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Abstract
Code-switching is a prevalent linguistic phenomenon in which multilingual individuals seamlessly alternate between
languages. Despite its widespread use online and recent research trends in this area, research in code-switching
presents unique challenges, primarily stemming from the scarcity of labelled data and available resources. In this
study we investigate how pre-trained Language Models handle code-switched text in three dimensions: a) the
ability of PLMs to detect code-switched text, b) variations in the structural information that PLMs utilise to capture
code-switched text, and c) the consistency of semantic information representation in code-switched text. To conduct
a systematic and controlled evaluation of the language models in question, we create a novel dataset of well-formed
naturalistic code-switched text along with parallel translations into the source languages. Our findings reveal that
pre-trained language models are effective in generalising to code-switched text, shedding light on abilities of these
models to generalise representations to CS corpora. We release all our code and data, including the novel corpus,
at https://github.com/francesita/code-mixed-probes.
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1. Introduction

Code-switching (CS) is the phenomenon in which
multilinguals effortlessly alternate between lan-
guages in the same conversation or piece of writ-
ing (Joshi, 1982; Dogruoz et al., 2021). CS arises
inmultilingual communities over the world, such as
the United States, Latin America, and India, and
gives way to the emergence of mixed ’languages’
such as Hinglish (Hindi-English mix) and Span-
glish (Spanish-English mix). The recent adop-
tion of Pre-trained Language Models (PLMs) has
been driven in part by their ability to gain a signif-
icant amount of linguistic information (Clark et al.,
2019; Tenney et al., 2019a) and world knowl-
edge (Petroni et al., 2019) based purely on the
pre-training. A significant question is how much
information PLMs can gather about the meaning
of words from being trained on text alone (Bender
and Koller, 2020). CS data is especially useful in
helping to answer this question due to the multi-
lingual nature of CS text. The presence of mul-
tiple languages in the text will prevent the model
from relying on spurious statistical correlations
when generating meaning because (1) the pres-
ence of multilingual text will encourage the model
to learn meaning across languages, and (2) the
model needs to learn the context of each language
switch, whichmay prevent it from using simple pat-
terns more easily found in monolingual text due to
language-specific patterns. Hence, the semantic
representations of CS data provide us a way of ex-

ploring the true extent to which models are able to
capture and generalise meaning.
Despite the potential significance of exploring CS
data in evaluating PLMs, research in this area is
challenging, not least due to the lack of labelled
data and resources (Santy et al., 2021; Aguilar
et al., 2020). As such, in this work, we focus on
howPLMs interact with and encode code-switched
text. To ensure a balanced evaluation of models,
we look at both real and synthetic CS text and fo-
cus exclusively on Spanglish (Spanish-English).
We choose Spanglish for 3 reasons: (1) Span-
ish and English share a script, (2) English words
share many Spanish cognates. This overlap is
due to a portion of English vocabulary having Latin
roots, and Spanish having originated from Collo-
quial Latin, (Nagy et al., 1993), and (3) although
there are differences in Spanish and English gram-
mar, such as word-order, gender and number,
there also are overlaps in the structure of both
languages (Rivera, 2019). These similarities en-
sure that our evaluation of model capabilities are
not confounded by other aspects of language use,
such as, for example, difference in script as in the
case of Hinglish. We utilise synthetic data in our
experiments to investigate whether the presence
of mixed language text alone leads to satisfactory
probe performance or whether the use of naturalis-
tic CS examples significantly impact experimental
results.
To evaluate the extent to which PLMs can identify
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and encode the correct representations of CS text,
we focus our efforts on three different dimensions:
a) the ability of PLMs to detect CS text, b) possible
variations in the grammatical structural that PLMs
are able to capture from CS text, and c) consis-
tency of the meaning representations of CS text
when compared withmonolingual text. Our experi-
mental results along these lines indicate that PLMs
have the potential to capture all three of these di-
mensions with reasonable exactness. While fur-
ther experiments are required in this regard, our
findings seem to indicate that PLMs are surpris-
ingly good at generalising across CS text, which
could shed light on the potential of PLMs to cap-
ture some generalisations pertaining to language
use.
To this end, we perform multiple experiments,
largely using probes, to evaluate each of these
different dimensions. We probe popular pre-
trained models: mBERT (Devlin et al., 2019),
and XLM-RoBERTa base (XLM-R-base) (Con-
neau et al., 2020), which consist of 12 layers and
768 dimensions, and XLM-RoBERTa large (XLM-
R-large) (Conneau et al., 2020) with 16 layers and
1024 dimensions. We begin by exploring relevant
literature associated with CS text, probing, graph
edit distance and existing datasets in section 2
before then describing the construction of a well-
balanced corpus of CS text that we create due to
existing limitations of availability of such data in
section 3. We then detail our experiments in each
of these directions in Sections 4, 5, and 6, where
we present our methods and results. We follow by
a discussion of these results in Section 7 and pro-
vide a summary of our findings and suggestions
for future work in Section 8.

