓ - - - ✓ - - - -
SLATE (Kummerfeld, 2019) ✓ ✓ ✓ - ✓ - - - -

INCEpTION (Klie et al., 2018) ✓ ✓ - ✓ ✓ - - - -
TeamTat (Islamaj et al., 2020) ✓ ✓ - - ✓ - - ✓ -

TextAnnotator (Abrami et al., 2019) ✓ ✓ - ✓ ✓ - - - -
FITAnnotator (Li et al., 2021) ✓ - - ✓ ✓ ✓ - - -

APLenty (Nghiem and Ananiadou, 2018) ✓ - - ✓ ✓ ✓ - - -
Redcoat (Stewart et al., 2019) ✓ - - - ✓ - - - -

SALKG (Tang et al., 2020) ✓ ✓ - - ✓ - - - -
RESIN (Wen et al., 2021) ✓ ✓ ✓ ✓ - - - - -

REES (Aone and Ramos-Santacruz, 2000) - ✓ ✓ - ✓ - - - -
FLAIR (Akbik et al., 2019) ✓ - - ✓ - - - - -

OpenNRE (Han et al., 2019) - ✓ - ✓ - - - - -
ODIN (Valenzuela-Escárcega et al., 2015) - - ✓ ✓ - - ✓ - -

Table 1: Illustration of core functions for CollabKG and comparison with recent existing open-source IE
toolkits. Auto: Automatic labeling. Manual.: Manual labeling. Learn: Learnable. TF.: Train free. AP.:
Annotation Propagation. DC.: Document Clustering.

2.2. Implementation of
Human-Machine-Cooperation

CollabKG is designed to support manual labeling
and automatic labeling simultaneously.

Attr. Description
isEntity Entity or relation

suggested Markup state (suggested or accepted)
_id Identifier for current markup

name Name for current entity or relation type
labelId Id for current entity or relation type
source Id for subject associated with current relation
target Id for object associated with current relation
start Start position for current entity

end End position for current entity
entityText Span for current entity

Table 2: Attributes in the markup. Attr.: Attribute.

Manual Labeling We use a dictionary structure
called “markup” (Bikaun et al., 2022) to record
and manage tags. We divide markups into en-
tity markups and relation markups. The attribute
isEntity is used to distinguish them. Moreover,
there are many other attributes that are classified
as common attributes or private attributes as shown
in Tab. 2. Specially, common attributes mainly in-
clude suggested, _id, name, labelId while pri-
vate attributes include source, target, start,
end, entityText, etc.

Automatic Labeling We adopt ChatIE (Wei
et al., 2023), a SOTA approach for zero-shot
information extraction based on prompting
ChatGPT. It is training-free and suitable for
low-resource scenarios. Most importantly, ChatIE
is flexible for unification because the type list
allows customization (App.E). Given the above

advantages, we use ChatIE as the backbone of
our automatic annotation algorithm. Then, we
improve the algorithm in EE task by introducing
a new trigger words extraction stage through the
inclusion of the trigger-related prompt template. For
example, the following prompt template is used:
When the event type of the given
sentence above is “<event-type>”,
please recognize the corresponding
trigger. The trigger is the word or
phrase that most clearly expresses
event occurrences.\nOnly answer the
trigger, no extra word. The trigger
is:.

2.3. Implementation of Learnability
In Fig.1, we present the bi-directional interaction
workflow between manual and automatic labeling.
Auto → Manual Users can click a specific but-
ton to make the system perform automatic label-
ing. CollabKG first collects current information to
form the input dict, including task, text, and lan-
guage. Then, the prefix generator searches the
knowledge base (which stores high-frequency man-
ual markups) with the current text to generate a
prefix prompt. The prefix prompt is fed in the model
to enhance domain knowledge, such as Note: the
type of Google is ORG; the relation between James
and Google is person-company; .... Finally, the
markup generator generates the final prompt, pre-
dicts results, and converts them to markups for
human reference. After these steps, the attribute
of these markups is set to the suggested state,
indicating that these labels are pending. Users can
make checking that either click the Apply button
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Figure 3: Main Interface of Annotation. B-C for NER, D for RE and A or E for EE.

to accept them or Delete button to discard them.
By utilizing this workflow, users can refer to the
automatic annotation results as a reference.

