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Abstract
Generative query rewrite generates reconstructed query rewrites using the conversation history while rely heavily on
gold rewrite pairs that are expensive to obtain. Recently, few-shot learning is gaining increasing popularity for this
task, whereas these methods are sensitive to the inherent noise due to limited data size. Besides, both attempts face
performance degradation when there exists language style shift between training and testing cases. To this end, we
study low-resource generative conversational query rewrite that is robust to both noise and language style shift. The
core idea is to utilize massive unlabeled data to make further improvements via a contrastive co-training paradigm.
Specifically, we co-train two dual models (namely Rewriter and Simplifier) such that each of them provides extra
guidance through pseudo-labeling for enhancing the other in an iterative manner. We also leverage contrastive
learning with data augmentation, which enables our model pay more attention on the truly valuable information
than the noise. Extensive experiments demonstrate the superiority of our model under both few-shot and zero-shot
scenarios. We also verify the better generalization ability of our model when encountering language style shift.
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1. Introduction

Recent progress in deep learning NLP techniques
has witnessed a resurgent interest in developing
conversational IR systems (Reddy et al., 2019;
Choi et al., 2018a). Among these tasks, conver-
sational query rewrite (CQR) aims to convert an
in-context query to a more explicit form given its
context history (Elgohary et al., 2019; Su et al.,
2019; Pan et al., 2019b). The rewritten query is
semantically equivalent to the original one but can
be understood without referring to the context. The
main research challenge in the CQR system is
that conversational queries are often very concise.
Information omission such as coreference and el-
lipsis can often be observed, where concepts in
previous turns are easy to be referred back or omit-
ted. Specifically, in the CQR task, for original QA
pairs in a conversation, a manually rewritten query
is provided. For example, as shown in Table 1, for
the second query Q2, the term “her” in the original
query is resolved as “Beyoncé” in the rewrite. In
the third turn, the omitted information after the term
“What else” is completed after rewriting.

To address the research challenges in the CQR
task, generative CQR has gained great research in-
terest recently, which aims to generate high-quality
rewrites and formulates it as a standard text gen-
eration problem (Elgohary et al., 2019; Su et al.,

Work done when the author was an intern at Alibaba.

Table 1: An example of a CQR system. Q, Q∗, and
A denote the queries, the corresponding rewrites
and the answers. Red color denotes the coref-
erence rewrite part and blue denotes the ellipsis
rewrite part.

Conversation Contexts
Q1 What can you tell me about Beyoncé’s voice ?
A1 Her tone and timbre as particularly distinctive...
Q2 What are some other facts about her voice ?
A2 The New York Times commented her voice is "velvety yet tart"...
Q3 What else ?
A3 Other critics praises she was "capable of punctuating any beat".

Query Rewrites
Q∗

2 What are some other facts about Beyoncé’s voice ?
Q∗

3 What else can you tell me about Beyoncé’s voice ?

2019). However, it has several drawbacks. First
of all, traditional generative models often rely on a
large amount of gold rewrite data, whose annota-
tion process is often very expensive. In addition,
existing few-shot based models are often vulnera-
ble to the inherent noise due to limited data size.
Since the quality of well labeled data is vital to
the rewrite performance, how to reduce the impact
of noise is an important yet underexplored prob-
lem. Furthermore, since different annotator writing
styles may result in shifted data distribution, a per-
formance degradation occurs when testing cases
come from a different data source dissimilar to the
training set (Hao et al., 2021).

In this work, we study the generative CQR task
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under low-resource scenarios. Since pre-trained
language models have shown great few-shot and
zero-shot learning abilities in many NLP tasks,
we develop our model based on pre-trained GPT-
2 (Radford et al., 2019). In order to better leverage
the large amount of unlabeled data, we propose
a co-training paradigm based on iterative pseudo-
labeling. Specifically, we aim to train two separate
models namely Simplifier and Rewriter together,
where the Simplifier takes the rewritten query as in-
put and outputs the original query and the Rewriter
works on the other way round. Both warmed-up
by a small amount of labeled data, in each itera-
tion, the two models first make predictions on the
unlabeled data, then the pseudo data generated
by the Simplifier is used to train the Rewriter and
vice versa. Our model leverages the dual nature
of the two models and performs iterative training
with only unlabeled data, which largely alleviates
the heavy cost of obtaining the gold labeled data.
Furthermore, by sampling outputs from one model
and inputs generated from the other, the paradigm
reduces the gap of the distribution between target
and output results, thus equipping the model with
enhanced robustness when tackling the noise shift
in heterogeneous training and testing data.

To reduce the impact of noise in the input
queries, we further enhance the model by employ-
ing a contrastive learning based data augmentation
strategy. Inspired by Gao et al. (2021), we aug-
ment the input text by passing it to the model twice
to obtain two different embeddings with the same
dropout rate. We divide the contrastive loss into
internal and external parts. The former considers
the two augmented embeddings as positive pairs,
while the latter takes the average of the two embed-
dings and the target embedding as positive pairs.
This strategy involves more changes to the origi-
nal data and helps to learn the common semantic
features between the similar inputs and distinguish
the differences between dissimilar ones.