1.1. Contributions
Given the importance of research in CS, this work
makes the following contributions: We create the
first curated dataset of well-formed, naturalistic in-
stances of Spanglish CS data with translations
for both source languages to allow for a precise
evaluation of grammatical structure and sentence
meaning 1. We perform extensive experiments to
determine the extent to which PLMs can detect
CS text and capture both the structure and mean-
ing associated with CS text. Additionally, we ex-
tend our manually curated dataset with synthetic
data to allow for ablation studies which include
various controls such as the mix of languages in
CS text. We provide a template for future experi-
mental verification of linguistic theories pertaining
to CS based on the usage-based principle of lan-
guage acquisition.

1We release all our code and data including the
novel corpus at https://github.com/francesita/
code-mixed-probes

2. Related Work
In this section we discuss related research asso-
ciated with CS data, probes and methods of com-
paring language structure.

2.1. Code-switching and data generation
As previously mentioned, CS has become more
available thanks to the rise of social media and
multilingual users (Winata et al., 2023). To fa-
cilitate research, datasets and evaluation bench-
marks, such as LinCE, have been created in an
effort to have a centralised evaluation platform
for code-switching, (Aguilar et al., 2020). LinCE
combines ten corpora covering four different code-
switched language pairs and four tasks. Khanuja
et al. (2020) also provide a generalised CS bench-
mark that is inspired by GLUE known as GLUE-
CoS. Despite these efforts, research in the domain
remains challenging due to reasons mentioned in
Section 1. Our work in introducing a novel dataset
is aimed at addressing this shortcoming. This has
led to growing research in synthetic data genera-
tion for CS text, which motivates us to expand our
manually curated dataset with synthetic data, see
Section 3. Some of the techniques employed to
generate synthetic CS data in previous works in-
clude: (1) Identification and replacement of noun-
phrases in monolingual sentences with the trans-
lation of that phrase in the other language pair to
be studied (Salaam et al., 2022). (2) Generation of
CS text containing randomly selected languages
to create a CS example containing switching in
multiple languages (Krishnan et al., 2021). This
data was used to create a model referred to as
”modified mBERT”, which is trained on synthetic
and real code-switched data and then tested on
NLI in Hinglish. (3) The use of models trained on
CS text generation (Winata et al., 2019; Rizvi et al.,
2021). We use the first two of these methods to
augment our dataset with synthetic data.
Many of the synthetic data generationmethods are
inspired or driven by CS grammar theories devel-
oped in the field of linguistics (Bullock and Toribio,
2009; Sebba et al., 2012). There are two CS the-
ories that take precedence within NLP, the Equiv-
alence Constraint theory (EC), in which language
switches occur when the surface structures of lan-
guages align (POPLACK, 1980) and Matrix Lan-
guage Frame (MLF) model, in which one language
is dominant and determines the syntax of a CS
phrase (Joshi, 1982; McClure, 1995). Although
there are other grammar theories explaining CS,
these are the most used in NLP for the creation of
synthetic data. EC theory states that alternations
between languages occur when the surface struc-
tures of the languages align, therefore the gram-
mar rules of both languages are obeyed. Broadly,
the MLF theory holds that in CS sentences, there
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is a matrix language and an embedded language.
The matrix language is that which provides the
grammatical structure that accommodates words
or phrases from another language (Dogruoz et al.,
2021). Our exploration of the manner in which the
syntactic information pertaining to CS text is en-
coded in PLMs is driven by this theoretical work in
linguistics. Given that there are competing theo-
ries explaining the use of CS languages, our ex-
periments are designed to evaluate if the gram-
matical structure of CS data extracted by PLMs is
independent of either source languages, see Sec-
tion 5.

