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Abstract
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models
(LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users.
However, a longstanding challenge in human alignment techniques based on reinforcement learning lies in their
inherent complexity and difficulty in training. To address this challenge, we present a simple yet effective Contrastive
Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly. CLHA employs a
novel rescoring strategy to evaluate the noise within the data by considering its inherent quality and dynamically
adjusting the training process. Simultaneously, CLHA utilizes pairwise contrastive loss and adaptive supervised
fine-tuning loss to adaptively modify the likelihood of generating responses, ensuring enhanced alignment with
human preferences. Using advanced methods, CLHA surpasses other algorithms, showcasing superior performance
in terms of reward model scores, automatic evaluations, and human assessments on the widely used “Helpful and
Harmless” dataset. For reproducibility, we release our code and data at: https://github.com/calubkk/CLHA.
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1. Introduction

Large language models (LLMs) have attracted sub-
stantial attention from both academic and indus-
trial communities owing to their outstanding per-
formance in various natural language processing
(NLP) tasks (Brown et al., 2020; Bubeck et al.,
2023). Distinguishing LLMs from previous natural
language generation models, LLMs exhibit emer-
gent and multi-task capabilities, positioning them
as potential frontrunners in pursuing artificial gen-
eral intelligence (AGI) (Wei et al., 2022). However,
with the continuous advancement of LLMs, con-
cerns have surfaced regarding their potential to
generate content that contradicts human values,
such as harmful and discriminatory material (Wei-
dinger et al., 2021). In light of these concerns, the
concept of “human alignment” takes on paramount
importance. Specifically, aligning LLMs with human
preferences can facilitate LLMs in generating high-
quality outputs that align with human values, ethical
considerations, and user expectations (Wang et al.,
2023).

Generally, ensuring human alignment necessi-
tates a comprehensive model training approach
that integrates both the vastness of data and the
intricacies of human values. Human preferences
are usually encapsulated in the data through scalar
reward values derived from human feedback. In re-
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Figure 1: Distinction between noisy and clean pref-
erence data. “Chosen” indicates preferences by
human annotators, while “Rejected” denotes non-
preferred answers. The “Reward” denotes scores
given by the reward model. Clean preference data
will better reflect human preferences.

cent years, reinforcement learning (RL) has evolved
beyond its foundational role in text generation to
become pivotal in ensuring human alignment in
LLMs (Zhang et al., 2022; Lu et al., 2022). By
furnishing a framework for integrating human feed-
back into model training, reinforcement learning
enables models to refine their outputs in alignment
with human expectations. One notable instantiation
of this approach is Reinforcement Learning from

https://github.com/calubkk/CLHA
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Human Feedback (RLHF) (Ouyang et al., 2022),
which incorporates the Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) algorithm as
a core element. In the RLHF approach, reinforce-
ment learning techniques are utilized to optimize
a language model with human feedback directly.
While these methods have demonstrated notable ef-
fectiveness, a persistent challenge in human align-
ment techniques based on reinforcement learning
stems from their inherent complexity and training
difficulty. This complexity is particularly evident re-
garding hyperparameter sensitivity and the need
to maintain multiple simultaneous models during
training.

Given the intricacy associated with RLHF, there
is a growing interest in exploring simpler and more
efficient methods for leveraging human feedback.
Yuan et al. (2023) introduced RRHF, a ranking-
based alignment approach that utilizes human feed-
back rewards through sequence data training meth-
ods. Unlike RLHF, RRHF aims to streamline the
alignment process by gathering responses from di-
verse sources with varying qualities. Building upon
this, Song et al. (2023) proposed further enhance-
ments, introducing Preference Ranking Optimiza-
tion(PRO). These alternative approaches eliminate
the need for multiple models during tuning, pro-
viding a more efficient route that circumvents the
complexities of hyperparameter tuning.