Auto ← Manual CollabKG deploys a self-
renewal function. It processes high-frequency and
informative manual markups and converts them to
specific schemes. Then, it updates CollabKG by
adding these specific schemes into the knowledge
base, which will be used to build a more powerful
prefix generator in later iterations. We refer to this
process as “learnability”. With a single click, the
annotators can store the currently annotated texts
as well as the convinced NER/RE/EE markups in
the knowledge base. During the next automatic
annotation process, the prefix generator queries
the knowledge base using the current text to get
similar texts and their markups. Then, the prefix
generator will fill the texts and their markups into
the prefix template. For example, the following
prefix template is used: Note: the type of
[entity] is [entity type]; the rela-
tion between [subject] and [object]
is [relation] ... in [text]..

This learnability brings many benefits, such as
identifying emerging concepts, domain-specific
terms, ambiguous words, etc. For example, give a
text from an electronic product report “The middle
class likes using Apple.”, the model may not recog-
nize Apple as ORG. But if humans manually mark
Apple as ORG in another sentence “New Yorker
really like Apple phones.” and CollabKG perform
model updating. Then the prefix prompt “Note: Ap-
ple is ORG in ...;” will make the model successfully
recognize it.

3. Toolkit Usage

Core functions and the corresponding implementa-
tion make CollabKG powerful and highly productive.
Next, we show the toolkit usage by introducing the
UI (Fig.3) and description.

3.1. Annotation
Manual Labeling There are entity and relation
modes. In entity mode, the user selects the span
and clicks the corresponding type to complete the
annotation (Fig.3 B-C, NER). In relation mode, the
user clicks on the subject and then selects the rela-
tion type associated with the corresponding object
(Fig.3 D-E, RE and EE). Moreover, switching be-
tween the two modes requires only one click on the
toggle (Fig.3 A.II) and multi-label and nested
markups are supported.
Automatic Labeling By clicking the correspond-
ing button (Fig.3 A.I), the predicted results of the
machine (i.e., ChatIE) will be transformed into
highlighted markups in semitransparent color
(Fig.3 A.III) to be displayed on the annotation inter-
face. Users can further choose to accept or discard
them by operating the tooltips containing action-
able icons apply one, apply all, delete one, delete
all (Fig.3 B).
Learnability By clicking the corresponding button
(Fig.3 A.I), the markups in the accept state will be
passed into the backend to update model (Sec.2.3).
Label Propagation Hundreds of entities or rela-
tions can be suggested in other sentences with a
single click (Fig.3 C.I) and users can make checks
by operating the tooltips.
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NER RE EE
P R F1 Var Time P R F1 Var Time P R F1 Var Time

BRAT 64.2 62.0 63.0 0.51 00:42:34 48.1 44.2 45.8 0.69 01:46:50 36.0/70.5 27.5/47.5 31.1/56.7 0.79/0.53 01:34:36
CollabKG (Auto) 86.3 65.1 74.2 - - 85.5 51.5 64.2 - - 44.2/82.4 38.2/68.9 41.0/75.0 - -
CollabKG (Human) 64.2 62.0 63.0 0.51 00:41:27 48.1 44.2 45.8 0.69 01:27:17 36.0/70.5 27.5/47.5 31.1/56.7 0.79/0.53 01:12:49
CollabKG 81.7 79.3 80.4 0.39 00:40:42 70.8 71.9 70.9 0.41 01:24:01 43.4/83.4 45.5/71.3 44.2/76.9 0.37/0.09 01:11:21

Table 3: Results on three tasks. For EE, the left/right numbers represent Arg-C/Trig-C. Refer to App.C for
detailed results.

Document Clustering Clustering enables aggre-
gation of texts with similar semantics (Fig.3 A.IV) so
that annotators can focus more on a certain class
of concepts and thus increase productivity.

3.2. Dashboard and Project Creation
CollabKG is designed to enhance power and user-
friendliness. CollabKG offers dashboard with sev-
eral features such as real-time (E)KG visualization,
double-checking, statistic and downloading. See
App.G for details. The project creation process of
CollabKG is clear, and the operation is user-friendly
and well-guided. During project creation, users
can customize the task scheme, pre-processing,
uploading pre-annotation files, and more (App.H).

