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Abstract
Fine-tuning in information retrieval systems using pre-trained language models (PLM-based IR) requires learning
query representations and query–document relations, in addition to downstream task-specific learning. This study
introduces coarse-tuning as an intermediate learning stage that bridges pre-training and fine-tuning. By learning
query representations and query–document relations in coarse-tuning, we aim to reduce the load of fine-tuning and
improve the learning effect of downstream IR tasks. We propose Query–Document Pair Prediction (QDPP) for
coarse-tuning, which predicts the appropriateness of query–document pairs. Evaluation experiments show that
the proposed method significantly improves MRR and/or nDCG@5 in four ad-hoc document retrieval datasets.
Furthermore, the results of the query prediction task suggested that coarse-tuning facilitated learning of query
representation and query–document relations.
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1. Introduction

The advent of BERT (Devlin et al., 2019) has sig-
nificantly improved the effectiveness of information
retrieval systems using pre-trained language mod-
els (PLM-based IR) (Craswell et al., 2020a). How-
ever, simply applying fine-tuning on an IR dataset
does not bring about a significant improvement (Lin
et al., 2020), although fine-tuning is expected to
achieve high effectiveness with additional minor
training. High effectiveness requires costly fine-
tuning, i.e., training with an IR-specific expensive
network and/or training on a huge dataset such
as MS MARCO (Bajaj et al., 2018). For exam-
ple, CEDR (Robertson et al., 2019)’s fine-tuning
involves training BERT for 100 epochs on a clas-
sification task, followed by training the proposed
model for another 100 epochs. In PARADE (Li
et al., 2020), fine-tuning involves training on the
MSMARCO dataset, as well as another 36 epochs
of training on the proposed model.

One possible reason for expensive fine-tuning
is the difference in the nature of input data. The
input for BERT’s pre-training is natural language
sentences. In contrast, the input for the IR task
consists of pairs of two unbalanced data: query,
which is a string of a few words, and document,
which is dozens to hundreds of natural language
sentences. Queries do not follow the grammar
of natural language sentences (Barr et al., 2008)
and thus conflict with models trained on natural lan-
guage sentences1. It is highly possible that BERT’s
pre-training does not properly learn query represen-

1The effectiveness is reduced when a POS tagger

tations that reflect the grammar of queries. Further-
more, the relation between a query and a document
has a different nature from the relation between two
sentences. That is, query words and their related
words appear in candidate documents that match
the query2, while these words do not appear in irrel-
evant documents. Such query–document relations
are also not learned in BERT’s pre-training3. There-
fore, fine-tuning in PLM-based IR requires learning
query representations and query–document rela-
tions as well as downstream task-specific training
for document ranking. In this way, the large gap in
input data between pre-training and fine-tuning is
the burden of fine-tuning, making fine-tuning more
expensive.

We introduce an intermediate learning stage
coarse-tuning that bridges pre-training for NLP
tasks and fine-tuning for IR tasks. By learning query
representations and query–document relations in
coarse-tuning, fine-tuning focuses mainly on pre-
dicting the document’s relevancy for the query,
which helps to improve the effectiveness of fine-
tuning at a low cost.

BERT’s pre-training employs the Masked Lan-
guage Model (MLM) for solving the cloze test and
Next Sentence Prediction (NSP) for predicting sen-
tence adjacency. We also use MLM to learn query

trained on natural language sentences is applied to
queries (Barr et al., 2008; Ganchev et al., 2012; Keyaki
and Miyazaki, 2017).

2Many studies that improve effectiveness by sampling
words in documents to generate pseudo-queries (Ma
et al., 2021a; Lee et al., 2019a; Chang et al., 2020).

3In fact, the result on Table 3 supported our claims.
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T[SEP]
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Figure 1: Architecture of the coarse-tuning model

representations. To learn query–document rela-
tions, we propose a Query–Document Pair Pre-
diction (QDPP) that predicts the appropriateness
of query–document pairs inspired by NSP.

Evaluation on four ad-hoc document retrieval
datasets showed that applying coarse-tuning prior
to fine-tuning statistically significantly improved
MRR and/or nDCG@5. The results of query predic-
tion suggested that the query representations and
query–document relations were learned by coarse-
tuning.