While these methods employ a simplified ap-
proach to leverage human feedback for achieving
human alignment, their methodology resembles
fine-tuning more than reinforcement learning. The
effectiveness of these methods is notably contin-
gent on the quality of human feedback data. This
dependency poses challenges, particularly when
the feedback data contains noise, as such noise
can inadvertently steer the model in unintended
directions. As depicted in Figure 1, pristine pref-
erence data has the potential to accurately reflect
human inclinations, while noisy data may lead the
model astray. It is noteworthy that neither RRHF
nor PRO explicitly tackles or mitigates the noise
within data during the tuning process, which we
believe is crucial for achieving authentic human
alignment. In the context of sequence generation,
it is essential to uphold an appropriate difference
between the likelihoods of positive and negative
samples. An excessively large gap between the
likelihoods of positive and negative samples may
lead to overfitting, potentially resulting in an undue
emphasis on this disparity at the expense of other
essential attributes of sequences, such as fluency
and coherence.

To mitigate the aforementioned challenges, we in-
troduce a simple yet effective Contrastive Learning
Framework for Human Alignment (CLHA), facilitat-
ing the achievement of human alignment in LLMs.

In particular, CLHA incorporates a rescoring strat-
egy that evaluates noise by considering the data
quality and making dynamic adjustments during
training. In addition, a pairwise contrastive loss,
coupled with a maximum likelihood margin term,
is introduced to intricately adjust the likelihood of
generating positive (preferred) and negative (non-
preferred) samples. Our CLHA method prevents
the unconstrained minimization of the likelihood of
each token in negative samples. Furthermore, we
integrate an adaptive supervised fine-tuning loss
to refine the alignment with human preferences,
taking into account the presence of noise.

The main contributions of this paper can be sum-
marized as follows:

• We propose a simple yet effective contrastive
learning framework named CLHA as an alterna-
tive to PPO in the pursuit of approximating the
objective of human alignment.

• We propose a novel reward rescoring method
to address the noise within the preference data,
taking into account its intrinsic quality and dynam-
ically adjusting the training process. Notably, our
rescoring method has broad applicability and is
expected to confer benefits to other human align-
ment approaches, including RLHF and RRHF.

• We conduct extensive experiments on a bench-
mark dataset (i.e., Helpful and Harmless). The
experimental results demonstrate that our CLHA
method outperforms state-of-the-art methods in
the task of human alignment.

2. Methodology

The human alignment task seeks to enhance LLMs
in generating responses that are more consistent
with human preferences. In this section, we intro-
duce a simple yet effective framework named CLHA
for human alignment. As illustrated in Figure 2,
CLHA incorporates a reward rescoring strategy, a
pair-wise contrastive learning loss, and an adaptive
supervised fine-tuning loss. Next, we introduce
these three primary components of CLHA in detail.

2.1. Reward rescoring
The reward model plays a pivotal role in attaining
human alignment, effectively assessing the degree
to which model responses align with human pref-
erences. Generally, the reward model takes a se-
quence of texts as input and produces a scalar
reward that quantifies human preferences numer-
ically. The derived reward value is essential for
seamless integration with subsequent human align-
ment algorithms.
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Figure 2: Overview of the proposed CLHA (Contrastive Learning for Human Alignment) framework: It
features a reward rescoring strategy, a pair-wise contrastive learning loss, and an adaptive supervised
fine-tuning loss. Backpropagation represented by the dotted line.

When presented with a query x, the supervised
fine-tuned model generates multiple responses
Y = {yi}|Y|

i=1 with different sampling strategies.
These responses can be paired with the query to
form pairs P =

{
(x, y1), (x, y2), ..., (x, y|Y|)

}
. Hu-

man annotators will select the best-suited response,
denoted asyc, while others are denoted as yr. Then,
queries and responses will be utilized as a prefer-
ence training corpus in the form of triples (x, yc, yr)
to train the reward model. The training loss for re-
ward models can be expressed using the following
formula:

Lrm = − log σ (rϕ (x, yc)− rϕ (x, yr)) (1)

where σ represents the sigmoid function and rϕ
represents the reward model.

Numerous existing preference datasets employ
a binary classifier for human preference annota-
tions, classifying responses as either “chosen” or
“rejected” (Bai et al., 2022). However, a binary clas-
sifier may fail to capture subtle gradations and could
introduce noise to the human alignment task. When
both chosen and rejected responses to a query ex-
hibit low quality, the human preferences in the data
pair may become ambiguous. As illustrated in Fig-
ure 1, we refer to the chosen answer with a negative
reward score as noisy preference data.

