
LREC-COLING 2024, pages 22–42
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

22

A Benchmark for Recipe Understanding in Artificial Agents

Jens Nevens∗, Robin De Haes∗, Rachel Ringe†, Mihai Pomarlan‡,
Robert Porzel†,⋄, Katrien Beuls△,⋄, Paul Van Eecke∗,⋄

∗Artificial Intelligence Laboratory, Vrije Universiteit Brussel
{jens, paul}@ai.vub.ac.be

†Digital Media Laboratory, University of Bremen
rringe@uni-bremen.de, porzel@tzi.de

‡Department of Applied Linguistics, University of Bremen
pomarlan@uni-bremen.de

△Faculté d’Informatique, Université de Namur
katrien.beuls@unamur.be

Abstract
This paper introduces a novel benchmark that has been designed as a test bed for evaluating whether artificial agents
are able to understand how to perform everyday activities, with a focus on the cooking domain. Understanding
how to cook recipes is a highly challenging endeavour due to the underspecified and grounded nature of recipe
texts, combined with the fact that recipe execution is a knowledge-intensive and precise activity. The benchmark
comprises a corpus of recipes, a procedural semantic representation language of cooking actions, qualitative and
quantitative kitchen simulators, and a standardised evaluation procedure. Concretely, the benchmark task consists in
mapping a recipe formulated in natural language to a set of cooking actions that is precise enough to be executed in
the simulated kitchen and yields the desired dish. To overcome the challenges inherent to recipe execution, this
mapping process needs to incorporate reasoning over the recipe text, the state of the simulated kitchen environment,
common-sense knowledge, knowledge of the cooking domain, and the action space of a virtual or robotic chef.
This benchmark thereby addresses the growing interest in human-centric systems that combine natural language
processing and situated reasoning to perform everyday activities.

Keywords: benchmark, recipe execution, natural language understanding, situated reasoning

1. Introduction

Recipes are a type of procedural text that many
people interact with in their daily lives. Because of
this familiarity, the cooking domain is often used as
a test bed to assess the ability of artificial agents
to learn to perform everyday activities (Bollini et al.,
2013; Kiddon et al., 2015; Jermsurawong and
Habash, 2015). However, having agents under-
stand how to execute recipes is a highly challenging
endeavour due to the underspecified and grounded
nature of recipe texts and the fact that recipe exe-
cution is a knowledge-intensive and precise activ-
ity. Indeed, recipe texts are grounded in the world
since many co-references and anaphoric expres-
sions in recipes do not have an antecedent in the
recipe text itself, but rather refer to the result of the
execution of earlier recipe steps. Consequently,
such co-references cannot be resolved by reason-
ing over the recipe text alone, but also require to
keep track of the state changes they entail in the
kitchen environment. Recipe texts are also highly
underspecified as information that seems trivial
for humans preparing the dish is often completely

⋄Joint last authors.

left out or incomplete through the use of null argu-
ments and ellipses (Kiddon et al., 2015; Ruppen-
hofer and Michaelis, 2010). However, for artificial
agents, this information is crucial in order to carry
out the cooking instructions correctly. Therefore,
any missing information has to be derived from ei-
ther common-sense knowledge or knowledge of
the cooking domain and the cooking instructions
need to be specified a level of precision that al-
lows them to be executed in a simulated kitchen
environment.

To illustrate these challenges, consider the fol-
lowing cooking instructions:

Mix together flour, water, and eggs
Roll the dough into small balls
Place on a baking sheet

In the first instruction, the act of cracking the eggs
before they can be mixed with flour and water is
completely omitted from the recipe text. In this case,
an artificial agent would need to combine situated
reasoning, common-sense knowledge and knowl-
edge of the cooking domain to derive that (i) eggs
can be cracked, (ii) when cracked, eggs consist of
egg whites and yolks, (iii) uncracked eggs would
lead to egg shells when mixed, (iv) egg shells are

23

not edible, and thus (v) the eggs should be cracked
before going in the mixture. Similar examples in-
clude the peeling of some vegetables before they
can be cut (like onions) or the default tool to use for
carrying out certain cooking actions such as beat-
ing egg whites (namely a whisk) or cutting onions
(namely a knife).

In the second instruction, the noun phrase “the
dough” does not refer to an entity introduced earlier
in the recipe text, but to the result of performing the
first cooking action. Thus, to find this referent, the
agent has to perform the mixing action and then use
knowledge of the cooking domain, e.g. concerning
the ingredients of the mixture and the mixture’s
consistency, to find out that this mixture can indeed
be called dough, as opposed to other food products
that are present in the kitchen.

The patient of the placing action in the third in-
struction is left out, but implicitly refers to the result
of the previous cooking action. Here, one has to
perform the rolling action and then reason over
the recipe text, taking into account the sequential
nature of cooking instructions as in Kiddon et al.
(2015) and Jermsurawong and Habash (2015), to
find that it is the resulting balls of dough that should
be placed on a baking sheet.

The benchmark that we propose in this paper
aims to address the challenges inherent to recipe
execution. In particular, the goal is to assess the
ability of an artificial agent to follow a recipe spec-
ified in natural language and prepare the dish in
a simulated kitchen environment. Concretely, the
benchmark comprises (i) a corpus of 30 recipes,
(ii) a procedural semantic representation language
specifying 38 cooking actions, (iii) qualitative and
quantitative kitchen simulators, and (iv) a standard-
ised evaluation procedure. The benchmark task
consists in mapping a recipe expressed in natural
language to a set of cooking actions that is precise
enough to be executed in the kitchen simulator and
thereby produces the desired dish. An example
of such a mapping is presented in Figure 1. Cru-
cially, our evaluation procedure does not compare
the resulting set of cooking actions against a gold
standard annotation. Instead, we evaluate how
close the dish obtained by executing the cooking
actions in the simulated kitchen resembles the gold
standard dish. Solving this benchmark task thus
requires to integrate reasoning over the recipe text,
the state of the simulated kitchen, common-sense
knowledge, knowledge of the cooking domain, and
the action space of a virtual or robotic chef.

While the core task of this benchmark is simi-
lar to semantic parsing, it goes beyond that in two
ways. First, in order to facilitate situated reasoning,
the provided kitchen simulators can be accessed at
any point in the process of mapping the recipe text
to cooking actions. The use of kitchen simulators,

rather than an actual robotic kitchen, allows to focus
on a broader range of instructions and on the high-
level logic underlying their execution, rather than on
the lower-level robotic control systems needed to
implement the task. Second, as the same dish can
be prepared in many different ways, we compare
the prepared dish against the gold standard dish,
instead of comparing the resulting semantic speci-
fication directly. Given these reasons and the fact
that this task cannot be cast to any other standard
NLP task, no baseline results using off-the-shelf
techniques are provided.

The benchmark does not take the form of a typi-
cal machine learning benchmark, as its goal is not
to predict gold standard annotations directly. In-
stead, we provide the entire corpus of 30 recipes
annotated with sets of cooking actions together
with the ontology and the kitchen simulators as a
testbench, without specific training and test sets.
Participants to the benchmark are free to deter-
mine how much of this data is used for develop-
ment, training, validation, setting hyperparameters,
designing prompts, or whatever is necessary for
their particular approach to tackling the bench-
mark. Next to the benchmark components that
we provide, participants are encouraged to use
external data, such as general knowledge graphs
(e.g. Wikidata (Vrandečić and Krötzsch, 2014)),
domain-specific ontologies (e.g. FoodOn (Doo-
ley et al., 2018) or BAALL (Krieg-Brückner et al.,
2021)) or large language models (e.g. GPT-3
(Brown et al., 2020)). Our benchmark is acces-
sible online at https://ehai.ai.vub.ac.be/
recipe-execution-benchmark/.

The remainder of this paper is structured as fol-
lows. Section 2 presents the different components
of the benchmark in more detail. Section 3 provides
an illustrative example of the benchmark task. An
overview of related work is presented in Section 4.
Finally, Section 5 provides a concluding discussion.

2. The Recipe Execution Benchmark

The recipe execution benchmark consists of four
main components: a recipe corpus of 30 recipes
(Section 2.3), a procedural semantic representation
language specifying 38 cooking actions (Section
2.4), qualitative and quantitative kitchen simulators
(Section 2.5), and a standardised evaluation pro-
cedure (Section 2.6). Before addressing those, we
first elaborate on the kitchen state data structure
(Section 2.1) and the cooking ontology (Section
2.2).

2.1. Kitchen States
The kitchen state is a central data structure in the
recipe execution benchmark. It offers a complete

https://ehai.ai.vub.ac.be/recipe-execution-benchmark/
https://ehai.ai.vub.ac.be/recipe-execution-benchmark/

24

(get-kitchen ?kitchen)

(fetch-and-proportion ?proportioned-butter ?ks-with-butter ?kitchen ?target-container-1 butter 230 g)

(bring-to-temperature ?warm-butter ?ks-with-warm-butter ?ks-with-butter ?proportioned-butter 18 degrees-celsius)

(fetch-and-proportion ?proportioned-sugar ?ks-with-sugar ?ks-with-warm-butter ?target-container-2 white-sugar 120 g)

(transfer-contents ?output-container-a ?rest-a ?output-ks-a ?ks-with-sugar ?empty-container-a ?warm-butter ?quantity-a ?unit-a)

(transfer-contents ?output-container-b ?rest-b ?output-ks-b ?output-ks-a ?output-container-a ?proportioned-sugar ?quantity-b ?unit-b)

(beat ?beaten-mixture ?ks-with-beaten-mixture ?output-ks-b ?output-container-b ?mixing-tool)

Figure 1: A possible set of cooking actions for the cooking instructions “230 grams of butter, room
temperature. 120 grams of sugar. Beat the butter and the sugar together.” This set includes the cooking
actions get-kitchen, fetch-and-proportion, bring-to-temperature, transfer-contents, and beat.
Arrows between variables denote shared arguments between the cooking actions, pointing from output
arguments to input arguments.

specification of the simulated kitchen, regardless
of which simulator is used (cf. Section 2.5). The
operationalisation of all cooking actions in the pro-
cedural semantic representation language (cf. Sec-
tion 2.4) essentially boils down to manipulating the
kitchen state in some way. Kitchen states, like all
other entities in the simulated kitchen, can be repre-
sented as feature structures, i.e. (possibly nested)
sets of attribute-value pairs.