4. Human Evaluation

4.1. Evaluation Method
We designed a series of comparison experiments.
We randomly sampled 50 instances from the con-
llpp (Wang et al., 2019b), NYT11-HRL (Takanobu
et al., 2019), and ACE05 (Christopher Walker and
Maeda, 2006) English datasets for the NER, RE,
and EE tasks, respectively. For each task, we hired
ten humans and randomly divided them equally into
the control group (without the automatic labeling
module) and the experimental group (with the auto-
matic labeling module). During the annotation, we
record the annotation time, perform performance
evaluation, as well as calculate the intra-group vari-
ance (Pang et al., 2020) to assess effectiveness,
efficiency, and variance.

Participants: All participants were senior stu-
dents (female 4-6 per task) from universities who
had passed the qualifications of English language
ability (e.g., IELTS). Every participant was paid a
wage of $14.17/h and signed an informed consent
form (App.F).

Metrics: Following the previous work (Wei et al.,
2023), we adopt Micro F1 as the metric. For NER,
the predicted entity is correct only if its whole span
and type are correct. For RE, an extracted triple
is considered as correct if the whole span of both
head and tail entities, as well as the relation, are all
correct. For EE (Lin et al., 2020), an argument is
correctly identified only if its whole span, role label,
and event type match the ground truth (Arg-C). A
trigger is correctly identified only if its whole span
and event type match the golden trigger (Trig-C).

We calculate the intra-group variance as follows:
var = 1 − 1

|D|·C2
|G|

∑∑
i<j∈G get_f1_list(gi, gj),

where G denotes the experimental or control group,
g denotes the sequence of annotation results, C
denotes the combinatorial number, and D denotes
the dataset. Moreover, get_f1_list denotes the
micro F1 between the labeling results of the two
participants (one for golden and the other for pre-
diction). The more similar the labeling of the two
participants, the larger the F1 value.

4.2. Results
The results are shown in Tab.3. CollabKG
(Auto) denotes pure automatic labeling. CollabKG
(Human) denotes humans using CollabKG without
assistance from automatic labeling. CollabKG de-
notes complete human-machine cooperation. Re-
sults show that CollabKG significantly improves an-
notation quality, efficiency, and stability.

On NER, RE, and EE tasks, the average im-
provement w.r.t. effectiveness is 18.75%. The av-
erage improvement w.r.t. variance is 0.315. Time
is most affected by external or human factors, but
nonetheless, speedups of 1.8%, 3.9%, and 2.1%
were achieved on NER, RE, and EE tasks, respec-
tively. In addition, compared to BRAT, the annota-
tion speed of CollabKG exceeds 4.6%, 27.2%, and
32.6% for NER, RE and EE tasks, respectively. It is
worth noting that the effectiveness of BRAT is the
same as CollabKG (Human) since both are only
manually annotated. Thus CollabKG also outper-
forms BRAT by 18.75% on average.

5. Conclusion

We present CollabKG an open-source IE annota-
tion tool for KG and EKG construction. Ultimately,
we conducted an extensive human evaluation to
quantitatively demonstrate that CollabKG can sig-
nificantly improve annotation quality, efficiency, and
stability as well as qualitative comparisons with
other existing open-source tools.
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A. System Architecture

As shown in Fig. 4, we use modern full-stack
framework MERN 3, Docker and Python to build
CollabKG. It consists of four components wrapped
in a Docker container, namely web client, server,
NLP server, and database. The NLP server de-
ploys ChatIE to obtain automatic annotation results.
In addition, the database is crucial, storing and man-
aging information such as projects, texts, users, etc.
This is achieved by maintaining three collections
including Project, Text, and User. Project
stores the task details of the project, whether to per-
form the model update, semantic clustering, prepro-
cessing, etc. Text manages samples, markups,
etc. User stores the information of users like name
and password.

Figure 4: System Architecture.

B. Related Works

There are many existing open-source IE (i.e., NER,
RE, and EE) annotation tools for KG or EKG con-
struction. We will describe them from several per-
spectives such as applicable tasks and annotation
styles.