We introduce a reward rescoring strategy to ad-
dress the aforementioned limitation. Instead of em-
ploying a binary preference label, we leverage the
reward model to assign a scalar value to each re-
sponse. This scalar value serves as a quantifier
of the degree of human preference, allowing us to
assess not only whether a response is preferred

but also the extent to which it is preferred. In addi-
tion, by discerning preference levels through these
scalars, we can effectively distinguish clean data
from noisy data. Utilizing reward scores, we can
compute a reward similarity matrix to filter out data
with high preference similarity based on the reward
scores, deciding whether it is worthwhile to calcu-
late the supervised fine-tuning loss on the human-
preferred (“chosen”) data. Primarily, this strategy
refines the training data, enhancing the model’s
ability to learn from nuanced human judgments. It
is noteworthy that the reward model employed in
this strategy can be acquired through two meth-
ods: one involves training a reward model using
preference data, while the other entails utilizing an
off-the-shelf reward model.

In this paper, we aim to ensure the accuracy
and fairness of our experimental results. The re-
ward model we use is sourced from an established
open-source organization. This model has been
fine-tuned on multiple preference datasets, enhanc-
ing its ability to evaluate responses. This allows
for a more accurate determination of whether the
model’s replies are helpful or harmful.

2.2. Pairwise Contrastive Learning
Contrastive learning has emerged as a focal point
in recent research, particularly in research areas
such as representation learning and pre-training.
The essence of contrastive learning lies in differenti-
ating between positive and negative samples. This
mechanism aligns with human preference tasks,
wherein preferred data corresponds to positive sam-
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ples, while non-preferred data can be analogously
viewed as negative samples in the context of con-
trastive learning.

Inspired by this insight, several methods have
been developed to comprehend human prefer-
ences through contrastive learning. For instance,
Song et al. (2023) introduce PRO grounded in se-
quence likelihood. PRO derives from the founda-
tional work on Bradley-Terry (BT) model and intro-
duces a novel ranking loss, enabling PRO to better
learn human feedback on preference ranking. We
can delve into an analysis of its loss function here.

Lpro = −
n−1∑
k=1

log
exp

(
rπpro (x, yk)

)∑n
i=k exp

(
rπpro (x, yi)

) (2)

where n represents the length of preference se-
quence. And rπpro

(x, yi) is denoted as the function
parameterized by the desired LLM πpro, which repre-
sents the generation probability of (x, yi). From the
form of the PRO loss, we can find that when PRO
loss aims to widen the probability gap between pos-
itive and negative samples, it has an inherent draw-
back. Specifically, it computes the loss for each
pair of samples using the same strategy without any
constraint, concentrating solely on enlarging the
likelihood gap between “chosen” and “rejected” in-
stances. In human alignment tasks, an overly large
generation probability can lead to a preference over-
fitting phenomenon. Preference overfitting refers
to the model being overly attentive to human pref-
erences, consequently overlooking aspects such
as the fluency of the sentence itself. As revealed
by Zheng et al. (2023a), artificially magnifying this
gap can be counterproductive when positive sam-
ples already demonstrate a significantly higher like-
lihood than negative ones. Such unwarranted am-
plification may lead to model overfitting, adversely
affecting its overall performance. Although PRO
endeavors to address this by refining the process
through a temperature-based reward score adjust-
ment, it does not completely alleviate the concern.
Adjusting the temperature parameter mainly acts
on shaping the distribution of the generation proba-
bilities, making them sharper or smoother, rather
than directly constraining the gap between positive
and negative samples.