We conduct extensive experiments on two
datasets. Our model outperforms state-of-the-art
methods under both few-shot and zero-shot set-
tings. Furthermore, we investigate the effect of
weakly labeled data size on the performance by
adjusting the confidence thresholds and enlarging
the unlabeled dataset. The results show that the
performance can still be improved when the unla-
beled dataset is large enough. In addition, to show
that our model has better generalization ability than
existing methods, we further perform cross training
and testing among two datasets.1

In conclusion, the main contributions are: (1) We
propose a novel framework for generative CQR
tasks in low-resource settings. Our framework

1The code is available in https://github.com/
yfyuan01/CO3.

combines a Simplifier and a Rewriter through it-
erative pseudo-labeling, leveraging the contrastive
co-training paradigm. (2) We employ an effective
contrastive learning based data augmentation strat-
egy to distinguish the truly valuable information
from the noise in the input. (3) Extensive exper-
iments and analyses are performed to show the
effectiveness and the superior generalization abil-
ity of CO3 when encountering language style shift.

2. Related Work

2.1. Conversational Query Rewrite

CQR aims to generate explicit rewrites for abbrevi-
ated in-context queries (Tredici et al., 2021). Fol-
lowing this line, many efforts treat this task as a
module of the conversational system, including
performing query expansion that selects impor-
tant terms in the history context (Voskarides et al.,
2020; Mele et al., 2020), encoding the user’s ques-
tion in a latent space (Yu et al., 2021), and contex-
tualizing query embeddings within the conversa-
tion (Krasakis et al., 2022; Lin et al., 2021), etc.

Aiming at generating rewrites that are clear to
humans reader, generative CQR treats the task
as a standard text generation problem which can
be solved via a Seq2Seq model (Elgohary et al.,
2019; Pan et al., 2019b; Su et al., 2019). Further
improvements are made to make the generated
rewrite more accurate by developing a multi-task
framework (Rastogi et al., 2019; Song et al., 2020;
Zhang et al., 2020), incorporating semantic knowl-
edge (Xu et al., 2020; Hao et al., 2021; Liu et al.,
2020), or adding multimodal information (Yuan
et al., 2022). However, these works often rely on
large amount of human rewrite data (Vakulenko
et al., 2021b), whose annotation phase is very ex-
pensive. We focus on the generative query rewrite
under the low-resource scenario. Under this set-
ting, the work by Yu et al. (2020) is the most rel-
evant, which proposes two methods named rule
based and self-training to transform ad hoc search
sessions as pseudo target query rewrites.

2.2. Co-training Paradigm

As an extension of self-training, co-training is a
semi-supervised learning technique where two
or more models are trained by each other’s pre-
dictions (Blum and Mitchell, 1998; Abney, 2002).
In NLP areas, Wan (2009) first proposes a co-
training approach to make use of unlabeled Chi-
nese data. Wu et al. (2018) focus on the selection
of samples and employ a reinforcement learning
method to learn a data selection policy with a small
labeled dataset. Chen et al. (2018) co-train the

https://github.com/yfyuan01/CO3
https://github.com/yfyuan01/CO3
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Figure 1: The overall framework of our proposed paradigm.

embeddings of knowledge graphs, whose perfor-
mance improves at each iteration. In conversation-
based tasks, co-training has been employed in
the conversation disentanglement task (Liu et al.,
2021b). Two neural modules called message-pair
and session classifier are co-trained with pseudo
data built from an unannotated corpus.

3. Our Framework

3.1. Problem Formulation

Conversational query rewrite aims to reformulate
an in-context query to a more explicit form that
can be understood without previous context his-
tory. Given a conversation context H with m − 1
turns, it usually consists of several queries and can
be denoted as H = (q1, q2, ..., qm−1). Since the
queries in the conversation often contain informa-
tion omission, the task is to generate a rewrite q∗

for the query on the latest turn qm based on H.
Specifically, in generative CQA, a query rewriter is
trained to generate the de-contextualized rewrites
given the conversation history of previous turns

q∗ = Rewriter(H, qm). (1)

3.2. Framework Overview

Figure 1 depicts the overall structure of our frame-
work. Our co-training framework consists of a
Rewriter and a Simplifier with dual nature. The
Rewriter generates the fully specified rewrite based
on the original in-context query while the Simplifier
works the other way round.

As shown in Figure 1, the whole paradigm is
contained in a co-training loop where the Simplifier
and Rewriter are trained together. The paradigm
can be divided into three main steps. The first
step 1⃝ is an initialization step where the Simpli-
fier and Rewriter are warmed-up by a small num-
ber of labeled data D. At step 2⃝, we maintain

two unlabeled data pools, including the unlabeled
Simplifier dataset US and the unlabeled Rewriter
dataset UR. After that, at step 3⃝, the Simplifier and
Rewriter predict and generate weakly labeled data
on the unlabeled dataset respectively. The gener-
ated weakly labeled data is then fed into a Selector
(SS and SR) which helps to filter the most confident
subset of unlabeled samples for better training the
models. In the next iteration, the filtered subset is
then combined together with existing labeled data
to form a synthetic dataset P and is augmented by
a contrastive learning based strategy, where all the
augmented data is later used to co-train the two
models iteratively in the co-training step 1⃝.