From the perspective of the three applicable
tasks, FLAIR (Akbik et al., 2019), OpenNRE (Han
et al., 2019), ODIN (Valenzuela-Escárcega et al.,
2015), FitAnnotator (Li et al., 2021), WebAnno (Yi-
mam et al., 2013), Redcoat (Stewart et al., 2019)
and APLenty (Nghiem and Ananiadou, 2018)
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only focus on a single task. DeepKE (Zhang
et al., 2022), Quickgraph (Bikaun et al., 2022),
INCEpTION (Klie et al., 2018), TeamTat (Islamaj
et al., 2020), TextAnnotator (Abrami et al., 2019),
REES (Aone and Ramos-Santacruz, 2000) and
SALKG (Tang et al., 2020) support two tasks. Co-
gIE (Jin et al., 2021), BRAT (Stenetorp et al., 2012),
SLATE (Kummerfeld, 2019) and RESIN (Wen et al.,
2021) support all three tasks. However, CogIE and
RESIN only support automatic labeling and require
training, which is not suitable for low-resource sce-
narios where data is insufficient for training from
scratch. BRAT and SLATE only support manual
labeling. Moreover, BRAT sometimes is criticized
for its difficulties in deployment (Neves and Ševa,
2019). SLATE is a command-line-based tool so it
is not user-friendly.

From the perspective of the annotation styles (i.e.,
automatic and manual labeling). INCEpTION, Tex-
tAnnotator, FitAnnotator, and APLenty support two
annotation styles immediately. However, INCEp-
TION and TextAnnotator don’t support the learn-
ability function (namely, self-renewal). Although
FitAnnotaor and APLenty utilize active learning to
support two-way interaction, this is inflexible, not
real-time, and requires a training process. In ad-
dition, as mentioned earlier, they only support a
single task.

C. Detailed Results

To note, the standard labeling process includes
multiple rounds of labeling, including validating and
refining, iterating and improving. Validating and re-
fining the annotations in the knowledge graph aims
to ensure that the labels accurately represent the
domain knowledge by double-checking. Iterating
and improving denote continuously iterating and
improving the knowledge graph based on feedback
from multiple turns. In this work, all results are ob-
tained in one round of annotation, so the numbers
may seem to be low.

NER The results are presented in Tab. 4. The
experimental group consisted of No. 6 to 10, while
the control group consisted of No. 1 to 5. Before
calculating the metrics we eliminated No.3 and No.8
because of their poor annotating quality.

RE The results are presented in Tab. 5. The ex-
perimental group consisted of No. 6 to 10. Before
calculating the metrics we eliminated No.5 and No.6
because of their long annotation time or poor anno-
tation quality. It is worth noting that since NYT11-
HRL is obtained by remote supervision, the gold
annotation does not cover all entities and relation-
ships (Wei et al., 2019). Therefore, we re-examined
and relabeled the 50 samples as the gold label.

EE The results are presented in Tab. 6. The
experimental group consisted of No. 6 to 10. No.

P R F1 Time
P1 56.4 58.5 57.4 00:40:24
P2 70.3 60.4 65.0 00:42:21
P3 48.1 58.5 52.8 00:41:03
P4 71.4 66.0 68.6 00:42:07
P5 58.8 63.2 60.9 00:40:56
P6 79.4 80.2 79.8 00:40:31
P7 87.8 81.1 84.3 00:40:32
P8 73.3 72.6 73.0 00:41:17
P9 83.8 78.3 81.0 00:40:09
P10 75.9 77.4 76.6 00:41:40

Table 4: Human evaluation results on NER. P de-
notes participant.

P R F1 Time
P1 57.0 47.6 51.9 01:29:42
P2 50.0 50.5 50.2 01:32:39
P3 35.3 39.8 37.4 01:23:44
P4 50.0 38.8 43.7 01:23:01
P5 47.9 33.0 39.1 02:15:39
P6 55.4 60.2 57.7 01:21:40
P7 68.1 62.1 65.0 01:14:04
P8 80.9 73.8 77.2 01:21:28
P9 75.3 73.8 74.5 01:23:56
P10 58.8 77.7 67.0 01:36:39

Table 5: Human evaluation results on RE. P de-
notes participant.

5 participant was absent for personal reasons, so
to align with the control group, we eliminated the
results of No. 6 participant (poor annotation quality).
It is worth noting that because there are so many
tags in ACE05 (namely, 33), annotating them all
would be too tricky. Therefore, we narrowed the
tag range to 12 (within 50 samples).