2.2. Probes
In this section, we introduce literature related to
probes, which we use extensively in this work.
Probes, also known as auxiliary or diagnostic clas-
sifiers (Adi et al., 2017), have been developed
to investigate linguistic properties encoded in text
representations (Tenney et al., 2019b). They have
been used for extrinsic exploration, in which a ma-
chine learning model is used to determine whether
a linguistic structure in present in representations
through performance on a task such as named en-
tity recognition (Hennigen et al., 2020) and intrin-
sic exploration, which looks to evaluate represen-
tations on benchmarks regarding the relationship
between words or sequences (Lab et al., 2020).
Probes have been used for a number of years and
have been largely used to analyse morphological,
semantic and syntactic language properties (Dalvi
et al., 2019). Probes are necessarily simply clas-
sifiers used to predict a property of some input
text (Adi et al., 2017) based on the representations
generated by a model, and often consist of a linear
layer, or multilayer perceptron on top of frozen rep-
resentations. Generally, the word or sentence rep-
resentations studied are frozen, in order to prevent
further training of the representations and are used
as the embedding inputs for the probe classifier.
As the representations are frozen, if a probe clas-
sifier learns to predict the property it was trained
on, it is an indication that there is a linear mapping
between the internal representations of the model
and the required output and so an indication of that
property being embedded within the model.
Works relevant to us in the field of probing is
the syntactic structural probe by Hewitt and Man-
ning (2019), in which they find that syntax trees
are embedded in a deep models’ representations.
This work is expanded on by Chi et al. (2020) ,
who use the structural probe and find that syn-
tactic features overlap between languages, which
agrees with universal dependencies’ taxonomy in
mBERT. Chi et al. (2020) also find that the struc-
tural probe most effectively recovers tree struc-
ture from the 7th or 8th mBERT layer, and that a

maximum rank beyond 64 or 128 gives no further
gains. Tenney et al. (2019b) introduce a frame-
work they call ”edge probing”, which provides a
uniform architecture across tasks. They use the
edge-probing technique to do layer-wise explo-
rations of the BERT model, in which they find that
basic syntactic information appears earlier in the
network, and high-level semantic information ap-
pears at the higher layers (Tenney et al., 2019a).
Prior work probing the syntactic structure of CS
text has been limited: Pires et al. (2019), as part of
their study, use a POS dataset to probemBERT on
code-switched text. A more detailed probe study
was done by Santy et al. (2021), in which syn-
thetically generated and real code-mixed data are
used to probe mBERT. They compare the probe
results for different tasks, such as POS, NER, LID
to the fine-tuned version of the model trained for
that task. They find that using synthetically gener-
ated data in certain tasks yield lower results than
using naturally occurring code-switched data.

2.3. Syntax and Graph Edit Distance
An important aspect of our work is in evaluating
the similarity of syntactic structure extracted by
probes. In this section, we review relevant work
pertaining to the comparison of such structures.
Graph Edit Distance (GED) is a metric commonly
used for structural pattern recognition and analy-
sis of graphs (Gao et al., 2010). GED is used on
dependency parses, where the parses are repre-
sented by unordered directed trees in order to fil-
ter out sentence pairs that cannot be compared
syntactically (Kroon et al., 2019). Kroon et al.
(2019) utilise this method for the massive auto-
matic syntactic comparison of languages. Un-
ordered graphs make it so that the GED algo-
rithm is more robust between different languages,
which is a reason they find GED to be a good tech-
nique for syntax comparison between different lan-
guages. They favour the use of parallel corpora for
automatic comparisons because it facilitates find-
ing the contexts in which differences in syntax oc-
cur (Kroon et al., 2019).

2.4. Existing CS Datasets
In this section, we discuss existing datasets
for Spanglish text. Although CS datasets are
generally scarce, Spanglish is a popular lan-
guage pair, in which some CS data can be
found (Winata et al., 2023). Many of the pub-
licly available datasets are from shared tasks,
such as CALCS workshops (Winata et al., 2023).
Some of the most used data in research include
language identification (LID) data from a shared
task in 2016 by Molina et al. (2016), SentiMix
2020 sentiment analysis dataset by Patwa et al.
(2020), and datasets for part-of-speech classifi-
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cation (POS) (AlGhamdi et al., 2016) and named
entity recognition (NER) (Aguilar et al., 2018) cre-
ated for shared tasks. All these datasets consist of
tweets, apart from the POS dataset, which is de-
rived from the Miami Bangor Corpus, and consists
of bilingual and CS conversations from four speak-
ers. This dataset is annotated with Universal POS
tags by Soto and Hirschberg (2017). All the afore-
mentioned datasets contain LID labels. There
is also a machine translation dataset for Span-
glish available that was created for CALCS 2021,
but this dataset does not contain parallel transla-
tions (Chen et al., 2022). All of these datasets are
available on the LinCE website 2.
As far as we know, there is no available natural-
istic Spanglish dataset that includes translations
for BOTH source languages. Such a dataset is
essential for conducting a systematic and con-
trolled evaluation of the PLMs under investigation.
Hence, we create such a dataset, which stands as
one of our contributions to the research.

3. Dataset Creation
Due to the absence of naturalistic datasets con-
taining Spanglish data with associated parallel
Spanish and English, we construct a novel dataset
to address this shortcoming, see table 1.