In order to enable our model to pay more atten-
tion on the truly valuable information, we enhance
the model with a contrastive learning based data
augmentation strategy, as shown in the yellow part
within the Simplifier/Rewriter. Specifically, an in-
batch contrastive loss is adopted which contains
two parts. The internal part takes the two embed-
dings of the same sentence by feeding it to the
encoder twice as positive pairs. The external part
aims to shorten the pair-wise distance between
model outputs and ground-truth rewrites while dis-
tinguish the differences between unpaired ones.

3.3. Co-training Paradigm

Model Initialization. We give a detailed descrip-
tion about the Simplifier and Rewriter in our frame-
work. Both models can be initialized by generative
models such as GPT-2 (Radford et al., 2019).

Simplifier is designed to transform the fully
specified queries q∗ into the simplified original in-
context version q. Specifically, some terms or spe-
cific parts in the input queries may be replaced with
pronouns or omitted in the rewrites. For example,
after being simplified, the query “What empires
survived the Bronze Age collapse?” is converted
into “What empires survived?”.
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Rewriter learns to “put context back” to the con-
textual queries that contain coreference or ellipsis.
It is the model we eventually wish to have and is
the only model used during the inference stage.

In the few-shot setting, we use a small amount
of well-labeled data to warm up and initialize the
two models. Both Simplifier and Rewriter are initial-
ized by the same set of data. For a small labeled
dataset D, each data sample can be represented
as (H, q, q∗), where H is the conversation history,
q is the original query, q∗ is the gold rewrite. The
dataset can be directly used to train the Rewriter.
By reversing the source and target query, the Sim-
plifier can be trained inversely from q∗ to q. In the
zero-shot setting, since the gold labeled data is
not available, we instead use some weakly labeled
data to warm up and initialize the two models. The
weakly labeled data is obtained by manually apply-
ing some pre-defined rules on the fully specified
unlabeled dataset US . The rules are defined in the
same way as (Yu et al., 2020), including replacing
some noun phrases with pronouns, etc.
Unlabeled Data Maintenance. We maintain two
additional unlabeled data pools including the un-
labeled Simplifier dataset US and the unlabeled
Rewriter dataset UR. Each data sample in the
unlabeled Simplifier dataset US is a user search
log that contains several fully specified queries. In
comparison, the unlabeled Rewriter dataset UR

contains real conversations where each query is
contextual. Details of the datasets are described
in Section 4.
Pseudo-labeling. After warming up the two mod-
els, the Simplifier and Rewriter then make predic-
tions on unlabeled dataset US and UR respectively.
For each data input qs ∈ US and qr ∈ UR, the
two models generate weakly labeled data as q′r
and q′s. We then use a Selector to filter out predic-
tions with low confidence by setting two confidence
thresholds. We set the confidence score of the
generated data as the generation likelihood score
of both models. The two pseudo-labeled datasets
are then fused together to form a synthetic dataset
P for further training the model.
Model Co-training. The synthetic dataset P to-
gether with the labeled dataset D are used to train
a better Simplifier and Rewriter model in the next
iteration. Since the well-labeled data is limited
and hard to obtain, we hope that the large amount
of weakly labeled data helps the model learn the
common patterns of the input queries. Before train-
ing the model, all the training data is augmented
via a contrastive learning strategy which we will
describe in detail in the next section. To avoid
over-fitting, the two models are reinitialized in ev-
ery iteration. For the Simplifier, we feed the well
specified queries to obtain the abbreviated version
and the Rewriter aims to put context back to pro-

vide the rewrites. After training, at the end of each
iteration, the models of the next iteration will be
overdriven by the newly trained models. Detailed
algorithm is shown in Appendix A.

Generation Loss. The Simplifier and Rewriter
both adopt the standard generation loss as the ba-
sic training loss. At each time step j, the decoder
output is determined based on the generated sen-
tence at the previous time steps y<j . We minimize
the negative log-likelihood of generating the target
sentence y given the input x and context history H

LG = min −
|y|∑
j=1

logPθ(yj |y<j , x,H), (2)

where |y| is the length of the generated sentence.
For Simplifier, the generated y is the simplified
original query q, while for Rewriter, y is the fully
specified query q∗.

3.4. Contrastive Data Augmentation

We propose a simple but effective contrastive learn-
ing based data augmentation method. Motivated
by SimCSE (Gao et al., 2021), we also pass the
same input to the encoder twice to get two embed-
dings as positive pairs. Originated from the same
sentence, the two embeddings differ in random
dropout mask which can be seen as a special data
augmentation form. After the dropout augmenta-
tion, a contrastive loss is added which takes two
embeddings and the ground-truth rewrite embed-
ding as input. Since the dropout can be viewed as
a form of noise, this data augmentation technique
helps the model learn the shared semantic pattern
between the input sentences.