2. Proposed Method

Figure 1 shows an overview of the learning model
for coarse-tuning. The architecture consists of
multi-layer bidirectional Transformers, the same
as BERT. In coarse-tuning, MLM and QDPP jointly
learn query representations and query–document
relations, respectively.

Model input: Since the learning model of coarse-
tuning is specific to IR tasks, the input is a query–
document pair. The query and document are tok-
enized and combined as a single sequence with
special tokens ([Q], [D], [CLS], [SEP], and
[PAD]). [Q] is inserted before the query tokens
and represents the query. [D] is inserted before
the document tokens and represents the document.
The document tokens are truncated when exceed-
ing the maximum token length.

Masked Language Model (MLM): We employ
MLM to learn deep bidirectional query representa-
tions. A certain percentage of tokens are randomly
masked (replaced with the [MASK] token). Learn-
ing is performed by predicting the original tokens
of the masked tokens.

Query–Document Pair Prediction (QDPP):
QDPP learns query–document relations through
the task of predicting whether an input query–
document pair is appropriate (IsPair) or inappro-

priate (NotPair).
Conditions of training data for coarse-tuning:

The training data of coarse-tuning need to be (I)
consisting of a large number of distinct queries
and query–document pairs, and (II) preserving an
appropriate relation between a query and a docu-
ment. A straightforward resource for judging the ap-
propriateness of query–document pairs is qrels
(relevancy judgment) in an IR dataset. However,
the amount of qrels is insufficient because typical
qrels contain only dozens to hundreds of queries,
with tens to hundreds of relevance judgments for
each query. Thus, while qrels are a vital resource
for learning how to rank documents in fine-tuning,
they are not the optimal option to obtain a general
representation of queries and query–document re-
lations.

ORCAS (Open Resource for Click Analysis in
Search) (Craswell et al., 2020a) is a click log
dataset that satisfies both (I) and (II). ORCAS
contains 19 million query–document pairs (10 mil-
lion distinct queries, whose majority are keyword
queries). Noise and inappropriate queries are re-
moved from the vast amount of logs collected by
Bing, and k-anonymization is applied to the remain-
ing queries.

The query–document click relation is related to
relevancy, and many studies achieved improve-
ment by treating clicked documents as pseudo-
relevant documents (Radlinski and Joachims, 2005;
Huang et al., 2013; Wang et al., 2016). Therefore,
we use query–document pairs in the clicked relation
as appropriate query–document pairs.

During the generation of training instances,
a certain percentage of query–document pairs
from the set of appropriate query–document pairs
(IsPair) are replaced with inappropriate docu-
ments (NotPair).

Learning procedure: Coarse-tuning focuses
on learning query representations and query–
document relations and does not aim at acquir-
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ing general language representations. Therefore,
we apply coarse-tuning to a pre-trained model
where linguistic representations have already been
learned. The procedure to learn the model for a
downstream IR task is: (1) obtaining a pre-trained
language model (PLM), (2) applying coarse-tuning
(MLM and QDPP) using ORCAS, (3) fine-tuning on
an IR dataset.

3. Experimental Evaluation

3.1. Experimental Setup
For evaluation on the downstream ad-hoc docu-
ment retrieval datasets, the top 1,000 documents
are retrieved using BM25 as the first stage retrieval,
followed by re-ranking using the PLM-based IR
methods. We compare the following six methods:

1. BM25
2. pre-trained Using a pre-trained model
3. coarse-tuned Applying coarse-tuning on

a pre-trained model
4. fine-tuned (baseline) Applying fine-

tuning on a pre-trained model
5. cont-pre+fine Applying continual pre-

training with ORCAS documents on a pre-
trained model followed by fine-tuning

6. coarse+fine (proposed) Applying
coarse-tuning on a pre-trained model followed
by fine-tuning

We employ a simple fine-tuning (Câmara and
Hauff, 2020) to focus on verifying the effect of
coarse-tuning. Specifically, fine-tuning is trained as
a classification task that predicts the relevancy la-
bel of query–document pairs using the same model
as coarse-tuning. The predicted probability of the
relevant label is used as the document score.