3.1. CS Data Collection
We collect CS data from X, previously known as
Twitter, using the techniques described in De Leon
et al. (2020). This method uses a keyword file
that contain the most commonly used words in
one of the language pairs (i.e. Spanish). We use
the top 100 most frequent words used in Spanish
according to the Dictionary of the Royal Spanish
Academy 3, and filter out words that contain 4 let-
ter or less to prevent overlap with other languages
and remove articles and pronouns. To ensure a
CS output, the search query should specify the
other language pair to be studied (i.e. English).
We select a random subset of posts from the col-
lected tweets to be part of the CS dataset that we
use to test our probes. A person fluent in Spanish
and English helped check this subset of tweets for
real occurrences of CS in Spanglish and to discard
any unusable or incoherent posts. TheseCS posts
were then translated into Spanish and English by a
speaker of both languages, with the aid of Google
Translate API 4. We ultimately obtain a total of 316
posts after quality checks and translations. A sub-
set of this collected data is used as part of our syn-
tax and semantic experiments. Specifically, we
choose examples containing intra-sentential CS,

2https://ritual.uh.edu/lince/datasets
3https://corpus.rae.es/frec/5000_formas.TXT
4https://pypi.org/project/googletrans/

the type of CS in which language alternations hap-
pens within a sentence. Intra-sentential instances
of CS are essential to observe with confidence the
interaction between two grammars (Joshi, 1982),
and are, therefore, key for the syntax experiments,
see Section 5. We gather 254 intra-sentential ex-
amples to use for syntax experiments, and refer
to these as r-CS to denote that they are real in-
stances of CS. These 254 examples were cho-
sen on the basis of whether they were instances
of intra-sentential CS. We remove hashtags, links
from these examples. The examples were also re-
written by bilinguals in Spanish and English, in or-
der to create well-formed sentences, which is chal-
lenging to find in social media. View table 2 for
examples of the original posts, the edited CS text
and translations into source languages.

3.2. CS data generation
We utilise the parallel translations of the CS data
we collect (r-CS) to generate synthetic CS data
using two different techniques found in litera-
ture, random replacement of a token in either of
the language pairs (Krishnan et al., 2021), and
the noun-phrase replacement technique (Salaam
et al., 2022). The source data to generate the
synthetic examples come from the English and
Spanish translations of the r-CS dataset. For the
random generation method, we tokenize the ex-
amples, and randomly choose whether that token
should be translated or not. If translated, that to-
ken is replaced by the translation. For the noun-
phrase synthetic dataset, we follow a 3-step pro-
cess as described in Salaam et al. (2022). (1)
Noun-phrase identification, we use the spaCy li-
brary to do this 5, (2) translate the noun-phrase into
the desired language, (3) replace the correct span
with the translated noun-phrase. We generate
noun-phrase synthetic examples with both Span-
ish monolingual and English monolingual transla-
tions of our r-CS, to ensure we have examples with
majority Spanish (NP-CS-es) and majority English
tokens (NP-CS-en).

4. Detection
We use probes to conduct a layer-wise exploration
of the PLMs in order to find if models are able to
differentiate between monolingual and CS input.
These experiments fall under (1) sentence classifi-
cation, in which we train probe classifiers to differ-
entiate between monolingual and CS sentences,
and (2) an LID task, in which a probe is trained
to detect the natural language of a token, given a
CS sentence. These experiments are designed to
understand whether PLMs have access to source
language information in processing CS data, and

5https://spacy.io/
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dataset # tokens en es other ne unk
Real CS data 4302 2174 (50.53%) 1397 (32.47%) 657 (15.27%) 73 (1.69%) 1 (0.02%)
Random CS data 4649 2039 (43.85%) 1867 (40.16%) 662 (14.24%) 80 (1.72%) 1 (0.02%)
En noun phrase synthetic CS data 4233 1338 (31.61%) 2145 (50.67%) 673 (15.90%) 76(1.79%) 1(0.02%)
Es noun phrase synthetic CS data 4640 2411 (51.96%) 1456 (31.38%) 657 (14.16%) 116 (2.5%) 0

Table 1: Created CS datasets: en stands for English, es for Spanish, other for largely punctuation, ne
for named-entities and unk for unknown.

Original post Edited post Spanish translation English translation

siempre me dicen que no sea tan inseguro,
i’M tRyInG mY bESssT.

Siempre me dicen que no sea tan
inseguro, I’m trying my best.

Siempre me dicen que no sea tan
inseguro, estoy haciento mi mejor esfuerzo.

They always tell me not to be so
insecure, I’m trying my best.

NO HABIA VISTO QUE HE WAS ALMOST
SHIRTLESS
https://t.co/d5tKtpzPMw

No había visto que he was almost
shirtless.

No había visto que estaba casi sin
camisa.

I hadn’t seen that he was almost
shirtless.

@rcknatsu first u gotta inhalar el aire
hacia los pulmones

First you gotta inhalar el aire hacia
los pulmones.