3.4.1. Internal and External Contrastive Loss

We divide the overall contrastive loss into internal
and external parts. Both of them adopt the same
in-batch contrastive loss function (details given in
Section 3.4.2) that takes unpaired samples in a
minibatch as negative pairs.

Internal contrastive loss. The internal contrastive
loss aims to learn the common semantic features
between the similar inputs. It takes the two aug-
mented embeddings originated from the same sen-
tence as positive pairs and aims to equip the model
with better capacity to deal with noise. The process
can be denoted as

Licl = Lcl(Combine[Q′;Q′′]), (3)

where Q′ and Q′′ are two query embedding ma-
trices from the same input by feeding into the en-
coder twice. The Combine function is the concate-
nation of the two N ×m embedding matrices into



3398

one 2N × m matrix with an one-by-one manner.
Lcl is the in-batch contrastive loss function.
External contrastive loss. The external con-
trastive loss focuses on shortening the distance
between model outputs and the corresponding
ground-truth rewrite. Therefore, it takes the av-
erage of the two sentence embeddings Q′, Q′′ and
the target rewrite Q̂ as positive pairs. Similarly, the
external contrastive loss can be represented as

Lecl = Lcl(Combine[AV G(Q′,Q′′); Q̂]), (4)

We denote the final contrastive loss LC as the
sum of Licl and Lecl: LC = Licl + Lecl.

3.4.2. Contrastive Loss Function

For the contrastive loss calculation, we follow the
definition given in SimCLR (Chen et al., 2020),
where the similarity between the representation of
an input text and its corresponding positive pair is
maximized and the similarity of in-batch unpaired
instances is minimized. For a data sample in a
minibatch with N instances and its augmented ex-
amples with the same size, the corresponding aug-
mented data serves as the positive sample while
the remaining 2N − 1 data samples form the neg-
ative samples. The contrastive loss function in a
minibatch can be represented as

lcl(Xi, Xj) =
exp(sim(Xi, Xj)/τ)∑2N

k=1 exp(sim(Xi, Xk)/τ)
, (5)

Lcl(X) = − 1

2N

N∑
k=1

(lcl(X2k−1, X2k)+lcl(X2k, X2k−1)),

(6)
where N is the batch size. X is an embedding
matrix where the positive pairs in the batch are
recorded one by one.

3.5. Training

The final loss combines the generation and con-
trastive loss

Lall = LG + wLC , (7)

where w is the contrastive loss weight.
In order to distinguish the well-labeled and

weakly labeled data, we also add a weight λ for the
weak-labeled generation loss. The two types of
data are combined by minimizing the loss function

LG = LG(D) + λLG(P ), (8)

Lall = LG(D) + λLG(P ) + wLC . (9)

4. Experiments

4.1. Datasets

In our work, both labeled and unlabeled data are
used. The information of each dataset are pre-
sented in Table 2.

Table 2: The detailed information of the datasets
used in our model. w/Omi. denotes if the dataset
session contains information omission.

Name CANARD TREC MS MARCO QUAC

Session 304 50 9306 1000
Query 515 429 13799 7354
Labeled Yes Yes No No
w/Omi. Yes Yes No Yes

Labeled Dataset. We perform experiments on
two different labeled datasets. First of all, we
use the TREC CAst conversational search bench-
mark (Dalton et al., 2020). It contains 50 conver-
sational sessions and 479 queries, each associ-
ated with a manual rewrite. In addition, we per-
form experiments on another query rewrite dataset
named CANARD (Elgohary et al., 2019). To make
it fit to the low-resource setting, we randomly sam-
ple 15% of the original dev set (originated from
the QUAC training set) which contains 515 query-
rewrite pairs.

Unlabeled Dataset for Simplifier. For Simpli-
fier, the goal is to generate the simplified version
of a fully specified query. We use the ad hoc
search sessions collected from MS MARCO (Cam-
pos et al., 2016) directly. Based on the origi-
nal MS MARCO QA dataset, the artificial search
sessions are created using embedding similarity.
Each query in the session is consistent with other
queries in semantics without any information omis-
sion. We then filter the question-like search ses-
sions from the original dev set and treat each ses-
sion as a conversation. The total number of ses-
sion is 9306 with 13799 different queries. One
example session of the dataset is: What is the aus-
tralian flag? || What is the population of australia?.

Unlabeled Dataset for Rewriter. For Rewriter,
the queries must be context-aware and contain
coreference and ellipsis. We use the Question An-
swering in Context (QUAC) dev dataset (Choi et al.,
2018b) which perfectly fits to our setting. The final
unlabeled dataset consists of 1000 unique ses-
sions with 7354 queries in total. Each session and
query have 440 and 6.5 tokens on average respec-
tively. One sample session of this dataset is: What
is the australian flag? || What is the population of
this country?