In coarse-tuning, the additional dataset (OR-
CAS) is used for training. Even if the effective-
ness of coarse+fine (proposed) improves,
it’s indistinguishable whether the improvement is
from the coarse-tuning or simply increased train-
ing data. Therefore, we compare coarse+fine
(proposed) to cont-pre+fine, where contin-
ual pre-training using ORCAS documents for 40
epochs is followed by fine-tuning. This comparison
verifies the usefulness of coarse-tuning.

As for experimental environments, the pre-
trained model is prajjwal1/bert-tiny (Bhar-
gava, 2021) (L=2, H=128), the percentage of to-
kens to be masked in MLM was set to 0.15, the
probability of generating a sample of isPair in
QDPP was set to 0.5. We used PyTerrier (Mac-
donald and Tonellotto, 2020) and Hugging Face
Transformers (Hugging Face, 2022) for develop-
ment and evaluation. The maximum token length
is 256. The batch sizes were set to 80 and 128 for

coarse-tuning and fine-tuning, respectively. The
optimizer used for learning was AdamW, which
learning rate is 1e-3. The specs of the computer
are CPU: AMD Ryzen 9 5900X 12-Core Processor,
GPU: GeForce RTX 3060 VENTUS 2X 12G OC,
memory: 128GB. Our proposed method took 20
hours for coarse-tuning (4 epochs) and 21 minutes
for fine-tuning (3 epochs) on Robust04, which is
within a practical cost range. However, the training
time could be extended if larger models or more
advanced fine-tuning methods are used.

3.2. Downstream Ad-hoc Document
Retrieval Datasets

Robust04 (TREC, 2004) is often used in recent
PLM-based IR evaluations because it consists of
queries on which classical keyword match-based
methods do not perform well. Robust04 contains
250 queries, 500,000 news articles, and 310,000
qrels. The number of qrels per query is larger
than the standard IR datasets, indicating more
dense judgments. The relevancy labels for qrels
are not relevant (94.4%), relevant (5.3%),
and highly relevant (0.3%). In the evaluation
experiment, the minority label highly relevant
was converted to relevant. We employ 4-fold
cross-validation (CV) where 200 queries are used
in training and 50 queries in evaluation.

We also evaluate the TREC Deep Learning
(TREC-DL) Track datasets (Craswell et al., 2019,
2020b) (2-fold CV with 88 queries), GOV2 (TREC
Terabyte Track) (TREC, 2004-2006) (3-foldCV with
150 queries), TREC-COVID (TREC, 2020) (5-fold
CV with 50 queries) to verify the robustness of the
proposed method. Robust04, GOV2, and TREC-
COVID primarily consist of keyword queries, while
more than two-thirds of the queries in TREC-DL
are natural language queries. The language used
in these datasets is English.

We report MRR, nDCG@5, 15, 30, and MAP as
evaluation metrics. For verifying statistical signif-
icance, we used a paired two-sided t-test. Each
sample is the effectiveness of each query; that is,
the sample size is the number of queries. Note that
we used the common coarse-tuned model for all
experiments of the four datasets.

Preliminary experiments reported in Appendix A
revealed that the optimal number of the ORCAS
sampling rate is 8%, and epochs for coarse-tuning
are 4, with fine-tuning epochs varying by dataset:
3 for Robust044, 1 for GOV2, 5 for TREC-COVID,
and 4 for TREC-DL. These numbers are relatively
small, and therefore the computational cost is not

4The first epoch was the most accurate when only
fine-tuning was performed. This result suggests that
coarse-tuning alleviates over-fitting. See Appendix A.3
for more details.
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Table 1: Evaluation on Robust04: the symbols (*, †) indicates that there was a significant difference
(p<0.01, p<0.05, respectively) compared to fine-tuned (baseline).

MRR nDCG@5 nDCG@15 nDCG@30 MAP
BM25 0.541 0.371 0.356 0.332 0.214

pre-trained 0.201 0.100 0.109 0.119 0.125
coarse-tuned 0.227 0.115 0.124 0.136 0.143

fine-tuned (baseline) 0.548 0.377 0.359 0.361 0.279
cont-pre+fine 0.549 0.376 0.360 0.355 0.277

coarse+fine (proposed) 0.597† 0.420* 0.378 0.373 0.290

Table 2: Evaluation on GOV2, TREC-COVID, and TREC-DL: the symbols (*, †, ‡) indicates that there
was a significant difference (p<0.01, p<0.05, p<0.10) compared to fine-tuned (baseline).