The kitchen itself has an ambient temperature
of 18◦C. The main food preparation area is the
counter top. Apart from this, the kitchen also has
an oven, a stove, a microwave, a freezer (at -18◦C),
a fridge (at 5◦C), a pantry and a kitchen cabinet.
The ingredients are stored in the freezer, the fridge,
and the pantry, while the kitchen cabinet is used to
store all tools and utensils.

The execution of a recipe always starts from an
initial kitchen state, containing all ingredients, uten-
sils, and appliances that are necessary to be able to
prepare the recipes provided with the benchmark.
The initial kitchen state can be acquired by exe-
cuting the cooking action get-kitchen (cf. Section
2.4). A graphical overview of the initial kitchen state
is provided in the technical appendix.

2.2. Cooking Ontology
Knowledge about the cooking domain is captured
in an ontology that specifies the type system un-
derlying the procedural semantic representation
language, the kitchen states, and the kitchen simu-
lators. Specifically, it defines kitchen states, ingre-
dients, tools, modes, and units and relates them in
a hierarchical structure. For instance, the ontology
is used to indicate (i) that ‘brown sugar’ and ‘white
sugar’ are types of ‘sugar’, (ii) that, among others,

the freezer, the fridge, and the kitchen cabinet, but
also bowls and cookie trays are types of contain-
ers, but the latter are transferable containers, while
the former are not, and (iii) that certain objects are
beatable, boilable, brushable, crackable, cuttable,
mashable, meltable, perishable, shakeable, wash-
able, etc. This ontology builds further on the SOMA
ontology (Beßler et al., 2021), which aims to cap-
ture the physical and the social context of everyday
activities and in itself extends the DUL ontology
(Masolo et al., 2003). A full specification of the
cooking ontology in YAML format is provided in the
technical appendix.

2.3. Recipes
The benchmark dataset consists of 30 En-
glish recipes sourced from five different
websites: AllRecipes.com (https://www.
allrecipes.com), SimplyRecipes.com (https:
//www.simplyrecipes.com), Food.com
(https://www.food.com, TheSpruceEats.com
(https://www.thespruceeats.com), and
Cooks.com (https://www.cooks.com). The
recipes fall in two different categories: 15 recipes
for preparing cookies and pastries, and 15 recipes
for making salads. All recipes are relatively
straightforward for a human to prepare, as they
involve a limited number of ingredients, execution
steps and required utensils. The recipe texts
cover a variety of linguistic phenomena, such
as co-references, anaphoric expressions, null
arguments, ellipses, hyponyms, meronyms, etc.

The recipes are provided in XML format. For
each recipe in the testbench, a set of actions that
leads to a perfect end result is provided in the tech-
nical appendix. This is for illustrative purposes only,

https://www.allrecipes.com
https://www.allrecipes.com
https://www.simplyrecipes.com
https://www.simplyrecipes.com
https://www.food.com
https://www.thespruceeats.com
https://www.cooks.com

25

as there may exist other sets of actions that might
lead to the same result.

2.4. Procedural Semantic Representation
Language

For the purpose of this benchmark, we have de-
signed a representation language in terms of pro-
cedural semantics (Woods, 1968; Winograd, 1972;
Johnson-Laird, 1977), i.e. semantic representa-
tions that can be executed algorithmically. The pro-
cedural semantic representation language defines
38 cooking actions that can be executed in the sim-
ulated kitchen environments. Cooking actions are
represented as predicates that can be declaratively
combined by sharing their variable arguments (see
Figure 1).

Cooking actions capture atomic operations that
an agent should be able to perform in a kitchen
setting. The 38 cooking actions that we provide are
sufficient to cover at least all recipes in the bench-
mark. The actions can be grouped in six broad cate-
gories: (i) obtaining the kitchen state (get-kitchen),
(ii) location altering (e.g. fetch-and-proportion
and transfer-contents), (iii) food combination
(e.g. mix, beat, spread), (iv) food separation (e.g.
sift, crack, cut), (v) food manipulation (e.g. melt,
boil, wash) and (vi) tool manipulation (e.g. cover,
line, grease). These actions are specified at a
level of abstraction that allows to focus on the high-
level logic of each action, rather than the lower-level
robotic control systems needed to implement the
action. The implementations are provided by the
simulation environment that is used for evaluation
(see Section 2.5).

Arguments of cooking actions are always typed
according to the types defined in the cooking on-
tology (cf. Section 2.2). In general, types of ar-
guments of cooking actions can be divided in five
broad categories: (i) kitchen states, (ii) food, (iii)
tools, (iv) mode specifiers (e.g. cutting patterns,
arrangement patterns, etc.) and (v) quantities. Ev-
ery cooking action has an at least an input kitchen
state and an output kitchen state as its arguments.
The input kitchen state is always specified after the
output kitchen state. Arguments following the in-
put kitchen state are considered input arguments,
while arguments preceding the output kitchen state
are considered output arguments. The technical
appendix provides a detailed technical specification
of all cooking actions.

2.5. Simulation
The kitchen simulator is used to execute cooking
actions. The simulator has two modes through
which actions can be performed: qualitative simu-
lation and quantitative simulation. The qualitative
simulation operates on the symbolic level, while

the quantitative simulation contains a physics en-
gine that is able to model the physical properties
of ingredients and actions. Both simulation modes
receive the same initial kitchen state (Section 2.1),
have the same underlying ontology (Section 2.2),
and implement the same cooking actions (Section
2.4).

The execution of individual cooking actions con-
sists in finding bindings, i.e. computing values, for
the output arguments given some values for the
input arguments. A value can only be bound to
an argument of a cooking action if the type of that
value is the same or a subtype of the type spec-
ification of the argument (cf. Section 2.2). The
input kitchen state of the cooking action represents
the state of the kitchen before the action has been
executed, while the output kitchen state is a copy
of the input kitchen state where the effects of the
cooking action have taken place. The remaining
input and output arguments are the kitchen enti-
ties being manipulated or created by the cooking
action.

Executing an entire set of cooking actions thus
consists in finding the order in which individual cook-
ing actions can be executed depending on the avail-
able bindings. The result is a list of bindings from
all variable arguments in the provided cooking ac-
tions to specific kitchen entities, thereby grounding
the actions in the simulation environment.

Some cooking actions implement a form of de-
fault reasoning on the level of their arguments. For
instance, the last input argument of the cooking
action beat is a ?beating-tool. If no value for this
argument is provided, the cooking action can still
be executed. It that case, a whisk will be fetched
from the kitchen cabinet and used for the beating
action. However, if the recipe specifies to beat egg
whites with a fork, the aim should be to bind an
instance of a fork to the ?beating-tool argument.

Temporal dependency relations between cook-
ing actions are modelled by keeping track of the
simulation time. Concretely, each cooking action
specifies the time when the output arguments be-
come available in the simulator based on the time
of availability of its input arguments and the dura-
tion of the cooking action. Using this information,
it can be discovered which cooking actions can be
executed in sequence or in parallel.

The kitchen simulator is built using the Incre-
mental Recruitment Language (IRL) system (Van
den Broeck, 2008; Spranger et al., 2012; Nevens
et al., 2019). IRL is a formalism for operationalising
procedural semantics. It provides the necessary
abstractions for defining structured representations
of the environment (here, kitchen entities) and prim-
itive operations (here, cooking actions), as well as
for executing sets of primitive operations w.r.t. the
environment in the manner described above. A

26

key benefit of IRL is that it allows full control over
the implementation of each cooking action. For
the purpose of our kitchen simulator, it is used as
an execution engine that delegates the execution
of each cooking action to either the qualitative or
quantitative simulation.

The kitchen simulators can be accessed through
API calls. Each call should specify the execution
mode, i.e. qualitative or quantitative, and the set
of cooking actions to be executed. The resulting
bindings are represented as a dictionary where the
keys are the variables in the cooking actions and the
values are objects from the simulation environment
encoded in the JSON format.

2.5.1. Qualitative Simulation

The aim of the qualitative simulator is to model
the kitchen environment on a qualitative level
(see e.g. Kuipers (1994); Bratko (2012)), thereby
abstracting away from the fine-grained, numeri-
cal details of what for example physics simula-
tors offer. When a cooking action is executed
in this symbolic kitchen environment, it causes
one or more meaningful changes in the kitchen
state. For instance, the cooking action (fetch-and-
proportion ?proportioned-butter, ?ks-with-
butter, ?kitchen, ?target-container-1, butter,
230, g) from Figure 1 finds an empty bowl in the
kitchen cabinet and detects butter in the fridge,
places both the bowl and the container of butter on
the counter top, transfers 230g of that butter to the
empty bowl, and puts the remainder of the butter
back into the fridge. This leads to a new kitchen
state (?ks-with-butter) that is a copy of the pre-
vious kitchen state (?kitchen) with the following
changes: (i) the butter container in the fridge con-
tains 230g less butter, (ii) an empty bowl (?target-
container-1) has been removed from the kitchen
cabinet, and (iii) the counter top contains a bowl
with 230g of butter (?proportioned-butter). An
example kitchen state obtained by executing all
cooking actions from Figure 1 is provided in Figure
2. In this figure, only the counter top is visualised
and only the large bowl with homogeneous mixture
is fully expanded.

2.5.2. Quantitative Simulation

In contrast to the qualitative simulation, the quantita-
tive simulation models the physical properties of in-
gredients and manipulation of objects in more detail.
This simulation is built on top of the widely adopted
PyBullet robotics simulator package (Coumans and
Bai, 2016–2023). In turn, PyBullet uses OpenGL
and benefits from – but does not require – hard-
ware acceleration via GPUs. A screenshot of the
kitchen environment in the qualitative simulation is
provided in Figure 3.

counter-top-256-1
name: nil
persistent-id: counter-top-256
simulation-data: nil
is-concept: nil

arrangement: side-to-side-538-1
side-to-side

whisk-1550-1
whisk

large-bowl-530-1
name: nil
persistent-id: large-bowl-530
simulation-data: nil
used: t
is-concept: nil
arrangement: nil

homogeneous-mixture-4042-1
name: nil
persistent-id: homogeneous-mixture-4042
simulation-data: nil
shaken: nil
temperature: nil
spread-with: nil
sprinkled-with: nil
is-liquid: nil
boiled: nil
boiled-with: nil
spread: nil
dipped-in: nil
current-shape: nil
flattened: nil
baked: nil
sifted: nil
mixed: nil
melted: nil
mashed: nil

is-cut: uncut-11504-1
uncut

beaten: t
keep-frozen: nil
keep-refrigerated: nil
is-concept: nil

amount: amount-34632-1
name: nil
persistent-id: amount-34632
simulation-data: nil

quantity: quantity-52605-1
name: nil
persistent-id: quantity-52605
simulation-data: nil
value: 350
quantity

unit: g-4461-1
g

amount

white-sugar-1614-1
white-sugar

butter-1648-1
butter

homogeneous-mixture
covered-with: nil
large-bowl

medium-bowl-2980-1
medium-bowl

medium-bowl-2978-1
medium-bowl
counter-top

reset

Figure 2: Example representation offered by the
qualitative kitchen simulator after executing the
cooking actions specified in Figure 1.