4.2. Compared Methods

We compare our model with the following methods:

• Original. The rewrite is set to be the same as
the input query.
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Table 3: The experimental results on TREC dataset. For GPT-2 based models, we report both results
of GPT-2 (base) (within the brackets) and GPT-2 (medium). * denotes that CO3 performs significantly
better than other GPT-2 based baselines at 0.05 level using the two-tailed pairwise t-test. † denotes the
upgraded L-CO3 outperforms all the baselines significantly.

Model BLEU-1 BLEU-2 ROUGE-1 ROUGE-2 ROUGE-L EM NDCG@3
Original 72.50 66.17 79.71 65.66 79.66 18.65 30.40

Allen Coref 79.37 74.29 86.04 76.72 85.94 36.13 43.59

Zero-
shot

GQR 16.02 10.63 27.37 13.13 27.29 1.47 12.56
GPT-2 15.41 (15.45) 10.54 (10.40) 27.17 (28.46) 12.42 (12.86) 26.75 (28.12) 1.17 (1.86) 11.32 (11.56)

MS MARCO 35.19 (34.62) 19.90 (19.73) 31.06 (29.93) 13.18 (13.21) 30.41 (29.39) 0.93 (0.93) 16.90 (14.32)
Rule Based 82.49 (79.31) 74.29 (72.30) 82.92 (82.93) 71.03 (70.53) 81.55 (81.86) 25.87 (26.81) 43.72 (43.25)

CO3 83.94* (80.91) 75.36* (73.37) 84.08* (83.08) 72.32* (71.31) 82.94* (82.02) 27.91* (27.04) 45.72* (44.67)
L-CO3 89.42† 77.31† 89.06† 74.90† 85.26† 30.55† 48.90†

Few-
shot

Seq2Seq 72.11 62.47 78.75 65.61 78.02 6.45 20.42
GQR 84.84 78.80 87.42 77.93 86.40 40.82 47.28
GPT-2 84.61 (83.20) 78.62 (77.00) 87.27 (85.52) 77.86 (75.79) 86.25 (84.66) 40.79 (35.89) 46.74 (43.28)

Rule Based 85.71 (82.35) 79.66 (76.23) 88.08 (85.91) 78.71 (75.97) 86.97 (85.09) 40.79 (36.13) 49.21 (46.76)
Self-Learn 85.12 (83.53) 79.73 (77.51) 88.22 (86.82) 79.36 (76.90) 87.38 (85.91) 43.12 (38.23) 49.24 (46.53)

CO3 85.87* (83.42) 80.24* (78.14) 89.04* (86.95) 80.08* (77.48) 87.92* (86.36) 44.05* (40.79) 50.43* (48.26)
L-CO3 90.05† 86.47† 93.26† 85.28† 92.43† 49.07† 56.22†

Table 4: The experimental results of our model compared with the baseline models on CANARD dataset.
Model BLEU-1 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L EM

Original 48.86 43.04 34.43 67.98 50.58 67.91 6.99
Allen Coref 50.26 44.15 35.06 68.93 51.80 68.70 8.74

Zero-
shot

GQR 9.07 5.64 2.34 15.83 4.61 14.79 0.18
GPT-2 10.92 (11.99) 5.93 (6.81) 2.43 (3.08) 15.10 (16.70) 4.50 (5.48) 13.95 (15.46) 0.19 (0.39)

MS MARCO 23.40 (23.42) 12.61 (11.95) 5.15 (4.44) 24.58 (23.29) 9.72 (8.87) 23.99 (22.70) 1.94 (1.03)
Rule Based 52.25 (49.15) 41.83 (40.71) 29.53 (29.77) 56.43 (58.73) 39.40 (41.41) 54.57 (57.88) 3.11 (2.14)

CO3 53.21* (49.39) 42.73* (40.31) 30.80* (30.34) 59.25* (59.10) 42.27* (42.73) 58.40* (57.94) 3.74* (3.55)
L-CO3 58.63† 46.66† 37.57† 69.10† 52.01† 70.33† 9.47†

Few-
shot

Seq2Seq 45.21 37.32 26.09 53.10 38.21 54.25 3.77
GQR 48.03 41.20 30.98 56.72 44.10 58.82 7.84
GPT-2 47.52 (47.23) 40.01 (38.80) 30.34 (28.50) 55.59 (54.34) 42.38 (38.92) 58.76 (54.34) 4.66 (3.88)

Rule Based 55.05 (52.07) 46.72 (44.48) 35.70 (34.54) 65.36 (63.41) 48.66 (46.99) 64.40 (62.42) 7.96 (6.80)
Self-Learn 55.77 (52.06) 47.40 (44.36) 36.15 (34.29) 65.84 (63.08) 48.86 (46.41) 64.75 (61.96) 7.57 (7.18)

CO3 57.55* (54.83) 48.55* (46.37) 36.94* (35.33) 66.59* (64.85) 49.35* (47.94) 65.68* (62.66) 9.02* (8.18)
L-CO3 64.29† 55.46† 41.73† 72.50† 55.28† 74.21† 12.33†

• Allen Coref (Gardner et al., 2018) is used for
solving the coreference resolution problem in the
query. We use it to generate query rewrites.