MRR nDCG@5 nDCG@15 nDCG@30 MAP

GOV2 fine-tuned (baseline) 0.514 0.327 0.327 0.308 0.231
coarse+fine (proposed) 0.568† 0.364‡ 0.337 0.312 0.230

TREC-COVID fine-tuned (baseline) 0.873 0.821 0.791 0.789 0.739
coarse+fine (proposed) 0.940† 0.929* 0.849† 0.821† 0.751‡

TREC-DL fine-tuned (baseline) 0.744 0.552 0.521 0.517 0.463
coarse+fine (proposed) 0.782‡ 0.572 0.508 0.514 0.452

high. The experiments in the next section report
the effectiveness of the average score of five trials
when optimal settings are used.

3.3. Evaluation of the Ad-hoc Document
Retrieval Datasets

Table 1 shows the results on Robust04. The most
effective method in all metrics was coarse+fine
(proposed). coarse+fine (proposed) im-
proved 9% and 12% in MRR and nDCG@5, respec-
tively, compared to fine-tuned (baseline).
The effectiveness of cont-pre+fine was roughly
the same as fine-tuned (baseline), sug-
gesting that the improvement in coarse+fine
(proposed) is not merely due to an increase in
training data, but rather the effect of coarse-tuning.
pre-trained and coarse-tuned that were not
trained specifically for IR tasks performed poorly.
These had even lower effectiveness than BM25, in-
dicating the necessity of fine-tuning. In conclusion,
fine-tuning improved the effectiveness with prior
coarse-tuning.

As shown in Table 2, coarse+fine (pro-
posed) outperformed fine-tuned (base-
line) in MRR and nDCG@5 for GOV2, TREC-
COVID, and TREC-DL. The effectiveness on
TREC-DL did not improve as much as that on
other datasets. In other words, coarse+fine
(proposed) tended to show greater improvement
with datasets consisting of keyword queries. Given
that the majority of ORCAS queries are keywords,
this suggests that having similar characteristics
between coarse-tuning and fine-tuning data can
enhance learning effectiveness.

All results with four datasets showed that
coarse+fine (proposed) outperforms fine-

tuned (baseline) with MRR and nDCG@5. It
was confirmed that coarse-tuning improves the ef-
fectiveness of fine-tuning.

3.4. Evaluation of Query Representation
and Query–Document Relations

To evaluate whether or not query representations
and query–document relations were acquired by
coarse-tuning, we conducted a task that predicts
queries from given documents. Specifically, when
creating a sequence from a document, we inserted
[MASK] tokens at the position of the query tokens.
Each model then predicts the [MASK] tokens for
restoring the query. Since the average length of
ORCAS queries is 3.27, the number of [MASK]
tokens is set to 3 (TokQ1, TokQ2, TokQ3).

Table 3 is a list of top-5 predicted query tokens
given the English Wikipedia article “Information re-
trieval”5. Both pre-trained and fine-tuned
(baseline) predicted random tokens. Moreover,
most of the first tokens TokQ1 contain “##” despite
the initial tokens. This suggests that the query rep-
resentation and the query–document relation have
been learned in neither BERT’s pre-training nor
its simple fine-tuning. In coarse-tuned, “how”
and “what” appear in the first token TokQ1 and “of”
in the second token TokQ2, suggesting that some
query representation has been learned. In addition,
“data”, “information”, and “search” are words that
appear in the input sequence, and “computer” and
“citations” are words that appear in the article later
than the input range. The result suggests that the
query–document relation is also learned since the

5https://en.wikipedia.org/wiki/
Information_retrieval

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Information_retrieval
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Table 3: Evaluation of query representation and query–document relation acquisition
pre-trained coarse-tuned fine-tuned (baseline) coarse+fine (proposed)

TokQ1 TokQ2 TokQ3 TokQ1 TokQ2 TokQ3 TokQ1 TokQ2 TokQ3 TokQ1 TokQ2 TokQ3
Top1 ##lty ##lty ##lty data data data ##ify ##ify ##ify tv tv show
Top2 ##nty ##tness ##tness how information information sure ##now ##now show show tv
Top3 ##gles ##rked ##rked what search search ##now sure afford oclc chart com
Top4 ##tness ##gles ##rky information of citations guess guess guess chart oclc chart
Top5 ##rked ##nty ##lish computer . wikipedia ##qui ##pass sure com written written

predicted query comprises words in the article and
their related words.