Figure 3: Screenshot of the qualitative kitchen sim-
ulation environment.

In executing cooking actions, lower-level details
about the execution, such as where exactly to place
an object, are decided by the simulation itself. Sim-
ulation in PyBullet covers rigid body physics. The
simulation environment is three-dimensional, with
objects being represented by low-polygon count
meshes. Liquids are approximated by collections of
particles. Other aspects, such as baking or cutting,
are approximated via so-called custom dynamics.

27

These are scripts running in parallel to the simula-
tion that check whether triggering motions occur.
For cutting, for instance, a triggering motion is when
the blade part of an object that can cut (determined
via the ontology) approaches an object that is cut-
table (determined via the ontology). As a result,
the motion event triggers and the original object is
replaced by a collection of separated parts.

Next to all object properties from the qualitative
simulation, the kitchen states in the quantitative
simulation keeps a full description of the physical
state of objects in terms of position, orientation,
linear and angular velocity, and any other state
variables that are relevant to the custom dynamics
implemented via scripting. The quantitative simu-
lation thus complements the qualitative simulation
in that it provides information about the influence
of general physics on the kitchen state rather than
about higher-level qualitative state changes.

2.6. Evaluation Procedure
The focus of our evaluation procedure lies on mea-
suring the successful execution of the cooking ac-
tions obtained by processing the recipe text. We
introduce a simulation-based metric called the dish
approximation score (Section 2.6.1). Together with
this metric, the quality of the obtained cooking ac-
tions can be gauged using a semantic similarity
measure (Section 2.6.2) and the kitchen simula-
tor’s execution time (Section 2.6.3). Finally, we
provide a graphical evaluation tool that allows par-
ticipants of the benchmark to easily compute these
metrics (Section 2.6.4).

2.6.1. Dish Approximation Score

The dish approximation score is inspired by existing
metrics used to gauge the performance of composi-
tional directives with non-reversible state changes
(Shridhar et al., 2020). With this score, we aim to
quantify how similar two dishes are independently
from the steps involved in their preparation.

The dish approximation score is computed for
all objects in the final kitchen state and the max-
imum score is returned. This is because the out-
put argument of the final cooking action does not
necessarily correspond to the final dish, as other
operations might still be executed after the dish is
ready, e.g. putting away utensils or cleaning up the
kitchen. However, this approach yields satisfactory
results since the final dish will always be present
somewhere in the final kitchen state, e.g. one of
the kitchen entities on the counter top.

The dish approximation score is computed by
comparing the attributes and values of a given
kitchen entity and the gold standard dish (see Fig-
ure 4). The final score is a weighted sum where
2% of the points count towards the presentation

baking-tray

used: true
lined-with: baking-paper
arrangement: side-to-side

temperature: 175 °C
current-shape: crescent-shape
baked: true
mixing-type: mixed
amount: 25 g

sifted: false
amount: 10 g

all-purpose-flour

vanilla-extract
amount: 1 g

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 14 g

temperature: 18 °C
amount: 4 g

white-sugar

temperature: 18 °C
amount: 10 g

butter

Gold Standard Dish Predicted Dish

25 portions

cookie-sheet

used: true
lined-with: baking-paper
arrangement: side-to-side

homogeneous-mixture-2

temperature: 175 °C
current-shape: ball-shape
baked: true
mixing-type: beaten
amount: 36.25 g

sifted: false
amount: 12.5 g

all-purpose-flour

20 portions

amount: 5 g
cocoa-powder

located at counter-top located at counter-top

vanilla-extract
amount: 1.25 g

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 17 g

temperature: 18 °C
amount: 5 g

white-sugar

temperature: 5 °C
amount: 12.5 g

butter

homogeneous-mixture-2

Gold Standard Dish Prepared Dish
baking-tray

used: true
lined-with: baking-paper
arrangement: side-to-side

temperature: 175 °C
current-shape: crescent-shape
baked: true
mixing-type: mixed
amount: 25 g

sifted: false
amount: 10 g

all-purpose-flour

vanilla-extract
amount: 1 g

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 14 g

temperature: 18 °C
amount: 4 g

white-sugar

temperature: 18 °C
amount: 10 g

butter

Gold Standard Dish Predicted Dish

25 portions

cookie-sheet

used: true
lined-with: baking-paper
arrangement: side-to-side

homogeneous-mixture-2

temperature: 175 °C
current-shape: ball-shape
baked: true
mixing-type: beaten
amount: 36.25 g

sifted: false
amount: 12.5 g

all-purpose-flour

20 portions

amount: 5 g
cocoa-powder

located at counter-top located at counter-top

vanilla-extract
amount: 1.25 g

homogeneous-mixture-1

temperature: unspecified
current-shape: unspecified
baked: false
mixing-type: mixed
amount: 17 g

temperature: 18 °C
amount: 5 g

white-sugar

temperature: 5 °C
amount: 12.5 g

butter

homogeneous-mixture-2

Figure 4: Illustrative example of what differences in
attribute values negatively impact the dish approxi-
mation score (highlighted in red).

(e.g. where the dish is located and how many por-
tions are prepared) and 98% of the points count
towards the contents. To compare the dish’s con-
tents, we compare the food products the dish is
made of and in which quantities. Each food prod-
uct may be composed of a combination of other
food products. These are first decomposed un-
til the base ingredients are reached. Base ingre-
dients are the food products that cannot be fur-
ther decomposed in terms of the level of granular-
ity of the benchmark. For instance, in Figure 4,
the homogeneous-mixture-2 in the prepared dish
consists of cocoa-powder, all-purpose-flour,
vanilla-extract, and homogeneous-mixture-1,
which itself is composed of white-sugar and but-
ter.

The computation of the dish approximation score
starts from the base ingredients. Concretely, for
every base ingredient in the gold standard dish,
we look up the most similar base ingredient in the
prepared dish. The score for this base ingredient
is the number of attributes and values both ingredi-
ents have in common, divided by the total number
of attributes and values of the gold standard in-
gredient. In addition to the properties of the base
ingredients, we also check the sequence of inter-
mediate food products they are used in, and how
many properties these intermediate food products
have in common. Gold standard ingredients that

28

are missing in the prepared dish or prepared ingre-
dients that are in excess are given a similarity score
of zero. The similarity scores are again combined
by a weighted sum, where 60% counts towards the
similarity of the base ingredients and 40% counts
towards the similarity of the intermediate food prod-
ucts. All weights involved in computing the dish
approximation score were chosen to reflect human
intuition after small-scale experiments with the 30
benchmark recipes. Figure 4 highlights differences
in attribute values that negatively influence the dish
approximation score. Note that the entities shown
in Figure 4 are for illustrative purposes and that the
actual entities used in the simulation environments
generally have more properties.

2.6.2. Smatch Score

A direct comparison of the cooking actions per-
formed by an artificial agent with some example
annotation can already give a first indication of
how closely the end result will resemble the gold-
standard dish. To this end, we provide a modified
version of the Smatch score (Cai and Knight, 2013)
that first converts the cooking actions from the pro-
cedural semantic representation language to triples
before computing the maximum of F-scores. How-
ever, as the Smatch score is based purely on the
semantic structure, its value decreases whenever
some cooking actions are performed in a different
order even though the end result remains the same.
As this frequently occurs in recipes, the value of
the Smatch score should always be interpreted as
an indication together with the other metrics.

2.6.3. Recipe Execution Time

The recipe execution time measures the number
of timesteps that are needed to execute a set of
cooking actions in terms of the kitchen simulator’s
internal clock. This metric can be used to gauge
cooking efficiency, which could be an indication of
insight into the recipe. However, a lower execution
time does not necessarily indicate better perfor-
mance on the benchmark as it can be caused by
insufficient understanding of the recipe text, thereby
performing less or incorrect cooking actions. Thus,
the execution time should always be interpreted in
light of the other evaluation metrics.

2.6.4. Evaluation Tool

The benchmark comes with an evaluation tool that
can be used to obtain the aforementioned met-
rics. The evaluation tool expects a single input
file that specifies the unique identifier of a recipe
(e.g. #almond-crescent-cookies) followed by the
set of all cooking actions that is obtained by pro-
cessing the entire recipe text. Each cooking action

must be specified on a separate line. Through the
use of recipe identifiers, the same input file can be
used to evaluate multiple recipes. The evaluation
tool produces a single file containing the evaluation
metrics for each recipe on a separate row. The
evaluation tool also allows to visualise the entire
simulation process on a web interface.

3. Illustrative Example

Figure 5 provides an illustrative example of one
possible approach for tackling the benchmark task.
In this approach, the recipe text is processed line
per line, interleaved with the execution of the result-
ing cooking actions in the qualitative or quantitative
kitchen simulator. This way, the approach makes
maximum use of the kitchen simulators to facilitate
situated reasoning over the recipe. At the start of
the recipe, a binding of the initial kitchen state to
the variable ?initial-ks is obtained by executing
the action get-kitchen. The kitchen state ?initial-
ks together with any other sources of information,
such as the cooking ontology, the action space of
the artificial chef, general knowledge graphs, large
language models, etc., can be used to map the
instruction “230 grams of butter, room temperature”
to a set of possible cooking actions. In this exam-
ple, this results in the cooking actions fetch-and-
proportion and bring-to-temperature. Note the
use of the variable ?initial-ks in the action fetch-
and-proportion. This action thus operates over
the initial kitchen state. Next, these two cooking
actions are executed using either the qualitative or
quantitative kitchen simulator. This results in a new
kitchen state ?ks-with-butter, which includes a
bowl with 230 grams of butter at room tempera-
ture ?warm-butter. Now, this new kitchen state,
the bowl of butter and any other information can be
used in processing the next instruction of the recipe,
yielding another set of cooking actions, which is
then executed, and so on. All kitchen entities in the
final kitchen state ?ks-6 are compared against the
gold standard dish and the kitchen entity with the
highest dish approximation score is returned.