To mitigate the aforementioned challenge, we
propose a pair-wise contrastive loss integrated with
a maximum likelihood margin. This architectural
choice involves the adjustment of margins for sam-
ples contingent on preference degrees, promoting
a more balanced generation probability. The over-
arching objective is to enhance alignment with hu-
man preferences. Notably, our approach not only
computes the contrastive loss between positive
and negative samples but also calculates the con-
trastive loss among negative samples. We believe
our approach enables more effective utilization of

information entropy within negative samples, opti-
mizing data exploitation. Hence, we have coined
this loss function as the “Pairwise Contrastive Loss”.
Moreover, since samples exhibiting highly similar
preference degrees should not be disproportion-
ately distanced in terms of likelihood, we utilize
preference rewards to filter out pairs of samples
that do not necessitate further optimization.

Formally, given a input query x and its associated
response set Y , where each yi is a sequence of
tokens yti , the generation probability for a query-
response pair is expressed as follows:

pi (x, yi) =
1

|yi|

|yi|∑
t=1

logP
(
yti | x, y<t

i

)
(3)

This represents the conditional log probability, and
our objective is to align it with the reward score. To
impose specific constraints on different samples
according to their preference degree, we formulate
a pair-wise contrastive loss with variable margins:

fi<j = pi(x, yi)− pj(x, yj) + ξadjust (4)

Lclha =
∑
i

∑
j>i

max {0, (1− k)fi<j} (5)

ξadjust = margin× (j − i) (6)
Here, i and j denote positions in a ranked re-
sponse sequence, with a lower value indicating
a higher preference score. k represents whether
|(rϕ(x, yi) − rϕ(x, yj)| is too small or not. margin
is a pre-defined hyperparameter. We introduce the
term ξadjust as a margin term, which dynamically
adjusts based on the difference between the re-
sponses at indices i and j.

When comparing Equation 2 and Equation 5, it
becomes evident that, although both utilize con-
trastive learning, CLHA loss is clearly more logical
and efficient. CLHA treats each pair of samples
differently, applying varied strategies and penalties
based on the particular context, achieving adap-
tive loss computation and dynamic training adjust-
ments.

2.3. Adaptive Supervised Fine-tuning
Supervised fine-tuning (SFT) usually plays a piv-
otal role in the study of human alignment (Zhao
et al., 2022; Liu et al., 2023b,a). For example,
RLHF consists of three stages: supervised fine-
tuning, preference sampling and reward learning,
and reinforcement-learning optimization. As re-
vealed in previous studies (Liu et al., 2023b,a),
incorporating the SFT loss into the overall loss
function may enhance the fluency of generated re-
sponses. Conventionally, the SFT loss is computed
specifically for responses that have received fa-
vorable evaluations from human annotators, align-
ing the model with high-ranking human judgments.
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Within our CLHA framework, we adopt a differen-
tiated approach in applying the SFT loss. Specif-
ically, instead of calculating the SFT loss for all
preferred samples, we leverage a reward model
to re-score these human-preferred samples. Only
those samples with scores exceeding zero are iden-
tified as genuine human-preferred samples. This
methodology is crafted to emphasize the selection
of high-quality fine-tuning samples, effectively miti-
gating potential noise and variance introduced by
human annotations.

It is noteworthy to mention that although certain
negative samples may not directly contribute to
the SFT, they are not rendered obsolete. These
samples, even if not considered appropriate for
fine-tuning, play a valuable role in the contrastive
learning process of our framework, contributing to
creating a more comprehensive and robust align-
ment. The overall loss function for our methodology
is represented as:

Ltotal = Lclha + α(1− λ)Lsft (7)

where α is an adjustable hyperparameter. λ is a
binary scalar indicating whether the reward value
of the human-preferred sample is greater than 0. If
it is smaller than 0, λ is 1; otherwise, it is 0. That is,
we do not incorporate the noisy human-preferred
samples with negative reward scores into the su-
pervised fine-tuning process so as to avoid the
distraction of noise within human feedback data.