On the other hand, the output for coarse+fine
(proposed) is a set of tokens on a different topic
from the input article, although the predicted tokens
are consistent. A deeper analysis was conducted to
interpret these results, as the result in Section 3.3
shows the effectiveness of coarse+fine (pro-
posed). We analyzed the terms that frequently
appear in the “Information retrieval” article (such as
“information”, “search”, “retrieval”, “system”, “query”,
etc., hereafter referred to as IR-related words) and
the words in the training data for coarse-tuning
and fine-tuning. As a result, we discovered that
the words “tv”, “show”, “com”, and “written”, pre-
dicted in Table 3’s coarse+fine (proposed),
co-occurred with IR-related words in the fine-tuning
data (Robust04) with high probability. Moreover,
some IR-related words (“retrieval” and “query”) are
less frequent in the training data, suggesting the
possibility of overfitting (or a phenomenon close to
catastrophic forgetting) due to limited contexts. Ad-
ditionally, for the remaining predicted terms (“chart”
and “oclc”), it was found that there is a relatively
high probability of co-occurrence with some IR-
related words in the coarse-tuning data (ORCAS
queries) (such as “chart” with “rank” and “oclc” with
“search”). Due to these factors, the search effec-
tiveness and the results in Table 3 are not con-
sistent. Therefore, using documents in a broader
range of topics is beneficial when evaluating query-
document relations.

Future work involves proposing a more effective
coarse-tuning method and a fine-tuning method
that does not lose query representations and query–
document relations. Future work also includes ob-
serving behavior when larger BERT models and a
more effective fine-tuning method are used.

4. Related Work

Although the mainstream research on PLM-based
IR focuses on fine-tuning, there are also studies fo-
cusing on pre-training (Lee et al., 2019b; Ma et al.,
2021a,b; Lee et al., 2019a; Chang et al., 2020; Ren
et al., 2021; Wang et al., 2022; Ma et al., 2021c).
Because Lee et al. (2019b); Ma et al. (2021a,b);
Lee et al. (2019a); Chang et al. (2020) use pseudo-
queries generated from documents for pre-training,
these approaches differ from our study that learns

query representations and query–document rela-
tions from real query–document pairs. PAIR (Ren
et al., 2021) is designed specifically for passage
retrieval and cannot be directly applied to the doc-
ument retrieval we address in this study, making
it different from our research. WebFormer (Wang
et al., 2022) uses the structure of web documents
for pre-training, which is different from our focus.
Ma et al. (2021c) use pseudo-queries generated
from the view that the anchor texts of hyperlinks
and queries possess similar features. In con-
trast, we use real query-document pairs. One
of the reasons we improved effectiveness with
simple training is that using real queries allowed
us to obtain higher-quality query representations.
doc2query (Nogueira et al., 2019) and docTTTT-
Tquery (Nogueira and Lin, 2019), which generate
queries from documents, have in common with ours
that they use real query–document pairs for train-
ing. However, since their purpose is vocabulary
expansion, there is no interaction between queries
and documents. These approaches are different
from ours, where a query–document pair interacts
with each other. ColBERT (Khattab and Zaharia,
2020), which delays query–document interactions
to improve efficiency, is at the opposite end of the
spectrum from our study.

Continual (further) pre-training (Sun et al., 2019;
Gururangan et al., 2020; Zhu et al., 2021) using a
corpus containing similar topics and a dataset of
the downstream task is called domain-adaptive pre-
training and task-adaptive pre-training, respectively.
Ours differ from these approaches because we
transform NLP tasks into IR tasks, which cannot
be solved by simply training on similar datasets as
we demonstrated in Section 3.3.