Given this example approach, we draw the atten-
tion to two aspects that are crucial when tackling
the recipe execution benchmark. First, there is
the challenge of mapping the instructions from the
recipe text to the appropriate set of cooking actions.
This requires reasoning over the recipe text, the
current state of the simulated kitchen, common-
sense and domain-specific knowledge and the ac-
tion space of the virtual or robotic chef. For exam-
ple, in order to beat the butter and sugar together,
these ingredients need to be combined in a sin-
gle container. From the previous kitchen state, it
can be derived that there are bowls of proportioned
sugar and butter on the counter top. Hence, two

29

?ks-6

“230 grams of butter, room temperature”

“120 grams of sugar”

“Beat the butter and sugar together”

?initial-ks

?ks-warm-butter

?ks-butter-sugar

Mapping to cooking actions

Qualitative / Quantitative
Simulation

+

+

+

Mapping to cooking actions

Qualitative / Quantitative
Simulation

Mapping to cooking actions

Qualitative / Quantitative
Simulation

Gold Standard
Dish Approximation Score

(fetch-and-proportion ?bowl-with-butter ?ks-with-butter ?initial-ks ?bowl-1 butter 230 g)

(bring-to-temperature ?warm-butter ?ks-warm-butter ?ks-with-butter ?bowl-with-butter 18 degrees-celsius)

(fetch-and-proportion ?bowl-with-sugar ?ks-butter-sugar ?ks-warm-butter ?bowl-2 sugar 120 g)

(transfer-contents ?bowl-with-butter ?rest-butter ?ks-4 ?ks-butter-sugar ?bowl-3 ?warm-butter ?quantity-1 ?unit-1)

(transfer-contents ?bowl-butter-sugar ?rest-sugar ?ks-5 ?ks-4 ?bowl-with-butter ?bowl-with-sugar ?quantit-2 ?unit-2)

(beat ?beaten-mixture ?ks-6 ?ks-5 ?bowl-butter-sugar ?beating-tool)

Figure 5: Illustrative example of one possible ap-
proach for tackling the benchmark task.

transfer-contents actions are required to trans-
fer both sugar and butter in a new bowl before the
beat action can be executed. Second, notice how
the processing of individual utterances results in
sets of cooking actions that re-use the same vari-
ables. These variables are highlighted in red in
Figure 5. Concretely, the variable ?ks-with-warm-
butter in the second network was introduced in
the first network, while ?ks-butter-sugar, ?warm-
butter, and ?bowl-with-sugar are variables in
the third network originating from the first and sec-
ond network. This re-use of variables is essential
for carrying out the cooking actions correctly, as,
for example, a kitchen state with the right amount
of butter and sugar is required for processing and
executing the instruction “Beat the butter and sugar
together”. Indeed, in terms of language process-
ing, the use of “the butter and sugar” indicates that
these referents were introduced before, while in
terms of execution, these entities need to be found
in the current kitchen state. In general, the re-use
of variables allows cooking actions to refer back
to previous cooking actions or their execution re-
sults (as in “the dough” in Section 1). From these
examples, it is clear that the proposed benchmark
task goes beyond semantic parsing tasks. In this
benchmark, the processing of the recipe text can
only yield correct networks of cooking actions when
combined with information from previous recipe in-
structions, their execution in the simulated kitchen,
common-sense and domain-specific knowledge,
and the action space of the virtual or robotic chef.

The main challenge of the benchmark thus lies in
the integration of these various components and
reasoning over the different sources of knowledge.

An additional, interactive example can be
accessed via https://ehai.ai.vub.ac.be/
demos/recipe-understanding/. The seman-
tic parsing part is here operationalised using the
Fluid Construction Grammar framework (Steels,
2004; van Trijp et al., 2022; Beuls and Van Eecke,
2023, 2024).

4. Benchmarks for Recipe Execution

The aim of the recipe execution benchmark pro-
posed is this paper is to assess the ability of an
artificial agent to understand and reason about nat-
ural language recipes. Closely related to this aim
are the tasks of semantic parsing of recipe texts
(Section 4.1) and the robotic execution of recipes
(Section 4.2).

4.1. Semantic Parsing for Recipes
There exists a wide variety of semantic annotation
schemes that aim to address the challenges com-
monly found in the semantic parsing of recipe texts.

The Carnegie Mellon University Recipe
Database (CURD) (Tasse and Smith, 2008)
consists of 260 English recipes annotated with
the Minimal Instruction Language for the Kitchen
(MILK) annotation scheme. MILK consists of 12
high-level cooking actions expressed as first-order
logic predicates. The execution of these operations
modifies a symbolic kitchen state that keeps track
of ingredients and tools. Tasse and Smith (2008)
report only preliminary results on parsing the
recipe text into the correct sequence of predicates,
without predicting the predicates’ arguments. More
recently, LLMs were used for tackling this particular
semantic parsing task (Cohen and Mooney, 2023).

The Simplified Ingredient Merging Map in
Recipes annotation scheme (SIMMR) uses the
MILK annotations of the CURD dataset to gener-
ate a dependency tree that related recipe instruc-
tions to either previous instructions or ingredients
(Jermsurawong and Habash, 2015). It thereby
offers a more high-level, but also more coarse-
grained representation of the structure of recipes
compared to MILK.

With the aim of moving away from a domain-
specific annotation scheme, the Recipe Instruc-
tion Semantics Corpus (RISeC) (Jiang et al., 2020)
annotates the CURD recipes with a frame-based
annotation scheme, using PropBank frames (Kings-
bury and Palmer, 2002). Co-reference links across
sentences as well as natural language description
of implicit references to earlier concepts are added.
BERT-based models are used for entity recognition,

https://ehai.ai.vub.ac.be/demos/recipe-understanding/
https://ehai.ai.vub.ac.be/demos/recipe-understanding/

30

relation extraction, and zero anaphora identification
tasks.

Kiddon et al. (2015) annotated recipes using so-
called action graphs. These graphs are composed
of predicates that share some of their arguments.
The predicates are tied to verbs in the recipe, while
the arguments are tied to food items and locations.
They annotated a corpus of 2456 recipes. The
authors propose an unsupervised machine learning
approach using EM algorithms.

Finally, recipes are annotated using flow graphs.
Based on initial work by Mori et al. (2012), the
Recipe Flow Graph (r-FG) Corpus (Mori et al., 2014)
consists of 266 Japanese recipes annotated with
predicate-argument structures. These graphs com-
bine syntactic relations (e.g. subj, d-obj, i-obj)
with cooking-specific relations (e.g. food part-of,
tool complement) to represent the structure of a
recipe in a single graph. Later, an English Recipe
Flow Graph Corpus of 300 recipes was released
by Yamakata et al. (2020) and semantic parsers
for this corpus have recently been presented by
Donatelli et al. (2021) and Fan and Hunter (2023).
Multi-modal annotations using recipe flow graphs
are also being provided by grounding the nodes
of the graph in image data using bounding boxes
(Nishimura et al., 2020) or image pairs (Shirai et al.,
2022).

4.2. Systems for Recipe Execution
Systems for recipe execution combine robotic ma-
nipulation, computer vision, knowledge representa-
tion and reasoning into an integrated approach.

Neural Process Networks (Bosselut et al., 2018)
use a neural network architecture to integrate cook-
ing actions and entities. They model the under-
standing of a recipe as finding a sequence of
kitchen state changes induced by executing actions
on kitchen entities in simulation. This simulation
is performed by updating and tracking a set of a
priori specified actions and entity embeddings that
encode information along six relevant dimensions,
namely location, cookedness, temperature, com-
position, shape and cleanliness.

The MIT BakeBot project (Bollini et al., 2013) op-
erationalises the execution of different recipes by
a physical robot. From a dataset of recipes anno-
tated with sequences of states and actions, Bake-
Bot first learns a policy in simulation. To cook a dish,
BakeBot then uses this policy to map the recipe
instructions to a sequence of states and actions,
after which they are executed on a physical robot.
However, each action first needs to be translated to
multiple, low-level motion operations. The instruc-
tions that the robot can execute are rather limited
due to the need to implement them in physical real-
ity and some actions require human assistance to
be executed.

Moving away from cooking instructions, the
CRAM cognitive architecture presented by Beetz
et al. (2011, 2023) enables a variety of physical
robots to complete everyday manipulation tasks,
such as setting the table. The central principle of
their architecture is the ability to propagate infor-
mation both bottom-up, from action and perception
modules, and top-down, from high-level planning
and meta-level reasoning components to a central
declarative reasoning system.

Finally, Höffner et al. (2022) focus on everyday
activity commands in the context of household
robotics. They have designed a processing pipeline
consisting of components for semantic parsing, lan-
guage grounding, and simulation, with an overarch-
ing ontological framework. However, their pipeline
currently only handles single directives in isolation.

5. Conclusion

We have presented a novel benchmark that has
been designed as a test bed for evaluating whether
artificial agents are able to understand how to per-
form everyday activities in the cooking domain. Un-
derstanding how to execute recipes is a highly chal-
lenging endeavour due to the underspecified and
grounded nature of recipe texts and the fact that
recipe execution is a knowledge-intensive and pre-
cise activity. The benchmark task that we propose
consists in mapping recipes specified in natural lan-
guage to a set of cooking actions that is concrete
and detailed enough to be executed in a simulated
kitchen environment, while also producing the de-
sired dish. To this end, we provided (i) a corpus of
30 recipes, (ii) a procedural semantic representa-
tion language of 38 cooking actions, (iii) qualitative
and quantitative kitchen simulators, and (iv) a stan-
dardised evaluation procedure. To overcome the
challenges inherent to recipe execution, the map-
ping of recipe texts to cooking actions requires to
integrate reasoning over the recipe text, the state of
the simulated kitchen, common-sense knowledge,
knowledge of the cooking domain, and the action
space of a virtual or robotic chef. This benchmark
distinguishes itself from other semantic parsing and
recipe execution benchmarks in that (i) kitchen sim-
ulators can be used at any time to facilitate situated
reasoning and (ii) evaluation is not in terms of a
gold-standard annotation, but in terms of the qual-
ity of the prepared dish. The benchmark thereby
addresses the growing interest in human-centric
systems that combine natural language process-
ing and situated reasoning to perform everyday
activities (Steels, 2023; Verheyen et al., 2023).