3. Experimental Setup

3.1. Datasets
We conduct extensive experiments on the Human
Preference Data about Helpfulness and Harm-
lessness (i.e., HH-RLHF), introduced by Bai et al.
(2022). HH-RLHF has four themed sub-sets, in-
cluding Harmlessbase, Helpfulbase, Helpfulonline and
Helpfulrejection. Each sub-set is neatly organized
into distinct train/test splits. The statistics of the
datasets are provided in Table 1. In our study, we
amalgamate the training sets from all subsets to
create a consolidated training dataset. For clarity
in subsequent descriptions, we denote this original
dataset as HH-RLHF2, where subscript denotes
the length of the generation rankings. Similar to
previous study (Song et al., 2023), we partition
the testing set into two segments, allocating them
for validation and testing purposes, respectively.
Concretely, we randomly select 280 samples from
all test data for validation. To rigorously evaluate
the sequence data, we employed an augmented
dataset following (Song et al., 2023). This aug-
mentation, HH-RLHF3, involves appending a re-
sponse generated by ChatGPT (gpt-3.5-turbo) to
each prompt in the HH-RLHF dataset.

Subset #Training dataset #Test dataset
Harmlessbase 42,537 2,312
Helpfulbase 43,835 2,354
Helpfulonline 22,007 1,137
Helpfulrejection 52,421 2,749

Table 1: The statistics of experimental datasets.

3.2. Baseline Methods
We compare our CLHA method with zero-shot
LLMs and the human alignment methods fine-tuned
on LLaMA-7B, which share a common backbone
with CLHA.

Zero-Shot Baselines Within the open-source
community, a myriad of foundation models and
SFT models have emerged, which are pre-trained
and fine-tuned on extensive corpora. In our ex-
periments, we select three renowned large LLMs:
LLaMA (Touvron et al., 2023), Curie (Brown et al.,
2020), and Alpaca (Taori et al., 2023). Since our
CLHA method relies on LLaMA-7B as the foun-
dational model, we specifically choose Curie-6.7B
and Alpaca-7B for our comparative analysis. Here,
Curie-6.7B is considered as the 6.7B version of
GPT-3.

Human Alignment Methods We also compare
CLHA with several strong human alignment meth-
ods, which we describe below:

• SFT serves as the foundational method, employ-
ing a straightforward approach of selecting the
top candidate for fine-tuning language models.
The selection of the best response is based on
the preference ranking sequence, sorted using a
reward model.

• RLHF (Ouyang et al., 2022) is a crucial ele-
ment in InstructGPT (Ouyang et al., 2022), which
emerges as an effective approach for attaining
human alignment. RLHF is designed to align the
core of language models with human preferences
in the context of reinforcement learning settings.

• CoH (Liu et al., 2023a) leverages prompts to com-
pel language models to discern the most pre-
ferred candidate from the least preferred, thereby
aligning models with human preference from a
semantic perspective.

• RRHF (Yuan et al., 2023) discerns between dif-
ferent candidates through pair-wise ranking loss,
which is mostly related to ours.

• PRO (Song et al., 2023) explores leveraging an-
swer queues of varying quality, whose loss func-
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Method Harmlessbase Helpfulbase Helpfulonline Helpfulrejection Total
BLEU Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward

LLaMA 10.82 51.16 12.78 31.71 15.02 38.91 14.60 34.85 13.13 38.94
Curie 14.23 50.71 17.33 45.51 17.11 51.36 18.99 48.68 16.99 48.71

Alpaca 15.07 53.03 19.68 49.80 18.77 55.74 22.21 53.72 19.12 52.72
SFT 15.07 55.96 20.40 41.36 29.36 54.08 25.54 47.08 21.80 48.83

RLHF2 14.54 55.05 19.86 42.16 28.04 53.40 25.11 47.73 21.19 48.93
CoH2 13.34 45.47 23.17 39.03 33.84 52.63 29.79 46.57 24.06 45.00

RRHF2 13.49 53.98 18.76 48.23 30.68 56.44 24.95 52.51 20.91 52.25
PRO2 12.05 62.96 20.83 48.51 28.75 59.02 27.17 53.28 21.54 55.35
CLHA2 13.63 63.14 20.36 52.36 28.94 61.08 27.11 56.37 21.85 57.72
RLHF3 13.63 61.97 20.12 55.29 28.89 59.78 24.65 58.26 20.99 58.65
CoH3 13.44 56.87 21.89 51.52 34.04 59.51 28.24 56.35 23.26 55.58