5. Conclusion

We proposed coarse-tuning for PLM-based IR
for bridging pre-training and fine-tuning. Coarse-
tuning consists of MLM for learning query repre-
sentations and QDPP for learning query–document
relations. We found coarse-tuning helps to improve
the effectiveness of the downstream IR tasks. The
acquisition of query representations and query–
document relations was suggested in predicting
queries from documents. These result suggests
that coarse-tuning reduces the gap between pre-
training and fine-tuning.
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Ethical Considerations

• Intended use Our study aims to improve
effectiveness with a small computational cost
compared to existing methods. Therefore, our
study benefits those who need a highly effec-
tive retrieval system with limited computing re-
sources. No person or group is supposed to
be harmed by our study.

• Failure modes The failure modes are that the
operation of the search system stops, and the
search system presents unnecessary results.
As a result, system users suffer the inconve-
nience.

• Biases The most significant bias in search
systems is position bias. Documents at the
top of the search results are more exposed to
users. It has nothing to do with failure modes.

• Misuse potential Not applicable.

• Collecting data from users Not applicable.

• Potential harm to vulnerable populations
Not applicable.

• Compute power The computer we use does
not have high specifications and has cheap
learning costs (see Sec. 3.1).

• The source code and the trained mod-
els The source code is available at
https://github.com/keyakkie/
coarse-tuning.

Use of Existing Scientific Artifacts

• ORCAS ORCAS can be used for research
use only and is under CC-BY 4.0. The lan-
guage used is English.

• Robust04 Robust04 is for research use only,
which requires agreements to be filed with
NIST. The language used is English.

• GOV2 (TREC Terabyte Track dataset)
GOV2 (Web collection used TREC Terabyte
Track) is for research use only, which requires
agreements to be filed with the University of
Glasgow. The language used is English.

• TREC-COVID TREC-COVID is for mining
use only. The language used is English.

• TREC Deep Learning (TREC-DL) Track
datasets TREC-DL Track datasets can be
used for non-commercial research purposes
only to promote advancement in the field of
artificial intelligence and related areas and is
under CC-BY 4.0. The language used is En-
glish.

Limitations

This study requires a pre-trained model and a large
click log dataset. The behavior when using larger
models or more sophisticated fine-tuning methods
has yet to be examined.
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Table 4: ORCAS sampling rate and its effectiveness
Sampling rate(%) MRR nDCG@5

1 0.507 0.357
2 0.487 0.339
3 0.526 0.337
4 0.523 0.352
5 0.500 0.364
6 0.499 0.359
7 0.546 0.357
8 0.564 0.379
9 0.524 0.375
10 0.537 0.364

Table 5: Number of epochs and effectiveness in
coarse-tuning

# of epoch MRR nDCG@5
1 0.507 0.357
2 0.523 0.365
3 0.476 0.319
4 0.478 0.312
5 0.501 0.350

A.2. Number of Coarse-tuning Epochs
Up to 5 epochs were trained with coarse-tuning. In
the single tuning, the second epoch showed the
best effectiveness (see Table 5); however, in the
majority of the settings, fourth epoch showed the
best when the other parameters were varied.

A.3. Number of Fine-tuning Epochs
Up to 5 epochs were trained with fine-tuning. In the
experiment that applied only fine-tuning, i.e., fine-
tuned (baseline), the first epoch achieved the
highest effectiveness. Some prior studies of BERT-
based rankers (Pradeep et al., 2021; Ghasemi and
Hiemstra, 2021; Rekabsaz et al., 2021) have also
reported saturating in a few epochs, which is rel-
atively smaller than other NLP tasks. This shows
that fine-tuning in an IR task is prone to over-fitting.
It suggests that there is a large gap between pre-
training and fine-tuning, namely, the difference in
the nature of input data that makes it difficult to learn
IR task-specific representation throughout epochs.
In contrast, when combined with coarse-tuning, the
third epoch in fine-tuning showed the highest ef-
fectiveness in most settings. This result suggests
that coarse-tuning reduces the gap between pre-
training and fine-tuning and supports learning in
fine-tuning, thus alleviating over-fitting.

Table 6: Number of epochs and effectiveness in
fine-tuning

# of epoch MRR nDCG@5
1 0.507 0.357
2 0.490 0.338
3 0.488 0.338
4 0.467 0.324
5 0.477 0.327
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