31

6. Acknowledgements

The research reported on in this paper received
funding from the EU’s H2020 RIA programme un-
der grant agreement no. 951846 (MUHAI), the Re-
search Foundation Flanders (FWO) through a post-
doctoral grant awarded to PVE (grant no. 76929),
and from the Collaborative Research Center (SFB)
1320 EASE – Everyday Activity Science and En-
gineering, University of Bremen (www.easecrc.
org), sub-project P01 “Embodied Semantics for
the Language of Action and Change”.

7. Bibliographical References

Michael Beetz, Gayane Kazhoyan, and David Ver-
non. 2023. The CRAM cognitive architecture for
robot manipulation in everyday activities. arXiv
preprint arXiv:2304.14119.

Michael Beetz, Ulrich Klank, Ingo Kresse, Alexis
Maldonado, Lorenz Mösenlechner, Dejan
Pangercic, Thomas Rühr, and Moritz Tenorth.
2011. Robotic roommates making pancakes. In
Proceedings of the 11th IEEE-RAS International
Conference on Humanoid Robots, pages
529–536, New York, NY, USA. IEEE.

Daniel Beßler, Robert Porzel, Mihai Pomarlan, Ab-
hijit Vyas, Sebastian Höffner, Michael Beetz,
Rainer Malaka, and John Bateman. 2021. Foun-
dations of the socio-physical model of activities
(soma) for autonomous robotic agents. In Formal
Ontology in Information Systems, pages 159–
174, Amsterdam, Netherlands. IOS Press.

Katrien Beuls and Paul Van Eecke. 2023. Fluid
Construction Grammar: State of the art and fu-
ture outlook. In Proceedings of the First Inter-
national Workshop on Construction Grammars
and NLP (CxGs+NLP, GURT/SyntaxFest 2023),
pages 41–50. Association for Computational Lin-
guistics.

Katrien Beuls and Paul Van Eecke. 2024. Con-
struction grammar and artificial intelligence. In
Mirjam Fried and Kiki Nikiforidou, editors, The
Cambridge Handbook of Construction Grammar.
Cambridge University Press, Cambridge, United
Kingdom. Forthcoming.

Mario Bollini, Stefanie Tellex, Tyler Thompson,
Nicholas Roy, and Daniela Rus. 2013. Inter-
preting and executing recipes with a cooking
robot. In Jaydev P. Desai, Gregory Dudek, Ous-
sama Khatib, and Vijay Kumar, editors, Experi-
mental Robotics: The 13th International Sympo-
sium on Experimental Robotics, pages 481–495.
Springer-Verlag, Heidelberg, Germany.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2018. Simu-
lating action dynamics with neural process net-
works. In 6th International Conference on Learn-
ing Representations (ICLR 2018), page 10.

Ivan Bratko. 2012. Prolog Programming for Artificial
Intelligence (Fourth Ed.). Pearson Education,
Harlow, United Kingdom.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D. Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. In Advances in Neural
Information Processing Systems 33 (NeurIPS
2020), pages 1877–1901, Red Hook, NY, USA.
Curran Associates Inc.

Shu Cai and Kevin Knight. 2013. Smatch: an eval-
uation metric for semantic feature structures. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 748–752. Associa-
tion for Computational Linguistics.

Vanya Cohen and Raymond Mooney. 2023. Using
planning to improve semantic parsing of instruc-
tional texts. In Proceedings of the 1st Workshop
on Natural Language Reasoning and Structured
Explanations (NLRSE), pages 47–58. Associa-
tion for Computational Linguistics.

Erwin Coumans and Yunfei Bai. 2016–2023. Py-
bullet: A Python module for physics simula-
tion for games, robotics and machine learning.
http://pybullet.org.

Lucia Donatelli, Theresa Schmidt, Debanjali
Biswas, Arne Köhn, Fangzhou Zhai, and Alexan-
der Koller. 2021. Aligning actions across recipe
graphs. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 6930–6942. Associa-
tion for Computational Linguistics.

Damion M. Dooley, Emma J. Griffiths, Gurinder S.
Gosal, Pier L. Buttigieg, Robert Hoehndorf,
Matthew C. Lange, Lynn M. Schriml, Fiona S.L.
Brinkman, and William W. L. Hsiao. 2018.
FoodOn: a harmonized food ontology to increase
global food traceability, quality control and data
integration. npj Science of Food, 2(1):23.

Yi Fan and Anthony Hunter. 2023. Understanding
the cooking process with english recipe text. In
Findings of the Association for Computational
Linguistics: ACL 2023, pages 4244–4264. Asso-
ciation for Computational Linguistics.

Sebastian Höffner, Robert Porzel, Maria M. Hed-
blom, Mihai Pomarlan, Vanja Sophie Cangalovic,

www.easecrc.org
www.easecrc.org
https://doi.org/10.1109/Humanoids.2011.6100855
https://doi.org/10.1007/978-3-319-00065-7_33
https://doi.org/10.1007/978-3-319-00065-7_33
https://doi.org/10.1007/978-3-319-00065-7_33
https://doi.org/10.18653/v1/2023.nlrse-1.5
https://doi.org/10.18653/v1/2023.nlrse-1.5
https://doi.org/10.18653/v1/2023.nlrse-1.5
http://pybullet.org
https://doi.org/10.18653/v1/2021.emnlp-main.554
https://doi.org/10.18653/v1/2021.emnlp-main.554
https://doi.org/10.1038/s41538-018-0032-6
https://doi.org/10.1038/s41538-018-0032-6
https://doi.org/10.1038/s41538-018-0032-6
https://doi.org/10.18653/v1/2023.findings-acl.261
https://doi.org/10.18653/v1/2023.findings-acl.261

32

Johannes Pfau, John A. Bateman, and Rainer
Malaka. 2022. Deep understanding of everyday
activity commands for household robots. Seman-
tic Web, 13(5):895–909.

Jermsak Jermsurawong and Nizar Habash. 2015.
Predicting the structure of cooking recipes. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 781–786. Association for Com-
putational Linguistics.

Yiwei Jiang, Klim Zaporojets, Johannes Deleu,
Thomas Demeester, and Chris Develder. 2020.
Recipe instruction semantics corpus (RISeC):
Resolving semantic structure and zero anaphora
in recipes. In Proceedings of the 1st Confer-
ence of the Asia-Pacific Chapter of the Associa-
tion for Computational Linguistics and the 10th
International Joint Conference on Natural Lan-
guage Processing, pages 821–826. Association
for Computational Linguistics.

Philip N. Johnson-Laird. 1977. Procedural seman-
tics. Cognition, 5(3):189–214.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en
place: Unsupervised interpretation of instruc-
tional recipes. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 982–992. Associa-
tion for Computational Linguistics.

Paul R. Kingsbury and Martha Palmer. 2002.
From treebank to propbank. In Proceedings of
the 3rd International Conference on Language
Resources and Evaluation, pages 1989–1993,
Paris, France. European Language Resources
Association (ELRA).

Bernd Krieg-Brückner, Serge Autexier, and Mi-
hai Pomarlan. 2021. The baall ontology-
configuration of service robots, food, and diet.
In FOIS 2021 Ontology Showcase, held at FOIS
2021 - the 12th International Conference on For-
mal Ontology in Information Systems. CEUR
Workshop Proceedings.

Benjamin Kuipers. 1994. Qualitative Reasoning:
Modeling and Simulation with Incomplete Knowl-
edge. MIT Press, Cambridge, MA, USA.

Claudio Masolo, Stefano Borgo, Aldo Gangemi,
Nicola Guarino, and Alessandro Oltramari. 2003.
Wonderweb deliverable d18-ontology library (fi-
nal). Technical report, National Research
Council-Institute of Cognitive Science and Tech-
nology. IST Project 2001-33052 WonderWeb:
Ontology Infrastructure for the Semantic Web.

Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata,
and Tetsuro Sasada. 2014. Flow graph corpus
from recipe texts. In Proceedings of the 9th In-
ternational Conference on Language Resources
and Evaluation (LREC), pages 2370–2377, Paris,
France. European Language Resources Associ-
ation (ELRA).

Shinsuke Mori, Tetsuro Sasada, Yoko Yamakata,
and Koichiro Yoshino. 2012. A machine learn-
ing approach to recipe text processing. In Pro-
ceedings of the 1st Workshop on Cooking with
Computers, pages 1–6, Paris, France. Centre
national de la recherche scientifique (CNRS).

Jens Nevens, Paul Van Eecke, and Katrien Beuls.
2019. A practical guide to studying emer-
gent communication through grounded language
games. In AISB 2019 Symposium on Language
Learning for Artificial Agents, pages 1–8. AISB.

Taichi Nishimura, Suzushi Tomori, Hayato
Hashimoto, Atsushi Hashimoto, Yoko Yamakata,
Jun Harashima, Yoshitaka Ushiku, and Shinsuke
Mori. 2020. Visual grounding annotation of
recipe flow graph. In Proceedings of the
12th International Conference on Language
Resources and Evaluation, pages 4275–4284,
Paris, France. European Language Resources
Association (ELRA).

Josef Ruppenhofer and Laura A Michaelis. 2010. A
constructional account of genre-based argument
omissions. Constructions and frames, 2(2):158–
184.

Keisuke Shirai, Atsushi Hashimoto, Taichi
Nishimura, Hirotaka Kameko, Shuhei Kurita,
Yoshitaka Ushiku, and Shinsuke Mori. 2022.
Visual recipe flow: A dataset for learning visual
state changes of objects with recipe flows. In
Proceedings of the 29th International Conference
on Computational Linguistics, pages 3570–3577,
Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi,
Luke Zettlemoyer, and Dieter Fox. 2020. AL-
FRED: A benchmark for interpreting grounded
instructions for everyday tasks. In Proceedings
of the 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10737–
10746, New York, NY, USA. IEEE.