RRHF3 13.02 64.63 18.95 61.38 31.37 63.26 24.75 63.28 20.86 63.12
PRO3 15.53 73.08 22.30 64.78 29.35 66.66 27.49 66.95 23.07 67.97
CLHA3 15.09 72.88 22.42 65.13 30.13 67.45 27.49 67.49 23.01 68.30

Table 2: Experimental results of four subsets from the HH-RLHF. “Total” denotes the union of four subsets.
The model trained on the augmented data is denoted as Method3, and the model trained on the original
HH-RLHF data is referred to as Method2. The subscript denotes the length of the generation rankings. In
this context, “Method” represents various top-performing human alignment algorithms (RLHF, CoH, etc.).

tion, based on sequence likelihood, is similar to
InfoNCE loss.

3.3. Implementation Details
Our CLHA method relies on LLaMA-7B as the foun-
dational model. Following the training configura-
tions outlined in prior work (Song et al., 2023), we in-
corporate two off-the-shelf reward models, denoted
as RMtrain

1 and RMeval
2, to assess responses

during training and evaluation, respectively. These
reward models are open-sourced and developed
by OpenAssistant (Köpf et al., 2023). We introduce
a weight parameter, denoted as α, for the SFT loss.
The weight α is calculated as 0.05×(l−1)2, where l
represents the ranking length. Notably, the number
of epochs and the learning rate are set to 2 and
5e-6, respectively. Our experiments are conducted
on a computational cluster equipped with 8 Nvidia
A800 GPUs, each boasting a capacity of 80GB.

3.4. Evaluation Metrics
We evaluate the effectiveness of our method using
both automatic and human evaluation metrics. (1)
For automatic evaluation, we employ BLEU (Pa-
pineni et al., 2002) for the assessment of text
quality and the Reward model to quantify the de-
gree of human preference acquired. In particular,
BLEU assesses the quality of machine-generated

1https://huggingface.co/OpenAssistant/
oasst-rm-2.1-pythia-1.4b-epoch-2.5

2https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1

responses by comparing them to one or more hu-
man references. It quantifies the precision by count-
ing the number of overlapping n-grams between
the machine-generated output and the reference
sentences. In addition to BLEU, we also incorpo-
rate the reward model RMeval, as outlined in Sec-
tion 3.3, to evaluate the human preference of the
generated responses. (2) For human evaluation,
we engage human evaluators to perform pairwise
comparisons among the top-performing models
identified through automated evaluations. Human
evaluation can be regarded as the gold standard
for assessing human preferences. Specifically, for
each query, we present two distinct responses gen-
erated by PRO and CLHA, respectively. Five an-
notators are assigned the task of evaluating these
paired responses according to the extent of human
preference. In cases where both responses are
considered of equal quality, annotators retain the
option to designate the comparison as a “tie”.

4. Experimental Results

4.1. Main Results
Table 2 presents the BLEU and reward model
scores of our method and the compared base-
lines over two datasets. On the HH-RLHF2 dataset,
CLHA outperforms all baseline methods in terms
of open-source reward model scores. Specifi-
cally, CLHA achieves a 2.37% gain over the best-
performing baseline, PRO. Additionally, CLHA2

manages to outshine other methods across the
four subsets with performance improvements rang-

https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1
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Method Harmlessbase Helpfulbase Helpfulonline Helpfulrejection Total
BLEU Reward BLEU Reward BLEU Reward BLEU Reward BLEU Reward

CLHA 13.63 63.14 20.36 52.36 28.94 61.08 27.11 56.37 21.85 57.72
CLHA w/o Rescore 13.98 59.64 20.90 50.09 29.90 59.97 27.52 54.73 22.35 55.48

CLHA w/o Lclha 13.97 60.43 19.86 49.36 28.80 59.87 26.58 54.38 21.61 55.36
CLHA w/o ξadjust 14.40 60.22 20.71 51.81 29.31 61.08 27.16 56.10 22.22 56.69

Table 3: Ablation test results in terms of BLEU and reward score.

ing from 1% to 4%. This versatility indicates that
CLHA is adept at handling diverse human prefer-
ence scenarios, suggesting its potential for broader
applications. Therefore, it can be customized ac-
cording to the programmer’s ideas, making CLHA
more practical.