Primero tienes que inhalar el aire hacia
los pulmones.

First you gotta inhale the air into
your lungs.

Table 2: Examples of original posts collected from X, and minimal editions and translations

if so, we wish to determine if the information per-
taining to language varies between the layers of
different language models.

4.1. Methods
For the experiments dealing with sentence and
token classification (LID), we use the following
CS datasets: SentiMix 2020 Patwa, Parth and
Aguilar, Gustavo and Kar, Sudipta and Pandey,
Suraj and PYKL, Srinivas and Gambäck, Björn
and Chakraborty, Tanmoy and Solorio, Thamar
and Das, Amitava (2020), and CALCS 2016 LID
dataset Chen et al. (2022). Additionally, we use
monolingual datasets in Spanish and English cre-
ated for the ProfNER 2021 shared task Miranda-
Escalada et al. (2021). The ProfNER dataset con-
sists of tweets in Spanish and English. We use the
ProfNER data together with the SentiMix data to
create a balanced dataset containing text in Span-
ish (es) (4,000 examples with label 0), English (en)
(4,000 examples with label 0), and CS (8,000 ex-
amples with label 1). This way we are sure to have
balanced classes for training the probe classifier.
We use an 80-10-10 split to train, validate and test
the classifier. This combined dataset is used on
the sentence classification task, in which we train
a probe classifier to distinguish between monolin-
gual and code-switched sentences.
For the LID token classification task, we use two
datasets, CALCS 2016 LID dataset, and SentiMix
2020, which contain language ID tags for each
token. The possible labels for the LID task are
lang1 (en), lang2 (es), other, ne (named entities),
fw (a language different from lang1 and lang2),
mixed (partially in both languages), unk (unrecog-
nizable words), ambiguous (either one language
or another) (Aguilar et al., 2020). For the LID
task, we train probes separately on the datasets
to see how probe performance changed, if at all.
In the CALCS 2016 dataset, 7,986 examples con-

tain both source languages in the same sentence.
There are 21,030 train examples in this dataset,
meaning that 38% of the data the probe was
trained and tested with contained true instances
of intra-sentential CS. The SentiMix dataset, on
the other hand, contains 11,783 intra-sentential
CS examples. In total, 96% of the examples used
to train, validate and test probes on the SentiMix
dataset contain instances of CS. For both the sen-
tence and token classification tasks, we report the
average F1 score across 5 seeds for each layer
and model. For each probe, we use a batch size
of 32, and learning rate of 1e-3.

4.2. Results
The results of the detection experiments are dis-
played in figures 1 and 2. The probe results in-
dicate that PLMs are, in general, able to distin-
guish betweenCS text andmonolingual text. Inter-
estingly, for the sentence classification task, CLS
pooling for XLM-R-base causes the probe to strug-
gle with the sentence classification task, although
by the latter layers (10, 11) the F1 score begins
to match that of the other probe classifiers corre-
sponding to those layers. This could be because
the CLS token may not fully capture information
relating to the differences in multiple languages,
while mean pooling considers the entire input se-
quence, thereby capturing the differences in lan-
guages better. On the other hand, we can see
that XLM-R-large CLS pooling is effective for the
task, indicating, perhaps, that models with more
parameters are able to encode this information
in the CLS token. Overall, it seems that for the
base models, the mean pooling strategy is more
effective than using the CLS token, likely because
mean pooling allows us to consider the full input
sequence.
For the LID task, our results indicate that PLMs
seem to have language information at the to-

https://t.co/d5tKtpzPMw
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Category Experiment Explanation Aim

Detection Sentence Classification Train probe classifiers for each PLM and layer to detect
whether a sentence is monolingual or code-switched.

Find if models can distinguish
between monolingual and CS sequences

Detection Language Identification (LID) Train probe classifiers for each PLM per layer to learn
the language ID of tokens of CS text

Find if models can distinguish between
all the languages in a CS input
at the token level.

Syntax Dependency parse from
structural probe

Train a structural probe to extract the dependency
parse of sentences in English and Spanish.
The probe is used on CS data and the translations.

Study the structures of CS input and
compare them with the structure
of the monolingual translations.

Semantics Semantic Text Similarity (STS)

Fine-tune PLMs on STS task in Spanish and English,
which assigns a score on the similarity of two texts.
Use CS data and Spanish and English data to get
scores on different language pairs and sentence pairs.

Determine whether PLMs are consistent
in encoding meaning of CS text
compared to monolingual representations.