Michael Spranger, Simon Pauw, Martin Loetzsch,
and Luc Steels. 2012. Open-ended procedu-
ral semantics. In Luc Steels and Manfred Hild,
editors, Language Grounding in Robots, pages
153–172. Springer, New York, NY, USA.

https://doi.org/10.3233/SW-222973
https://doi.org/10.3233/SW-222973
https://doi.org/10.18653/v1/D15-1090
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://doi.org/10.18653/v1/D15-1114
https://aclanthology.org/2022.coling-1.315
https://aclanthology.org/2022.coling-1.315
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1109/CVPR42600.2020.01075
https://doi.org/10.1007/978-1-4614-3064-3_8
https://doi.org/10.1007/978-1-4614-3064-3_8

33

Luc Steels. 2004. Constructivist development of
grounded construction grammar. In Proceedings
of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL-04), pages
9–16.

Luc Steels. 2023. Conceptual foundations for
human-centric AI. In Human-Centered Artificial
Intelligence (ACAI 2021), pages 8–35, Cham,
Switzerland. Springer.

Dan Tasse and Noah A. Smith. 2008. SOUR
CREAM: Toward semantic processing of recipes.
Technical Report CMU-LTI-08-005, Carnegie
Mellon University, Pittsburgh, PA, USA.

Wouter Van den Broeck. 2008. Constraint based
compositional semantics. In Proceedings of the
7th International Conference on the Evolution of
Language (EVOLANG7), pages 338–345. World
Scientific.

Remi van Trijp, Katrien Beuls, and Paul Van Eecke.
2022. The FCG Editor: An innovative environ-
ment for engineering computational construction
grammars. PLOS ONE, 17(6):e0269708.

Lara Verheyen, Jérôme Botoko Ekila, Jens Nevens,
Paul Van Eecke, and Katrien Beuls. 2023. Neuro-
symbolic procedural semantics for reasoning-
intensive visual dialogue tasks. In Proceedings
of the 26th European Conference on Artificial In-
telligence (ECAI 2023), pages 2419–2426, Ams-
terdam, Netherlands. IOS Press.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Com-
munications of the ACM, 57(10):78–85.

Terry Winograd. 1972. Understanding natural lan-
guage. Cognitive Psychology, 3(1):1–191.

William A. Woods. 1968. Procedural semantics for
a question-answering machine. In Proceedings
of the December 9-11, 1968, Fall Joint Computer
Conference, Part I, pages 457–471, New York,
NY, USA.

Yoko Yamakata, Shinsuke Mori, and John A. Car-
roll. 2020. English recipe flow graph corpus. In
Proceedings of the 12th International Conference
on Language Resources and Evaluation, pages
5187–5194, Paris, France. European Language
Resources Association (ELRA).

Appendix A. Initial Kitchen State

Figure 6 gives a detailed graphical overview of the
initial kitchen state. The ingredients can be found
in the freezer, the fridge, and the pantry in the spec-
ified quantities. The kitchen cabinet contains all
cooking utensils.

Appendix B. Cooking Ontology

The cooking ontology in YAML format can be found
in the supplementary materials accompanying this
paper. The cooking ontology underlies the procedu-
ral semantic representation language, the kitchen
states, and both kitchen simulators. As such, it
needs to be consulted from both the qualitative
simulation, implemented in Common Lisp using
Incremental Recruitment Language (IRL), as well
as the quantitative simulation, implemented using
PyBullet. The YAML format was chosen for the
cooking ontology as it is relatively straightforward
to edit by hand and parsers for most mainstream
programming languages, including Common Lisp
and Python, are available. The cooking ontology
defined for this benchmark builds further on the
SOMA ontology which in itself extends the DUL
ontology.

Appendix C. Recipe Corpus

A data dump of the recipe corpus can be found
in the supplementary materials accompanying this
paper. Here, we briefly explain the data format
of the corpus. We chose to use a consistent and
structured XML format to represent the recipes in
our benchmark. Each recipe XML file consists of
four components. First, a unique identifier for the
recipe is included. Second, the recipe title is speci-
fied. This could be useful as contextual information
since it often states the type of dish that should be
prepared. Third, the recipe file lists all ingredients
that are necessary to prepare the dish. Finally, the
recipe file contains a list of instructions that should
be executed in order to prepare the dish. An ex-
cerpt of the XML format for the Almond Crescent
Cookies recipe is shown in Listing 1.

The gold-standard annotations for all recipes are
found in separate files. These files contain the
recipe identifier, followed by one primitive opera-
tion per line. However, these annotations are only
meaningful as a whole due to common recipe id-
iosyncrasies, such as missing steps, ellipses and
contextual references. An excerpt of the gold-
standard annotation for the Almond Crescent Cook-
ies recipe is shown in Listing 2.

https://doi.org/10.1007/978-3-031-24349-3_2
https://doi.org/10.1007/978-3-031-24349-3_2
https://doi.org/10.1142/9789812776129_0043
https://doi.org/10.1142/9789812776129_0043
https://doi.org/10.1371/journal.pone.0269708
https://doi.org/10.1371/journal.pone.0269708
https://doi.org/10.1371/journal.pone.0269708
https://doi.org/10.3233/FAIA230544
https://doi.org/10.3233/FAIA230544
https://doi.org/10.3233/FAIA230544
https://doi.org/10.1145/1476589.1476653
https://doi.org/10.1145/1476589.1476653

34

kitchen (temperature: 18 °C)

oven

counter-top

fridge (temperature: 5 °C)

freezer (temperature: -18 °C)

stove microwave

almond (500 g)
almond-extract (100 g)
almond-flakes (250 g)
almond-flour (1 kg)
all-purpose-flour (1 kg)
baking-powder (250 g)
baking-soda (50 g)
bisquick-baking-mix (300 g)
brown-sugar (1 kg)
caster-sugar (1 kg)
celery-seed (200 g)
cider-vinegar (500 ml)
coarse-salt (500 g)
cocoa-powder (500 g)
coconut-oil (500 ml)
corn-flakes (500 g)
devils-food-cake-mix (600 g)
dried-dill-weed (500 g)

baking-paper (3)
baking-tray (1)
bread-knife (3)
colander (3)
cookie-sheet (1)
cooking-pot (3)
egg-separator (3)
food-processor (1)
fork (9)
jar (3)

pantry

kitchen-cabinet

apple (6 pcs)
avocado (6 pcs)
banana (6 pcs)
black-bean (500 g)
black-olive (100 g)
butter (500 g)
broccoli (500 g)
carrot (12 pcs)
celery (6 pcs)
cherry-tomato (500 g)
cooked-bacon (500 g)
cooked-chicken (500 g)
corn (500 g)
cranberry (500 g)
cream-cheese (500 g)

jar-lid (3)
knife (9)
large-bowl (9)
large-bowl-lid (3)
medium-bowl (9)
medium-bowl-lid (3)
mixer (3)
muffin-tins (1)
paper-baking-cup (15)
plastic-wrap (1)

rolling-pin (3)
sift (3)
small-bowl (9)
small-bowl-lid (3)
spatula (3)
table-spoon (9)
tea-spoon (9)
whisk (9)
wire-rack (1)
wooden-spoon (9)

crushed-pineapple (500 g)
cucumber (10 pcs)
salted-butter (500 g)
egg (12 pcs)
egg-white (500 g)
feta-cheese (500 g)
fresh-basil (500 g)
fresh-cilantro (200 g)
fresh-oregano (50 g)
grated-horesradish (200 g)
grated-mozzarella (500 g)
green-cabbage (2 pcs)
green-chili-pepper (5 pcs)
hard-boiled-egg (12 pcs)
heavy-cream (500 g)

jalapeno (5 pcs)
lemon-juice (500 ml)
lime-juice (500 ml)
mango (5 pcs)
mixed-greens (500 g)
radish (10 pcs)
red-bell-pepper (10 pcs)
red-chili-pepper (5 pcs)
romaine-lettuce (2 pcs)
salted-butter (500 g)
shredded-coconut (500 g)
tomato (12 pcs)
water (1 l)
yellow-mustard (500 ml)

extra-virgin-olive-oil (500 ml)
garlic (5 pcs)
garlic-powder (500 g)
green-onion (10 pcs)
ground-allspice (50 g)
ground-black-pepper (500 g)
ground-cinnamon (50 g)
ground-cloves (50 g)
ground-cumin (500 g)
ground-ginger (50 g)
ground-nutmeg (50 g)
marshmallow (500 g)
molasses (900 g)
mustard-seed (200 g)
oats (500 g)
onion (10 pcs)
paprika-powder (300 g)
potato (12 pcs)

powdered-white-sugar (500 g)
red-onion (5 pcs)
red-pepper-flakes (50 g)
red-wine-vinegar (500 ml)
salt (500 g)
self-rising-flour (1 kg)
shallot (5 pcs)
sweet-potato (500 g)
tabasco (250 ml)
turmeric-powder (200 g)
vanilla (500 g)
vanilla-extract (100 g)
vegetable-oil (200 g)
walnut (500 g)
white-bread-slice (12 pcs)
white-sugar (1 kg)
white-vinegar (500 g)
whole-wheat-flour (1 kg)

frozen-corn (500 g)

Figure 6: Graphical overview of the initial kitchen environment.

35

Listing 1: Excerpt of Almond Crescent Cookies recipe file
< recipe >

<id >almond - crescent - cookies </id >
<title > Almond Crescent Cookies </ title >
< ingredients >

< ingredient >
< utterance >

230 grams butter , room temperature
</ utterance >

</ ingredient >
...

</ ingredients >
< instructions >

< instruction >
< utterance >

Beat the butter and the sugar together until light and
fluffy .

</ utterance >
</ instruction >
...

</ instructions >
</ recipe >

Listing 2: Excerpt of Almond Crescent Cookies annotation file
almond - crescent - cookies
(get - kitchen ? kitchen)
(fetch -and - proportion ? proportioned - butter ?ks -with - butter ? kitchen ?

target - container -1 butter 230 g)
(bring -to - temperature ?warm - butter ?ks -with -warm - butter ?ks -with -

butter ? proportioned - butter ?room -temp - quantity ?room -temp - unit)
(fetch -and - proportion ? proportioned - sugar ?ks -with - sugar ?ks -with -warm

- butter ? target - container -2 white - sugar 120 g)
...

Appendix D. Cooking Actions

The cooking actions of the procedural semantic
representation language, their intended meaning,
and simulator-specific implementation choices are
listed here in alphabetical order. The number after
the name of the cooking action indicates its arity.

bake/9

• Arguments:
?baked-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-bake, ?oven, ?time-value,
?time-unit, ?temperature-value, ?temperature-
unit

• Intended Meaning:
Obtain ?baked-thing by baking ?thing-to-bake
in ?oven at the temperature specified by
?temperature-value and ?temperature-unit for
the duration specified by ?time-value and
?time-unit. The arguments ?kitchen-state-in
and ?kitchen-state-out represent the contex-

tual situation before and after execution of this
predicate.