D. Implementation of Unification

CollabKG is designed to unify three IE tasks includ-
ing NER, RE, and EE, and integrate KG and EKG
construction. To unify these tasks, we first observe
their schemes and summarize the transformation
rules among them. Then we uniformly integrate
these three schemes utilizing these transformation

P R F1 Time
P1 37.3/69.2 25.5/44.3 30.3/54.0 01:10:44
P2 43.4/75.0 30.0/49.2 35.5/59.4 01:27:25
P3 26.5/65.2 23.6/49.2 25.0/56.1 01:05:34
P4 36.6/72.5 30.9/47.6 33.5/57.4 01:07:34
P5 - - - -
P6 37.7/84.6 41.8/72.1 39.7/77.9 01:04:51
P7 47.4/86.0 40.9/70.5 43.9/77.5 01:02:48
P8 44.9/82.7 48.2/70.5 46.5/76.1 01:33:12
P9 37.2/78.6 46.4/72.1 41.3/75.2 01:07:02
P10 44.0/86.3 46.4/72.1 45.1/78.6 01:02:21

Table 6: Human evaluation results on EE. The left
and right numbers in Column F1 represent Arg-C
and Trig-C, respectively. P denotes participant.
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rules and design an annotation format to fit the
unified scheme.
Transformation Rule NER aims to find entities
with specific preset entity types from the given text.
For example, given the preset type list [PER, LOC,
ORG, MISC] and the sentence “James worked
for Google in Tokyo, the capital of Japan.”, these
entities should be recognized are: PER:James,
ORG:Google, LOC:Tokyo, LOC:Japan.

RE aims to find pairs of entities, predict the re-
lations between them and form triples. For in-
stance, given the sentence “Mr.Johnson retired
before the 2005 season and briefly worked as a
football analyst for WBZ-TV in Boston.”, this triple
is (Person:Mr.Johnson, person-company,
Organization:WBZ-TV). The first term in the
triple is called Subject, the middle term is Rela-
tion, and the last term is called Object.

EE plays an important role in EKG construc-
tion. It aims to identify event types, triggers, ar-
guments involved, and the corresponding roles.
For instance, given the sentence “Yesterday Bob
and his wife got married in Beijing.”, we regard
Life:Marry as event type, “married” as the trig-
ger, “Bob and his wife” as Person, “Yesterday” as
Time and “Beijing” as Place.

NER E-Type:E
−→(E-Type:E, _, _)

RE (S-Type:S, R, O-Type:O)

EE {E-Type:T, R1:A1, ..., Rn:An }
−→ {(E-Type:T, Rn, _:An)}

Table 7: Unification of three tasks. −→ represents the
transformation. For NER, E denotes Entity. For RE, S,
R, O represents Subject, Relation, Object, respec-
tively. For EE, E, T, R, A represents Event, Trigger,
Role, Argument, respectively while n denotes the num-
ber of arguments. _Type denotes the type. _ represents
a pseudo token.

The schemes of the three tasks can be summa-
rized in Tab. 7. Through the above descriptions,
transformation rules among tasks are observed
as follows. RE scheme remains unchanged. The
NER scheme can be attributed to the entity part
of the RE scheme. For EE, if we regard Trigger
as Subject, Argument as Object, and Role as
Relation, we find it easy to decompose the EE
structure into a combination of multiple RE triples.
With the transformation rules, we leverage RE as
the center, transform NER and EE schemes and
thus unify the three IE schemes.
Integration We uniformly model the scheme of
the three IE tasks and integrate the schemes
into a series of triples (S-Type:S,R,O-Type:O).
To design an annotation format to fit the unified
scheme, we design Entity annotation mode and
Relation annotation mode. Entity mode con-
siders entities in NER, subjects, and objects in RE,

arguments, and triggers in EE. Similarly, Rela-
tion mode considers relations in RE and roles
in EE. It is worth noting that in this way, KG and
EKG construction are also integrated besides of
RE, NER and EE.

E. Automatic Labeling

NER [entity type 1, ..., entity type n]

RE {relation type 1: [subject1, object1],...}

EE {event type 1: [argument role 1, ...],...}

Table 8: Type list format for three IE tasks.