Table 3: Summary of tested dimensions and associated conducted experiments.
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Figure 1: Mean F-1 Scores across layers for the
sentence classification task for each of the PLMs
studied. In this task, probe classifiers learn to dis-
tinguish between CS and monolingual text.

ken level embedded within them from early lay-
ers in the models, see figure 2. This indicates
that PLMs may have encoded knowledge on fea-
tures such as vocabulary or morphology for differ-
ent languages. Given that the probe classifiers
achieve high F-1 scores for both datasets, Sen-
tiMix2020 and CALCS 2016, it may be the case
that this information is used throughout all layers.
In our experiments, mBERT seems to struggle
when compared to the other models on the Sen-
tiMix dataset. This could be due to a combination
of two things: (1) XLM-RoBERTa generally outper-
formsmBERT on cross-lingual classification (Con-
neau et al., 2020), and (2) the SentiMix dataset
may be more challenging than CALCS 2016 be-
cause SentiMix contains more CS examples. Re-
gardless, the average F1 score for mBERT on the
SentiMix dataset remains at 0.84 and above, in-
dicating that the model still has some information
at the token level to do well at the LID task. Gen-
erally, the probe classifiers trained and tested on
the SentiMix dataset exhibit a drop in performance
in contrast with the probes trained on the CALCS
2016 dataset. This likely due to the amount of CS
examples in each of the datasets 4.1, which may
mean that the SentiMix dataset may be more rep-
resentative of the LID task for CS text. Overall,
these experiments show that PLMs are very ef-
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Figure 2: LID model mean F-1 Scores across lay-
ers for the probe classifiers. In this task, probe
classifiers learn the LID of the tokens in CS sen-
tences.

fective at detecting CS text at both the sentence
and token levels, even with a more challenging
dataset.

5. Syntax
To evaluate the effective generalisability of the in-
ferred structure of CS data, we evaluate the extent
to which CS data is similar to themajority language
in that text. We do this using our dataset r-CS
which has translations into the source languages.
We set this up using the structural probe which
was developed by Hewitt and Manning (2019) to
allow us to extract the structural information cap-
tured in CS text and evaluate if the structure is
closer to one language compared to another. We
repeat this experiment with synthetic data to en-
sure that we have a more controlled way of mea-
suring this. The results of these experiments are
presented in Section 5.2.

5.1. Methods
We use the structural probe developed by He-
witt and Manning (2019), and use the code base
by Chi et al. (2020) to train a probe to recre-
ate the dependency tree structure using Universal
Dependencies (UD) datasets (Nivre et al., 2020).
We train the probe using mBERT on both UD
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Spanish ancora Taulé et al. (2008) and UD En-
glish EWT Silveira et al. (2014), and validate the
probe on the test partition of these datasets to
ensure high performance on monolingual data,
based on two evaluation metrics: Spearman cor-
relation between predicted and true word pair dis-
tances, and on undirected, unlabelled attachment
score (UUAS), the percentage of undirected edges
placed correctly (Chi et al., 2020). We train the
structural probe on layer 7 of mBERT and use a
maximum rank of 128 to recover the path length
between each pair of words in a sentence (He-
witt and Manning, 2019). We do this because of
reasons found in Section 2. Once we have en-
sured that the probe recovers appropriate depen-
dency parses for monolingual data, we extract de-
pendency parses from the probe using the CS ex-
amples from our r-CS dataset. We then generate
dependency parses for the translations in English
and Spanish from our dataset.
Due to the lack of gold labels for CS-dependency
parses, we have decided to use the graph edit
distance (GED) between the dependency parse
of a code-mixed sentence and the dependency
parse of the monolingual translations as given by
the syntax probe. Using GED tells us how many
changes a dependency parse need to undergo to
resemble another dependency parse. Therefore,
we analyse the distances between the GEDs of
a code-mixed sentence and the translated mono-
lingual sentences, with the aim of finding if the
CS structure aligns more with one of the source
languages when compared to the other. To do
this, we use the NetworkX python library (Hagberg
et al., 2008). Finding theGED between two graphs
can often be slow for graphs containing more than
10 nodes (Hagberg et al., 2008). This is the reason
we select a subset of the CS dependency parses
derived from the structural probe, specifically, ex-
amples that contain 10 nodes or fewer, totalling
118 examples. We then extract the dependency
parses for the translations of the 118 CS exam-
ples and compare the distances . We repeat these
experiments with the synthetically generated CS
data: randCS and NP-CS-es and NP-CS-en 3.

5.2. Results
Our results associated with syntax are presented
in table 4. These results show that there is a
strong correlation in the graph edit distances be-
tween real CS text and the monolingual transla-
tions of that text. In order to assess the poten-
tial correlation between the distances for the dif-
ferent language pairs, we use Spearman correla-
tion. For example, to compare monolingual text to
real instances of CS text, we use ther-CS data and
find the distance between those CS examples and
the corresponding Spanish translations, then we

do the same for the English translations. We then
find the Spearman statistic between these two sets
of distances. The results indicate that the model
generates CS dependency parses that are simi-
lar in distance to the monolingual parses, that is,
the dependency parses are not closer in distance
to one language compared to another. This is the
case despite our dataset containing more English
tokens than Spanish tokens, see table 1. The re-
sults also show that when synthetic CS examples
are used, the correlation of distances between the
CS examples and parallel translations drops, per-
haps indicating that some of the synthetic CS ex-
amples lack syntactic structure.