• Default Values:

– ?oven defaults to the closest unused oven
in the kitchen

– ?temperature-value and ?temperature-
unit default to the temperature of ?oven
(only possible in case ?oven is specified)

• Constant Arguments:

– ?time-value and ?temperature-value must
be numerical values

– ?time-unit must be hour or minute
– ?temperature-unit must be degrees-

celsius

boil/8
• Arguments:

?boiled-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-boil, ?stove, ?heating-
setting, ?time-value, ?time-unit

36

• Intended Meaning:
Obtain ?boiled-thing by boiling ?thing-to-boil
on the ?stove at the heating setting specified
by ?heating-setting for the duration specified
by ?time-value and ?time-unit. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?stove defaults to the closest unused
stove in the kitchen

– ?heating-setting defaults to medium-heat
– ?time-value and ?time-unit default to 30

minutes

• Constant Arguments:

– ?heating-setting must be low-heat,
medium-heat, medium-high-heat, high-
heat

– ?time-value and ?temperature-value must
be numerical values

– ?time-unit must be hour or minute

beat/5

• Arguments:
?beaten-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-beat, ?beating-tool

• Intended Meaning:
Obtain ?beaten-thing by beating ?thing-to-beat
using ?beating-tool. Beating can be seen as a
more intense form of mixing which adds some
air bubbles during the combination process.
This form of mixing also leads to a homoge-
neous result as individual components are not
kept intact. The arguments ?kitchen-state-in
and ?kitchen-state-out represent the contex-
tual situation before and after execution of this
predicate.

• Default Values:

– ?beating-tool defaults to the closest un-
used whisk in the kitchen

bring-to-temperature/6

• Arguments:
?thing-at-desired-temperature, ?kitchen-
state-out, ?kitchen-state-in, ?thing-to-
bring-to-temperature, ?temperature-value,
?temperature-unit

• Intended Meaning:
Obtain ?thing-at-desired-temperature at the
temperature specified by ?temperature-value

and ?temperature-unit by waiting for ?thing-to-
bring-to-temperature to cool off or warm up by
advancing towards the ambient temperature.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

• Default Values:

– ?temperature-value and ?temperature-
unit default to the current room temper-
ature of the kitchen, which is around 18
°C.

• Constant Arguments:

– ?temperature-value must be a numerical
value

– ?temperature-unit must be degrees-
celsius

cover/5

• Arguments:
?covered-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-cover, ?cover

• Intended Meaning:
Obtain ?covered-thing by covering ?thing-to-
cover with the specified ?cover. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?cover defaults to an appropriate cover for
the given ?thing-to-cover, i.e., a bowl-lid
for a bowl, a jar-lid for a jar or plastic-wrap
for anything else.

cut/7

• Arguments:
?cut-thing, ?kitchen-state-out, ?kitchen-state-
in, ?thing-to-cut, ?cutting-pattern, ?cutting-tool,
?cutting-surface

• Intended Meaning:
Obtain ?cut-thing by using ?cutting-tool to cut
?thing-to-cut on the ?cutting-surface accord-
ing to the specified ?cutting-pattern. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?cutting-tool defaults to the closest un-
used knife in the kitchen

– ?cutting-surface defaults to the closest un-
used cutting board in the kitchen

37

• Constant Arguments:

– ?cutting-pattern must be chopped, finely-
chopped, slices, fine-slices, squares, two-
cm-cubes, halved, shredded, minced, or
diced

crack/5

• Arguments:
?container-with-whole-eggs, ?kitchen-state-
out, ?kitchen-state-in, ?eggs-to-crack, ?target-
container-for-whole-eggs

• Intended Meaning:
Obtain ?container-with-whole-eggs by crack-
ing ?eggs-to-crack, i.e., removing the egg
shell from ?eggs-to-crack, and dropping the
egg contents in the container specified by
?target-container-for-whole-eggs. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?target-container-for-whole-eggs defaults
to the closest unused medium bowl in the
kitchen

dip/5

• Arguments:
?dipped-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-dip, ?dip

• Intended Meaning:
Obtain ?dipped-thing by dipping ?thing-to-dip
into ?dip. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual sit-
uation before and after execution of this predi-
cate.

drain/6

• Arguments:
?drained-thing, ?remaining-liquid, ?kitchen-
state-out, ?kitchen-state-in, ?thing-to-drain,
?draining-tool

• Intended Meaning:
Obtain ?drained-thing by draining ?thing-to-
drain using ?draining-tool leaving the remain-
ing liquid in ?remaining-liquid. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?draining-tool defaults to the closest un-
used colander in the kitchen

fetch/5

• Arguments:
?fetched-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-fetch, ?quantity-to-fetch

• Intended Meaning:
Obtain ?fetched-thing by locating one or more
?thing-to-fetch objects in the kitchen and bring-
ing it to a common work area such as a kitchen
countertop. The exact number of objects to
fetch is specified by ?quantity-to-fetch. The ar-
guments ?kitchen-state-in and ?kitchen-state-
out represent the contextual situation before
and after execution of this predicate.

• Constant Arguments:

– ?quantity-to-fetch must be a numerical
value

– ?thing-to-fetch must be any transferable
container or cooking utensil available in
the kitchen environment.

fetch-and-proportion/7

• Arguments:
?fetched-and-proportioned-ingredient,
?kitchen-state-out, ?kitchen-state-in, ?target-
container-for-proportioned-ingredient,
?ingredient-to-fetch-and-proportion,
?proportion-value, ?proportion-unit

• Intended Meaning:
Obtain an amount of the food product ?fetched-
and-proportioned-ingredient by fetching an
?ingredient-to-fetch-and-proportion, taking a
portion from it specified by ?proportion-value
and ?proportion-unit and placing this por-
tion inside the container specified by ?target-
container-for-proportioned-ingredient. Ingredi-
ent leftovers are returned to their original lo-
cation. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual sit-
uation before and after execution of this predi-
cate.

• Constant Arguments:

– ?ingredient-to-fetch-and-proportion must
be any ingredient that is mentioned in the
ingredient list of a supported recipe. In-
gredients should be specified by replacing
all spaces in an ingredient name with the
minus sign (-), e.g., ‘ground black pepper’
would become ground-black-pepper.

– ?proportion-value must be a numerical
value

– ?proportion-unit must be piece, g, tea-
spoon, tablespoon, l or ml

38

flatten/5

• Arguments:
?flattened-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-flatten, ?flattening-tool

• Intended Meaning:
Obtain ?flattened-thing by flattening ?thing-to-
flatten using ?flattening-tool. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?flattening-tool defaults to the closest un-
used rolling pin in the kitchen

flour/5

• Arguments:
?floured-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-flour, ?flour

• Intended Meaning:
Obtain ?floured-thing by flouring ?thing-to-flour
with ?flour. The arguments ?kitchen-state-in
and ?kitchen-state-out represent the contex-
tual situation before and after execution of this
predicate.

• Default Values:

– ?flour defaults to 10 grams of all-purpose
flour taken from the closest container with
all-purpose flour

fry/8

• Arguments:
?fried-thing, ?kitchen-state-out, ?kitchen-state-
in, ?thing-to-fry, ?stove, ?heating-setting,
?time-value, ?time-unit

• Intended Meaning:
Obtain ?fried-thing by frying ?thing-to-fry on
the ?stove at the heating setting specified by
?heating-setting for the duration specified by
?time-value and ?time-unit. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?stove defaults to the closest unused
stove in the kitchen

– ?heating-setting defaults to medium-heat
– ?time-value and ?time-unit default to 30

minutes

• Constant Arguments:

– ?heating-setting must be low-heat,
medium-heat, medium-high-heat, high-
heat

– ?time-value and ?temperature-value must
be numerical values

– ?time-unit must be hour or minute

get-kitchen/1
• Arguments:

?initial-kitchen-state

• Intended Meaning:
Obtain the initial state of the kitchen ?initial-
kitchen-state. This is expected to provide ac-
cess to an environment model of the kitchen
to provide contextual information needed for
executing a recipe.

• Default Values:

– ?initial-kitchen-state defaults to the initial
kitchen state in which a recipe will be ex-
ecuted. This argument is expected to be
left to its default value in which case this
primitive functions as a ‘getter’.

grease/5
• Arguments:

?greased-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-grease, ?thing-to-grease,
?grease

• Intended Meaning:
Obtain ?greased-thing by greasing ?thing-to-
grease with ?grease. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the
contextual situation before and after execution
of this predicate.

• Default Values:

– ?grease defaults to 10 grams of butter
taken from the closest container with but-
ter

grind/5
• Arguments:

?ground-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-grind, ?grinding-tool

• Intended Meaning:
Obtain ?ground-thing by grinding ?thing-to-
grind using ?grinding-tool. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?grinding-tool defaults to the closest un-
used food-processor in the kitchen

39

leave-for-time/6
• Arguments:

?cooled-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-cool, ?time-value, ?time-unit

• Intended Meaning:
Obtain ?cooled-thing by waiting for the dura-
tion specified by ?time-value and ?time-unit to
let ?thing-to-cool cool off towards the ambient
temperature. The arguments ?kitchen-state-in
and ?kitchen-state-out represent the contex-
tual situation before and after execution of this
predicate.

• Constant Arguments:

– ?time-value and ?temperature-value must
be numerical values

– ?time-unit must be hour or minute

line/5
• Arguments:

?lined-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-line, ?lining

• Intended Meaning:
Obtain ?lined-thing by lining ?thing-to-line with
?lining, e.g., lining a baking tray with some
baking paper or lining muffin tins with paper
baking cups. The arguments ?kitchen-state-in
and ?kitchen-state-out represent the contex-
tual situation before and after execution of this
predicate.