We have adopted ChatIE (Wei et al., 2023) as
our approach for zero-shot information extraction,
based on ChatGPT. ChatIE has shown impressive
performance, even surpassing some full-shot mod-
els across various datasets. Its flexibility for cus-
tomization is also a notable advantage because the
type list allows customization (refer to Tab. 8).

Therefore, we have adopted ChatIE as the back-
bone of our automatic labeling module, with a slight
modification that adds the trigger-related prompt
template so that it can extract trigger words accord-
ing to the event type. This allows for the extraction
of trigger words based on the event type. For
example, the following prompt template is used:
When the event type of the given
sentence above is “<event-type>”,
please recognize the corresponding
trigger. The trigger is the word or
phrase that most clearly expresses
event occurrences.\nOnly answer the
trigger, no extra word. The trigger
is:.

F. Human Evaluation Procedure

All participants were gathered in a conference room
and asked to sign a consent form before being in-
troduced to the task and annotation criteria. They
were then given model accounts to begin annotat-
ing without the use of external tools. Participants
in the experimental group received ChatIE assis-
tance. Once they finished annotating, they notified
us using a communication tool, and we recorded
the time spent on annotation. We evaluated metrics
and conducted statistic analysis using a pre-written
script.
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G. Display

Our toolkit offers a range of features to enhance the user-friendly display. Firstly, it displays annotation
progress and counts the results across multiple dimensions, such as entity, relation, and triples (see
Fig. 5). Secondly, users can view a KG or EKG and filter the results (see Fig. 6 and 7). Thirdly, the tool
provides a double-checking function for each text (see Fig. 8). Finally, our tool supports the filtering and
exporting functions (see Fig. 9). Filter function includes saving, loading, quality filtering (accepted or
suggested), and so on.

Figure 5: Overview of Dashboard.

Figure 6: EKG display.

H. Project Creation Process

The project is created for each person on a dataset. The creation process can be divided into the following
steps:

• Configuration Setup: Set up the details of the project: the name, the description, the configure of
multi-task (NER, RE, EE), whether to perform model update (see Sec.2.3) and text/document
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Figure 7: KG display.

Figure 8: Double-checking display.

Figure 9: Download display.
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clustering features (Fig. 10). Clustering enables aggregation of texts with similar semantics
(Fig. 3 A.IV) so that annotators can focus more on a certain class of concepts and thus increase
productivity. Our toolkit implements cohesive clustering by encoding documents with SBERT (Reimers
and Gurevych, 2019) sentence embeddings.

• Uploading Data: It supports keyboard input and uploading files (Fig. 11).

• Pre-processing: Pre-processing function includes character casing, specified-character removal,
and text de-duplication (Fig. 12).

• Scheme Setup: Build an ontology/scheme for the current task. Users can choose from the pre-
set ontology or customize their own scheme. For RE, the RELATION TYPES format is rela-
tion@[subject, object], where subject/object refers to head/tail entity type in triples (Fig. 13).
For EE, the ENTITY TYPES is filled with a pseudo token (namely _), and the RELATION TYPES
format is event-type@[argument role 1, argument role 2, ...] (Fig. 14). It is worth
noting that CollabKG will complete the processing to convert role to relation and event-type to
entity-type on the back-end. Unlike other IE annotation tools, our tool supports hierarchical
labels (Fig. 15) and relation constraint (Fig. 16). The hierarchical labels facilitate the man-
agement of complex schemes. The relation constraint is a predetermination that a relationship can
only occur between certain entity types. Consequently, this feature can narrow down the annotator’s
attention and improve the productivity and consistency of the annotators.

• Preannotation: Users can choose to upload pre-annotated entities and relations of the current
corpus. This can reduce annotation effort by pre-applying tags based on external resources such as
gazetteers (Fig. 17).

• Review: Summarize the current project. Hence users can check and make changes (Fig. 18).

Finally, when the user clicks the CREATE button, the project creation process is completed and will
appear in the panel (Fig. 19).

Figure 10: Detail of project creation.
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Figure 11: Uploading of project creation.

Figure 12: Preprocessing of project creation.

Figure 13: Scheme setup for RE of project creation.
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Figure 14: Scheme setup for EE of project creation.

Figure 15: Hierarchical labels of project creation.

Figure 16: Relation constraint of project creation.
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Figure 17: Preannotation of project creation.

Figure 18: Review of project creation.

Figure 19: Feed of projects.
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