6. Semantics
One of our aims is to discover whether PLMs
are able to effectively capture the meaning of
code-mixed sequences. We carry out an intrin-
sic exploration to see how the representations of
code-switched sentences compare with monolin-
gual sentences. We want to find if PLMs are con-
sistent in representing semantic information in CS
text when compared to semantic representations
of monolingual text. To do this, we fine-tune all the
PLMs on the semantic text similarity (STS) task us-
ing monolingual benchmark STS data in Spanish
and English.

6.1. Methods
PLMs do not generate semantically meaningful
sentence embeddings unless specifically trained
for this, therefore we must fine-tune the models on
the STS task. We build on work by Tayyar Mad-
abushi et al. (2022) to set up the semantic experi-
ments. Tayyar Madabushi et al. (2022) developed
a method to find whether a PLM is consistent in
scoring two sentences or expressions with similar
meaning. Given two input sentences, the models
must return an STS score between 0 (least similar)
and 1 (most similar). We adopt this method to find
if a model, after it is fine-tuned on the STS task, is
consistent in scoring monolingual sentences and
CS sentences. The PLMs fine-tuned on the STS
task should be consistent in scoring monolingual
sentences and CS sentences. That is, the sen-
tence similarities of (ies, jes) and (ien, jen) , should
approximate the similarities between (ics, jcs) and
(ies, jes) and (ien, jen). We formalise this in Eq. 1.

sim(Sl1
i , Sl2

j ) = sim(Scs
i , Sl

j) (1)

where sim represents the cosine similarity. S is
a sentence in the dataset. The languages of the
sentences are encoded by (l1, l2, l) ∈ {es, en} ×
{es, en} × {es, en, cs}.
The indexes represented by (i, j) ∈ N2 corre-
spond to the sentences in the dataset of length N .
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lang-pair 1 lang-pair 2 Spearman statistic
cs vs. en cs vs. es 0.8308

NP-CS-en vs. en NP-CS-en vs. es 0.6876
NP-CS-es vs. en NP-CS-en vs. es 0.7564
randCS vs. en randCS vs. es 0.6983

Table 4: Spearman rank for correlation between
distances of code-mix and monolingual text. Re-
sults on real CS data is highlighted.

We use the dataset r-CS to get similarities be-
tween the language pairs listed in table 5. The
similarities output by the fine-tuned PLMs are com-
pared to each other using Spearman Rank Cor-
relation. All PLMs were fine-tuned using a batch
size of 8. The base models were fine-tuned us-
ing a learning rate of 2e-5, and XLM-R-large was
fine-tuned with a learning rate of 2e-6.

6.2. Results
Our results associated to semantics are presented
in tables 5 and 6. In general, these results show
that the models are able to capture the mean-
ing of naturally occurring code-mixed sentences
in a way that aligns with how they capture the
meanings in monolingual sentences. These re-
sults show that the strongest correlations are be-
tween sim(csi, csj) - sim(eni, enj) and between
sim(csi, enj) - sim(eni, esj). In general, though,
for all models, the Spearman rank statistic com-
paring all language pairs is high, meaning that the
PLMs, fine-tuned on monolingual data, have the
capacity to effectively capture and represent se-
mantic relationships between CS text and mono-
lingual text in a manner consistent with how they
represent those relationships between the mono-
lingual pairs. We also conduct these experiments
using synthetic CS data, randCS and NP-CS-es
and NP-CS-en; table 6 contain the results for the
experiments with the synthetic data. These results
may indicate that the model is not able to cap-
ture meaning consistent to the monolingual trans-
lations of these examples. This may be for a num-
ber of reasons, perhaps because these genera-
tions are not guaranteed to bewell-formedCS text,
it may indicate that the model relies on the syn-
tactic structure of a sentence to provide semantic
similarity. Further experiments with different types
of synthetically generated CS would be needed for
proper analysis.