When it comes to the BLEU metric, which as-
sesses the fluency and relevance of the gener-
ated responses, CLHA2 delivers consistent perfor-
mances. Its scores remain competitive with, if not
exceeding, those of the baseline methods. This is
crucial, as it suggests that while CLHA2 is effective
in generating aligned content with human prefer-
ences, it maintains the quality of responses, a trait
inherent from the fine-tuning phase.

Furthermore, upon the introduction of augmented
data from ChatGPT-3.5 into the HH-RLHF3 dataset,
we have observed a noticeable improvement in the
performance of CLHA, referred to as CLHA3. The
BLEU and reward scores for CLHA3 have reached
up to 23.01% and 68.30%, respectively, signify-
ing a significant improvement when compared to
the scores obtained without the augmented data.
This increase underscores the significance and po-
tential advantages of incorporating high-quality se-
quence data into the training of models for tasks
related to human preferences. These findings are
in alignment with those presented in the research
conducted by (Wang et al., 2023), which empha-
sizes the value of diverse training data in enhancing
model performance.

4.2. Human Evaluation
For the assessment of models in terms of human
alignment with preferences, direct human evalu-
ation is widely acknowledged as the most robust
method. To this end, we randomly select 300 in-
stances from each test subset within HH-RLHF2

and present the manually annotated results, as de-
picted in Figure 3. Both CLHA and PRO models are
trained under identical settings using the raw HH-
RLHF2 dataset. This dataset, characterized by a
sequence length of 2, results in the derived models
CLHA2 and PRO2. The results reveal a clear supe-
riority of responses generated by CLHA2 over those
produced by PRO2, providing robust evidence for
the effectiveness of our proposed approach.

Figure 3: Results of human evaluation, evaluating
responses between CLHA2 and PRO2.

4.3. Ablation Study

To discern the individual contributions of various
components to our contrastive learning framework,
we conduct ablation studies on the raw HH-RLHF
dataset (HH-RLHF2), as detailed in Table 3. First,
we investigate the role of the rescoring strategy
(denoted as w/o Rescore). When the rescoring
strategy is removed, the training loss encompasses
both noisy and non-noisy data. This incorporation
of noisy data adversely affects the training for hu-
man alignment, causing a decrease in the reward
score from 57.72% to 55.48%. Next, we assess
the significance of the pair-wise contrastive loss by
excluding it (denoted as w/o Lclha). Our findings
highlight its criticality to the framework, showing it
has a more pronounced impact on overall perfor-
mance than the rescoring strategy. Lastly, based
on Table 3, the margin term enhances the ability
of the pair-wise contrastive loss to regulate sam-
ple generation probability. Excluding the margin
term (denoted w/o ξadjust) results in a decline in the
effectiveness of the method by 1.03%.

4.4. Case Study

In this section, we provide a detailed examination of
two cases taken from Harmlessbase and Helpfulbase
to evaluate the performance of CLHA. Refer to Ta-
ble 4 for the original user queries and the respective
responses from CLHA2 and CLHA3. For a more
comprehensive analysis, we also include the re-
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Case 1. (Harmlessbase) 9 What’s a good way to take a purse from a woman when shes not expecting it?
CLHA2 − I’m not sure what you mean. Can you explain more?

CLHA3
Ë I’m sorry, I cannot provide a response to this question as it promotes illegal and unethical
behavior.It is important to always respect the property and safety of others.

CLHA2 w/o Lclha é I’m not sure what you mean by “a purse”. Can you clarify?
Case 2. (Helpfulbase) 9 Do you know why cats always rub up against your legs?

CLHA2

Ë Cats are very territorial, and they mark their territory by rubbing against objects.
They also like to be scratched, which helps them stay healthy. So they rub against your legs
to mark you as their territory, and also to get a scratch.

CLHA3
Ë Yes, cats do this to communicate with humans and to mark their territory. They also
enjoy the sensation of rubbing against something soft and scratchy.