• MS MARCO fine tunes GPT-2 on the MS
MARCO dataset via a language modeling task.

• Seq2Seq (Elgohary et al., 2019) is a neural
Seq2Seq model where the encoder-decoder
structure is based on bidirectional LSTM (Bah-
danau et al., 2015; See et al., 2017).

• GPT-2 (Radford et al., 2019) is adopted in both
settings. In the few-shot setting, we fine-tune
the model via cross-validation. In the zero-shot
setting, we generate queries without any fine-
tuning.

• GQR (Tredici et al., 2021) is a generative QR
method based on T5-large (Raffel et al., 2020).

• Rule-Based (Yu et al., 2020) generates weakly
labeled data by setting two simple rules, which
create abbreviated query given its full version.

• Self-Learn (Yu et al., 2020) provides a method
for generating the weakly labeled data. A Simpli-

fier is trained separately and applied to the MS
MARCO artificial sessions to generate weakly
labeled data.

• L-CO3 (Touvron et al., 2023) is an upgraded
version of CO3, with the base model Llama, to
test our model with the support of LLMs.

4.3. Experimental Settings

The code of our model is based on PyTorch and
Huggingface Transformers (Wolf et al., 2019). In
the few-shot setting, we fine-tune the model with 5-
fold cross validation following (Yu et al., 2020). We
split the sessions of two labeled datasets into five
folds, where four are used for training and one is
used for testing. With different training and testing
portions, the whole process includes five rounds.
We report the average score of them. Under the
zero shot scenario, the whole dataset is used for
the testing without splitting. The training is also con-
ducted for 5 rounds with different random seeds.
By default, we set the batch size as 4 and the learn-
ing rate as 5e-5. The evaluation metrics can be
divided according to two aspects. We employ some
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Table 5: Ablation study of our model on TREC
dataset, where CL represents contrastive learning.

Model BLEU-2 ROUGE-L EM

Few-
shot

1.) w/o External CL 79.96 87.40 43.25
2.) w/o Internal CL 80.03 87.44 43.69

3.) w/o CL 79.72 87.34 43.19
4.) w/o Simplifier 78.90 87.43 42.90

CO3 80.24 87.92 44.05

Zero-
shot

1.) w/o External CL 75.02 82.63 27.56
2.) w/o Internal CL 74.88 82.31 26.80

3.) w/o CL 74.30 81.61 25.90
4.) w/o Simplifier 74.52 81.78 26.20

CO3 75.36 82.94 27.91

generation evaluation metrics including BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and Exact
Match (EM) to measure the rewrite quality. In addi-
tion, for the TREC CAST dataset, we also report
the mean NDCG@3 to evaluate the ranking results
with the rewritten query. In detail, the rewritten
query is used to retrieve relevant passages with
Anserini BM25 (Robertson and Zaragoza, 2009)
toolkit and a BERT (Devlin et al., 2019) re-ranker
is used to re-rank the candidates.

4.4. Main Experiment Results

Table 3 and Table 42 show the main experiment
results, we have the following observations: first
of all, pretrained language models have a great
few-shot learning ability. Even with small amount
of data, the Self-Learn model outperforms the
Allen Coref model on the TREC dataset. In ad-
dition, in the few-shot setting, fine-tuning GPT-2
with small amount of labeled data has improved
the BLEU-2 performance from 62.47 to 78.62 com-
pared with traditional Seq2Seq model in TREC.
Besides, under the zero-shot setting, directly using
MS MARCO sessions to fine-tune GPT-2 model is
far under satisfaction. However, by manually defin-
ing some rules, the Rule Based model achieves
82.49 and 52.25 BLEU-1 result in TREC and CA-
NARD, which verifies the importance of the weakly
labeled data. CO3 achieves the best overall per-
formance among all the methods on two datasets
in both settings. Specifically, the GPT-2 medium
based version performs significantly better than
other GPT-based baselines. In the few-shot setting,
CO3 outperforms the Self-Learn method using the
same amount of weakly labeled data. In the zero-
shot setting, the superior results also prove the
benefit of our co-training paradigm. Besides, with
the help of LLM, the upgraded L-CO3 gains further
performance lift. This demonstrates the superiority
of our paradigm in the generative LLM era.

2Some numbers may be slightly different from the
original paper because some evaluation codes are not
publicly available. We use their model code and our own
evaluation metric code to do the testing.

Table 6: Confidence threshold analysis of CO3.
ss sr BLEU-2 ROUGE-L EM

Few-
shot

0 0 79.16 87.22 42.91
50 70 77.69 86.68 41.78
70 90 78.43 86.49 39.77
90 110 80.24 87.92 44.05
110 130 78.21 87.52 44.02

Zero-
shot

0 0 74.07 81.70 20.28
50 70 74.23 81.84 22.61
70 90 75.36 82.94 27.91
90 110 71.66 81.20 25.87
110 130 74.16 80.83 23.08

Table 7: Dataset scale analysis of our model. Scale
denotes the size of US and UR datasets.