7. Discussion
The results across all categories of experiments
seem to indicate that PLMs are likely to have the
potential to generalise to being able to handle CS
text. We find that PLMs are effective at detect-
ing CS text at a sentence level and token level
in our detection experiment. We find that de-

l-pair-1 l-pair-2 cosine spearman
mBERT XLM-R-base XLM-R-large

en-en cs-cs 0.8503 0.8208 0.8256
es-es cs-cs 0.7892 0.7655 0.7799
en-es cs-en 0.8695 0.8656 0.8704
en-es cs-es 0.7266 0.6947 0.7200

Table 5: Spearman rank statistic for the cosine
similarity between language pair 1 (l-pair-1) and
language pair 2 (l-pair-2).

l-pair-1 l-pair-2 cosine spearman
mBERT XLM-R-base XLM-R-large

randCS-randCS en-en 0.0106 -0.0028 0.0105
randCS-randCS es-es 0.0091 0.0177 0.0189
NPesCS-NPesCS en-en 0.0027 0.0009 -0.0029
NPesCS-NPesCS es-es 0.0188 0.0208 0.0021
NPenCS-NPenCS en-en 0.0151 0.0009 0.0048
NPenCS-NPenCS es-es 0.0188 0.0205 0.0065

en-es randCS-en 0.0184 0.0114 0.0212
en-es randCS-es 0.0043 0.0154 0.0156
en-es NPesCS-en 0.0102 0.0030 0.0130
en-es NPesCS-es 0.0011 0.0223 0.0108
en-es NPenCS-en 0.0107 0.0111 0.0168
en-es NPenCS-es 0.0056 0.0221 0.0152

Table 6: Semantic experiments results with syn-
thetic CS data and the original monolingual trans-
lations of the r-CS-syn dataset.

pendency parses generated by the model are not
more similar in distance to one language or an-
other in our syntax experiments that is, experi-
mental results reveal a strong correlation in the
distances of dependency parses between English
(cs-en) and Spanish (cs-es). There is no signif-
icant difference in distances; this diverges from
the Matrix language Frame theory, where one lan-
guage is dominant and determines the syntax of
the CS phrase. We find as well that the models are
consistent in capturingmeaning representations of
real CS text, but are unable to do so for syntheti-
cally generated text using our generationmethods.
They seem to capture syntactic structure and se-
mantic meaning across real CS text, without being
trained on CS text, see tables 4 and 5.
Our findings show that PLMs are surprising good
at generalising across CS text containing Spanish-
English language pair. They also show that in gen-
eral, performance of the probes degrades when
using synthetic CS text. In the syntax experiments,
the correlation between the distances diminish,
though this could be attributed to the difference
in distribution of a synthetically generated CS ex-
ample when compared to a well-formed CS exam-
ple. Although we used methods found in litera-
ture to generate the synthetic examples, there is
no guarantee of these methods producing a natu-
ralistic CS sentence. In the semantic experiments,
the Spearman correlation statistic drops to nearly
zero across all models when using synthetically
generated CS text, which may be due to the loss
of grammatical correctness. This may show that
PLMs rely on the syntactic structure of a sentence
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to provide the semantics. Further experiments
with different types of synthetically generated CS
would be needed for a proper analysis.
In general, the experimental results across detec-
tion, syntax and semantics, show that for real CS
text containing languages that are closely related,
such as Spanish and English, PLMs may contain
enough linguistic information from the source lan-
guages to handle the mixed language text. This
is promising, because if monolingual data can be
harnessed for some tasks, then the scarcity of data
in certain CS language pairs can be mitigated by
the PLMs ability to generalise. We would like to
explore this idea in future research.

8. Conclusion and Future Work
In this paper, we present our finding on how pre-
trained models handle code-switched text. Our
contributions include a novel dataset of CS text
and translations into the source languages, Span-
ish and English. Additionally, we extend probing
work to code-switching in Spanglish in the areas of
syntax and semantics. We carry out experiments
in detection, syntax and semantics, to explore how
PLMs capture CS text. We find that PLMs seem to
be effective at detecting CS text. In the future, we
hope to explore PLMs abilities to learn from mono-
lingual data for use on CS text, experiment with
further synthetic data generation methods, and to
expand to other languages.
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10. Optional Supplementary
Materials

10.1. Limitations
Our work only explores how models embed code-
switched data for Spanglish, although this was
done so as not to confound model capabilities
by other aspects of language use, in the future,
we would like to extend our explorations to lan-
guages such as Hinglish. Doing so will allow us
to see the extent to which PLMs generalise to dif-
ferent language pairs, especially pairs that are not
closely related languages. Our work only explores

auto-encoder models, such as mBERT and XLM-
RoBERTa, which does not offer a comprehensive
view of how different types of models encode CS-
text. In the future, we would like to explore the
capabilities and degree to which models such as
GPT encode CS text.

10.2. Ethics Statement
We do not use any private data, all data used is
publicly available, or will become available after
the end of the anonymity period. The dataset that
we create is collected from social media and may
contain profanity or toxic content. We work with
one language pair for code-switching, out of many,
and hope in the future to expand this to other CS
language pairs, especially low-resource pairs.
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