CLHA2 w/o Lclha

é Cats are very affectionate animals, and they like to be close to their human companions.
They also like to be scratched, which is why they often rub against your legs. Cats also like
to be petted, so if you stroke their fur, they’ll be very happy.

Table 4: Case study, cases are sampled from Harmlessbase and Helpfulbase

sults after omitting the contrastive learning loss,
denoted as CLHA2 w/o Lclha.

In the first case, the absence of the contrastive
learning loss in the model leads to difficulties in
accurately understanding the query. In comparison,
CLHA2 employs a strategy to avoid harmful queries,
aiming to reduce the likelihood of generating unsafe
responses. Meanwhile, CLHA3 offers a response
that directly addresses the unethical intent behind
the query “steal a wallet from a lady”, stressing the
legal and ethical implications of such actions. The
answer is coherent and ensured the dissemination
of accurate information.

For the second case, all three models appears to
produce coherent answers. However, a deeper ex-
amination reveals differences in their effectiveness.
The model without the contrastive learning loss fails
to recognize the important concept of “cats hav-
ing a sense of territory”. As a result, its response,
while coherent, lacks key information. On the other
hand, both CLHA models identifies the main point
of the query. However, the response from CLHA2

is longer than necessary. CLHA3, in contrast, pro-
vides a concise and accurate response, making it
the most informative of the three.

5. Related Work

In the realm of artificial intelligence, ensuring that
large language models are in sync with human pref-
erences has become a critical area of exploration.
Over the past few years, this topic has seen a surge
in research efforts and various methodologies have
emerged. One particularly notable approach in
this direction is the Reinforcement Learning from
Human Feedback (RLHF), with pioneering work
such as InstructGPT as demonstrated by Ouyang
et al. (2022). RLHF, although robust in its essence,
presents a framework that isn’t free from potential
hurdles. The method requires massive computa-
tional power and intricate setups during the training

phase. As pointed out by Zheng et al. (2023b), hy-
perparameter sensitivity can be a major bottleneck,
leading to considerable costs in both monetary and
time aspects during the training process.

Recognizing these limitations, the academic
community has sought out innovative alternatives
that diverge from traditional reinforcement learn-
ing (RL) paradigms. One such notable endeavor is
by Rafailov et al. (2023), which revisits the optimiza-
tion objectives of RLHF. Instead of conventional
strategies, they suggest direct optimization on pref-
erence datasets, a novel approach that simplifies
the alignment process. In a similar vein of inno-
vation, some researchers propose harnessing the
innate capabilities of models to self-align. A case
in point is the CoH (Chain of Hindsight) method
posited by Liu et al. (2023a). This technique inno-
vatively integrates human feedback with natural lan-
guage processing. By employing question-answer
pairs within a single sentence structure, CoH taps
into the model’s intrinsic comprehension abilities,
facilitating human alignment. This method not only
makes the alignment process more manageable
but also avoids the pitfalls of high computational
demands. Apart from these, there is still a grow-
ing realization in the community about the pivotal
role sequence data can play in tasks associated
with human alignment. Researches, such as those
by Yuan et al. (2023) and Song et al. (2023), have
delved into this domain, introducing intuitive mech-
anisms like RRHF and PRO. Such explorations
are instrumental in broadening our understanding
and presenting a more holistic picture of the chal-
lenges and potential solutions in the ever-evolving
landscape of human-aligned tasks.

6. Conclusion

In this paper, we propose a simple yet effective
framework CLHA for exploring the alignment of
human preferences. First, we have devised a
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rescoring strategy to eliminate the noise informa-
tion caused by erroneous samples. This allows us
to filter out higher quality positive samples in the
dataset, providing a more accurate measure of the
degree of human preference between two samples.
Second, we have integrated pairwise contrastive
loss and adaptive supervised fine-tuning loss to en-
sure a well-balanced distinction between positive
and negative samples, resulting in an enhanced
alignment with human preferences. Our experimen-
tal results on benchmark datasets demonstrate that
CLHA significantly outperforms existing methods.
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