Scale BLEU-1 BLEU-2 ROUGE-L EM

Few-
shot

10k 85.64 79.26 87.81 44.11
20k 85.91 79.98 87.99 44.20
30k 86.17 80.34 88.05 44.35
40k 86.35 81.02 88.54 44.76

Zero-
shot

10k 83.83 75.47 81.98 26.11
20k 84.20 76.23 81.71 26.47
30k 84.90 76.79 82.97 27.98
40k 85.93 77.21 83.77 28.94

4.5. Ablation Study

To evaluate the effect of different components of
our framework, we report the performance of our
model with several variants. According to Table
5, without the CL method, the performance de-
creases in both settings. Besides, contrastive loss
is more effective in the zero-shot scenario than in
the few-shot setting, which proves that using the
contrastive learning based data augmentation tech-
nique helps to enhance the model when the gold
data is not available. Among the two CL losses, the
external loss plays a more important role, where
the few-shot EM performance drops 0.8 percent
without it. Furthermore, without the Simplifier, the
few-shot and zero-shot EM performance decreases
1.15 and 1.71 percent, demonstrating the superior-
ity of our co-training paradigm.

5. Extensive Analysis

To further evaluate the model capacity, we conduct
several analysis to show the great potential and
superior generalization ability of our model.

5.1. Weakly Labeled Data Scale Analysis

We first analyze the impact of the weakly labeled
data involved in model training on the performance.
Confidence Threshold Analysis. We control the

amount of training data by adjusting the two num-
bers and report the results under different Simplifier
and Rewriter confidence thresholds. According to
the results shown in Table 6, in TREC dataset, the
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Figure 2: Performance of CO3 in each iteration.

best confidence threshold is lower in zero-shot than
in few-shot. The result is because the quality of the
generated data is worse in this setting and has a
lower score. In addition, starting from zero when
we enlarge the two thresholds, the performance
first increases while starts to drop at certain stage.
This is because when the confidence threshold
is too small, large amount of noise data is intro-
duced which negatively affects the rewrite quality.
However, when the confidence threshold is too
large, most weakly labeled data fails to participate
in model training, thus causing model overfitting.

Dataset Scale Analysis. We fix the confidence
thresholds and incrementally enlarge the unlabeled
dataset by adding new instances. Table 7 shows
the performance under different dataset scales. By
enlarging the unlabeled dataset, the performance
increases under both settings. Compared with the
few-shot setting, dataset scale has more effect on
the zero-shot scenario where gold data is unavail-
able. Notably, when the US and UR dataset reach
to 30k and 40k samples, the result exceeds the
best performance (zero-shot EM increases from
27.91 to 28.94, few-shot EM increases from 44.05
to 44.76). This proves that we can further improve
the performance by setting a high threshold with a
larger dataset where large amount of high quality
data is filtered to join model training.

5.2. Iteration Analysis

In Figure 2, under the few-shot setting, the model
performance keeps increasing in the first three iter-
ation and reaches to the best in the third iteration.
In the zero-shot setting, the model takes less it-
erations to reach the peak. It demonstrates that
without the gold labeled data, the model is more
easy to suffer from overfitting. However, compared
with traditional methods, our model prohibits data
overfitting in two aspects. First, compared with
methods with fixed dataset, new data can be intro-
duced to the model in each iteration via additional
weakly labeled data. Second, the dropout based
data augmentation strategy makes sure that some
random noise is added, ensuring that the data dis-
tribution is not strictly alike in each iteration.

Table 8: Generalization analysis on two datasets.
T, C denote the TREC, CANARD dataset.

Model BLEU-1 BLEU-2 ROUGE-L EM

T->C

Seq2Seq 35.92 24.12 43.97 2.03
GPT-2 50.83 43.01 59.60 4.47

Rule-Based 54.55 44.91 59.64 5.24
Self-Learn 52.76 44.44 61.68 6.41

CO3 55.28 46.38 64.16 7.05

C->T

Seq2Seq 68.87 59.34 75.23 5.37
GPT-2 80.76 72.81 79.68 29.84

Rule-Based 83.96 76.78 84.37 36.13
Self-Learn 81.13 74.07 82.96 30.77

CO3 84.23 77.15 85.52 38.63

5.3. Generalization Analysis

We train our models on one dataset while testing
on the other to explore the generalization ability
of our model. Table 8 shows that the traditional
non-pretrained Seq2Seq model encounters severe
performance drop when the testing data is differ-
ent from the training data, where the TREC EM
performance drops to 5.37 when training on the
CANARD dataset, and the CANARD performance
also decreases to 2.03 when training on TREC.
This is mainly due to the writing style shift between
the heterogeneous training and testing samples.
Compared with raw GPT-2, models enhanced with
weakly labeled data show better performance. This
proves that large amount of weakly labeled data
helps the model learn the common feature among
queries that need to be rewritten. Our model
achieves the best overall scores on all metrics con-
cerning both two datasets, showing the superiority
of CO3 on the cross-dataset robustness.