• Default Values:

– ?lining defaults to the closest unused
sheet of baking paper

• Constant Arguments:

– ?lining must be baking-paper or paper-
baking-cups

– ?thing-to-line must be baking-tray, cookie-
sheet, pan or muffin-tins

mash/5
• Arguments:

?mashed-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-mash, ?mashing-tool

• Intended Meaning:
Obtain ?mashed-thing by mashing up ?thing-
to-mash using ?mashing-tool. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?mashing-tool defaults to the closest un-
used fork in the kitchen

melt/5

• Arguments:
?melted-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-melt, ?melting-tool

• Intended Meaning:
Obtain ?melted-thing by melting ?thing-to-melt
using ?melting-tool. This melting tool could be
any kind of heating appliance in the kitchen,
ranging from a pan on the stove to a microwave.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

• Default Values:

– ?melting-tool defaults to the closest un-
used microwave in the kitchen

mingle/5

• Arguments:
?mingled-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-mingle, ?mingling-tool

• Intended Meaning:
Obtain ?mingled-thing by mingling ?thing-to-
mingle using ?mingling-tool. Mingling can be
seen as a softer form of mixing in which the
individual components are still kept intact dur-
ing the combination process. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?mingling-tool defaults to the closest un-
used wooden spoon in the kitchen

mix/5

• Arguments:
?mixed-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-mix, ?mixing-tool

• Intended Meaning:
Obtain ?mixed-thing by mixing ?thing-to-mix
using ?mixing-tool. Mixing can be seen as
a form of mixing that is intense enough to
achieve a homogeneous mixture without being
so intense that air bubbles are added during
the mixing process. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the
contextual situation before and after execution
of this predicate.

• Default Values:

– ?mixing-tool defaults to the closest un-
used whisk in the kitchen

40

peel/6

• Arguments:
?peeled-thing, ?peel, ?kitchen-state-out
?kitchen-state-in, ?thing-to-peel, ?peeling-tool

• Intended Meaning:
Obtain ?peeled-thing and its ?peel by peeling
?thing-to-peel using ?peeling-tool. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?peeling-tool defaults to the closest un-
used knife in the kitchen

portion-and-arrange/8

• Arguments:
?portions, ?kitchen-state-out, ?kitchen-state-
in, ?thing-to-portion, ?portion-size-value,
?portion-size-unit, ?placement-pattern,
?container-for-portions

• Intended Meaning:
Obtain ?portions by portioning ?thing-to-
portion into portions that each have a size
specified by ?portion-size-value and ?portion-
size-unit. These portions are placed onto the
container ?container-for-portions following the
?placement-pattern. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the
contextual situation before and after execution
of this predicate.

• Default Values:

– ?placement-pattern defaults to a pattern
in which all portions are evenly spread out
over the container

– ?container-for-portions defaults to the
countertop of the kitchen

– ?portion-size-value and ?portion-size-unit
default to portion sizes that cause an
equal division over the available tins (only
possible in case ?container-for-portions
are muffin tins)

• Constant Arguments:

– ?placement-pattern must be side-to-side,
evenly-spread, or 5-cm-apart

preheat-oven/6

• Arguments:
?preheated-oven, ?kitchen-state-out,
?kitchen-state-in, ?oven, ?temperature-
value, ?temperature-unit

• Intended Meaning:
Obtain ?preheated-oven by changing the set-
tings of the ?oven to reach the tempera-
ture specified by ?temperature-value and
?temperature-unit. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the
contextual situation before and after execution
of this predicate.

• Default Values:

– ?oven defaults to the closest unused oven
in the kitchen

• Constant Arguments:

– ?temperature-value must be a numerical
value

– ?temperature-unit must be degrees-
celsius

refrigerate/7

• Arguments:
?refrigerated-thing, ?kitchen-state-out,
?kitchen-state-in, ?thing-to-refrigerate,
?refrigerator, ?time-value, ?time-unit

• Intended Meaning:
Obtain ?refrigerated-thing by putting ?thing-
to-refrigerate inside ?refrigerator for the dura-
tion specified by ?time-value and ?time-unit.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

• Default Values:

– ?refrigerator defaults to the closest un-
used fridge in the kitchen

– ?time-value and ?time-unit default to one
hour

• Constant Arguments:

– ?time-value must be a numerical value
– ?time-unit must be minute or hour

seed/6

• Arguments:
?seeded-thing, ?seed, ?kitchen-state-out
?kitchen-state-in, ?thing-to-seed, ?seeded-
tool

• Intended Meaning:
Obtain ?seeded-thing and its ?seed by seed-
ing ?thing-to-seed using ?seeding-tool. The ar-
guments ?kitchen-state-in and ?kitchen-state-
out represent the contextual situation before
and after execution of this predicate.

41

• Default Values:

– ?seeding-tool defaults to the closest un-
used knife in the kitchen

separate-eggs/8
• Arguments:

?egg-yolks, egg-whites, ?kitchen-state-out,
?kitchen-state-in, ?eggs, ?container-for-yolks,
?container-for-whites, ?egg-separator

• Intended Meaning:
Obtain ?egg-yolks and egg-whites by using
an ?egg-separator to separate separating the
whole ?eggs into the ?container-for-yolks and
?container-for-whites respectively. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?container-for-yolks defaults to the closest
unused stove in the kitchen

– ?container-for-whites defaults to the clos-
est unused medium bowl in the kitchen
(excluding the one found for ?container-
for-yolks)

– ?egg-separator defaults the closest un-
used egg separator in the kitchen

shake/4
• Arguments:

?shaken-thing, ?kitchen-state-out ?kitchen-
state-in, ?thing-to-shake

• Intended Meaning:
Obtain ?shaken-thing by shaking ?thing-to-
shake to mix its contents, which are gener-
ally liquids, until a homogeneous mixture is
reached. The arguments ?kitchen-state-in and
?kitchen-state-out represent the contextual sit-
uation before and after execution of this predi-
cate.

shape/5
• Arguments:

?shaped-thing, ?kitchen-state-out ?kitchen-
state-in, ?thing-to-shape, ?shape

• Intended Meaning:
Obtain ?shaped-thing by shaping ?thing-to-
shape into the shape specified by ?shape.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

• Constant Arguments:

– ?shape must be ball-shape or crescent-
shape

sift/6

• Arguments:
?sifted-thing, ?kitchen-state-out ?kitchen-
state-in, ?container-to-sift-into, ?thing-to-sift,
?sift

• Intended Meaning:
Obtain ?sifted-thing by using ?sift to sift
?thing-to-sift into the container specified
by ?container-to-sift-into. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

• Default Values:

– ?container-to-sift-into defaults to the clos-
est unused large bowl in the kitchen

– ?sift defaults to the closest unused sift in
the kitchen

spread/6

• Arguments:
?thing-with-spread-on, ?kitchen-state-out,
?kitchen-state-in, ?thing-to-spread-on, ?thing-
to-spread, ?spreading-tool

• Intended Meaning:
Obtain ?thing-with-spread by spreading
?thing-to-spread on ?thing-to-spread-on using
spreading-tool. The arguments ?kitchen-
state-in and ?kitchen-state-out represent the
contextual situation before and after execution
of this predicate.

• Default Values:

– ?spreading-tool defaults to the closest un-
used spatula in the kitchen

sprinkle/5

• Arguments:
?thing-with-sprinkles-on, ?kitchen-state-out,
?kitchen-state-in, ?thing-to-sprinkle-on, ?sprin-
kles

• Intended Meaning:
Obtain ?thing-with-sprinkles-on by sprinkling
?sprinkles onto ?thing-to-sprinkle-on. The ar-
guments ?kitchen-state-in and ?kitchen-state-
out represent the contextual situation before
and after execution of this predicate.

transfer-contents/8

• Arguments:
?container-with-transferred-contents,

42

?container-with-rest-of-contents, ?kitchen-
state-out, ?kitchen-state-in, ?container-to-
transfer-contents-to, ?container-with-contents-
to-transfer, ?value-of-transfer-amount,
?unit-of-transfer-amount

• Intended Meaning:
Obtain ?container-with-transferred-contents
and ?container-with-rest-of-contents by trans-
ferring an amount (specified by ?value-of-
transfer-amount and ?unit-of-transfer-amount)
of the container ?container-with-contents-to-
transfer ’s contents into ?container-to-transfer-
contents-to leaving the remaining contents in
?container-with-rest-of-contents. The argu-
ments ?kitchen-state-in and ?kitchen-state-out
represent the contextual situation before and
after execution of this predicate.

• Default Values:

– ?container-to-transfer-contents-to de-
faults to the closest unused large bowl in
the kitchen

– value-of-transfer-amount and unit-of-
transfer-amount default to an amount
for which all contents are transferred,
effectively emptying the original container

• Constant Arguments:

– ?value-of-transfer-amount must be a nu-
merical value

– ?unit-of-transfer-amount must be piece, g,
teaspoon, tablespoon, ml, or percent

transfer-items/6

• Arguments:
?transferred-items, ?kitchen-state-out,
?kitchen-state-in, ?items-to-transfer,
?placement-pattern, ?destination

• Intended Meaning:
Obtain ?transferred-items by carefully transfer-
ring all items from ?items-to-transfer to ?des-
tination and placing them there according to
the pattern specified by ?placement-pattern.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

• Default Values:

– ?placement-pattern defaults to a pattern
in which the available location is filled up
from side to side by creating rows of items
one at a time in which items are placed
next to each other.

uncover/5

• Arguments:
?uncovered-thing, ?cover ?kitchen-state-out,
?kitchen-state-in, ?covered-thing

• Intended Meaning:
Obtain ?uncovered-thing and its prior ?cover
by removing the cover from ?covered-thing.
The arguments ?kitchen-state-in and ?kitchen-
state-out represent the contextual situation be-
fore and after execution of this predicate.

wash/4

• Arguments:
?washed-thing, ?kitchen-state-out, ?kitchen-
state-in, ?thing-to-wash

• Intended Meaning:
Obtain ?washed-thing by rinsing off or wash-
ing ?thing-to-wash with water. The arguments
?kitchen-state-in and ?kitchen-state-out repre-
sent the contextual situation before and after
execution of this predicate.

	Introduction
	The Recipe Execution Benchmark
	Kitchen States
	Cooking Ontology
	Recipes
	Procedural Semantic Representation Language
	Simulation
	Qualitative Simulation
	Quantitative Simulation

	Evaluation Procedure
	Dish Approximation Score
	Smatch Score
	Recipe Execution Time
	Evaluation Tool

	Illustrative Example
	Benchmarks for Recipe Execution
	Semantic Parsing for Recipes
	Systems for Recipe Execution

	Conclusion
	Acknowledgements
	Bibliographical References
	Initial Kitchen State
	Cooking Ontology
	Recipe Corpus
	Cooking Actions