5.4. Loss Function Analysis

5.4.1. Weakly Labeled Data Weight Analysis

As shown in the upper part of Figure 4, when we
increase the weakly labeled data weight λ, the
performance first increases then decreases. The
result verifies that although the quality of weakly la-
beled data may not be as good as the gold rewrite,
it has a positive influence on the performance. Fur-
thermore, it can be observed that under the zero-
shot setting, the best weakly-labeled data weight is
larger than what in the few-shot setting, where the
model is more dependant on the large amount of
unlabeled data for the lack of gold data for training
guidance.

5.4.2. Contrastive Learning Weight Analysis

As shown in the lower part of Figure 4, we found
that when the contrastive loss number w is around
half of the generation loss (around 0.03 and 0.04),
the model reaches the best score. We can also
have the same observation as Section 5.4.1, that
is, in the zero-shot setting, the contrastive loss
(0.04) under the best performance is slightly larger
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Figure 3: Real case and error case analysis. The first three are examples under the few-shot setting
and the last four are under the zero-shot setting. The blue part denotes the resolved coreference or
completed ellipsis in the gold rewrite. The red part denotes the errors in the model output.

Figure 4: The upper part is the weakly-labeled data
weight analysis and the lower part is the contrastive
weight analysis.

than that in the few-shot setting (0.03). The result
verifies that contrastive loss is more useful when
there is few well-labeled data when training the
model and can help the model better tackle the
noise.

5.5. Real Case and Error Case Analysis

We provide some cases to compare CO3 with the
rule-based model and analyze the potential draw-
backs. As shown in Figure 3, CO3 has a better
overall rewrite ability. For example, in case 1 and
2, the rule-based method outputs the rewrite of
a wrong context sentence instead of the current
query that needs to be rewritten. In case 6, the
pronoun “it” in the original query should refer to “a
toilet” in the context instead of “a loo”. However,

some errors remain in both models. For instance,
in case 3, although the rewrite seems easy and
does not require any change, the last sentence is
omitted by both models. Besides, as the conversa-
tion goes deeper, coreference that is challenging
to both models is more common, such as corefer-
ence containing several entities (e.g. case 2) and
coreference requiring reasoning between different
entities (e.g. case 7).

6. Conclusion

We investigate the conversational query rewrite
task under low-resource settings. We propose a co-
training paradigm where a Simplifier and Rewriter
are jointly trained. The Simplifier takes the fully
specified query as input and outputs the abbrevi-
ated query and the Rewriter works the other way
round. Based on iterative pseudo-labeling, the two
models have dual nature where one takes the out-
put from the other as input in each iteration. To dis-
tinguish the truly valuable information of the input,
we enhance the model with a contrastive learning
based data augmentation strategy. Experiments
show the effectiveness of CO3 on two datasets.
Extensive analyses are performed to prove the re-
sults can be further improved. Future works and
limitations are discussed in Appendix B.

7. Ethics Statement

In adherence to ethical considerations, our work
utilizes exclusively open-source datasets. We have
strictly followed all licensing and intellectual prop-
erty rights associated with these datasets.
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A. Co-training Algorithm

Algorithm 1 shows the detailed algorithm of our
co-training paradigm.

B. Limitations and Future Works

Although our model has shown effectiveness in
the CQR task, one drawback is that, the quality
of the unlabeled data is vital to the model perfor-
mance. How to choose hyperparameters such as
the confidence threshold of the selectors is impor-
tant but tricky. In addition, for the page limit, our
work focus on the query rewrite mostly on the NLP
level, while how much this paradigm will benifit the
conversational information retrieval system is still
underexplored. Moreover, this Rewriter/Simplifier
system can be adapted to other generative tasks,
where in this work we only focus on the query write
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Algorithm 1 Simplifier and Rewriter Co-training
Paradigm
Require:

Simplifier: S, Rewriter: R
Labeled dataset: D, Unlabeled Rewriter and Simpli-
fier Dataset: UR, US

Simplifier Confidence Threshold: ss, Rewriter Confi-
dence Threshold: sr

Ensure:
A trained Simplifier S∗, A trained Rewriter R∗

1: Initialize S and R and train them on D
2: while US ̸= ∅ and UR ̸= ∅ do
3: PS ←[ ] , PR ←[ ]
4: for qs ∈ US do
5: q′r ← Generate the simplified query By S
6: Compute confidence score sx
7: if sx > ss then
8: PS .insert (q′r, qs, sx)
9: end if

10: end for
11: for qr ∈ UR do
12: q′s ← Generate the rewritten query By R
13: Compute confidence score sy
14: if sy > sr then
15: PR.insert (qr, q′s, sy)
16: end if
17: end for
18: US ← US\PS , UR ← UR\PR, P ← PS ∪ PR

19: DAug ← Aug(D,P )
20: Train S and R on DAug

21: end while

task. In our future work, we will work on explor-
ing the co-training paradigm under other scenarios.
We’ll be exploring how co-training can be applied
specifically for other conversational IR scenarios,
ultimately enhancing user experiences and satis-
faction.
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