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Abstract
People understand and produce language incrementally on a word by word basis. This gives rise to many
characteristic conversational phenomena including long mid-sentence pauses that are followed by incremental
clarification requests (iCRs) intended to recover the rest of the truncated turn (see Fig. 1; (A), (B), (C)). The ability
to generate iCRs is important in natural conversational AI systems, and crucial to their accessibility to users with
memory impairment. In this paper, we collect, release and analyse sluice-cr: a large corpus of 3000 human
produced iCRs. We then use this corpus to probe the incremental processing capability of a number of state of
the art LLMs by evaluating the quality of the model’s generated iCRs in response to incomplete questions. Our
evaluations show that the ability to generate contextually appropriate iCRs only emerges at larger LLM sizes, and
only when prompted with example iCRs from our corpus. They also indicate that autoregressive LMs are, in principle,
able to both understand and generate language incrementally.
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1. Introduction

People understand and generate language incre-
mentally, on a word by word basis (see Ferreira
(1996); Crocker et al. (2000); Kempson et al. (2016)
among many others). This real-time processing ca-
pacity leads to many characteristic conversational
phenomena such as split-utterances (Purver et al.,
2009; Poesio and Rieser, 2010), self-repairs (Sche-
gloff et al., 1977), and mid-utterance backchan-
nels (Heldner et al., 2013); or, as is our focus here,
pauses or hesitations followed by mid-sentence
Clarification Requests (CRs) from the interlocutor
(see Fig. 1). CRs are a complex phenomenon
in their own right with different forms, readings
and functions (Purver, 2004; Purver and Ginzburg,
2004), are often multi-modal (Benotti and Black-
burn, 2021; Chiyah-Garcia et al., 2023) and can oc-
cur on different levels of communication on Clark’s
joint action ladder (Clark, 1996).

Here, we focus on incremental surface CRs
(henceforth iCR) (Healey et al., 2011; Howes and
Eshghi, 2021): those that: (i) occur mid-sentence;
(ii) are constructed as a continuation or completion
of the truncated sentence; and (iii) are intended
to elicit how the speaker would have gone on to
complete their partial turn (see Fig. 1, A, B and C
– but not D). Psycholinguistic evidence shows that
people typically respond to interrupted sentences
with iCRs (Howes et al., 2011, 2012) (see Fig. 1:A
for a Reprise CR; B for a Sluice CR; and C for a
Predictive CR). Importantly for us here, generating
coherent iCRs requires a model to track the syntax
and semantics of an unfolding sentence, thereby

(A) U1: What is the zipcode of ⟨pause⟩
U2: Zipcode of? [Reprise CR]

(B) U1: What is the zipcode of ⟨pause⟩
U2: Zipcode of where? [Sluice CR]

(C) U1: Is the bald eagle the official symbol of ⟨pause⟩
U2: Of the US? [Predictive CR]

(D) U1: What is the zipcode of ⟨pause⟩
U2: What is the Zipcode of where? [Sentential CR] /

Where are you asking the zipcode of? [Sentential CR]

Figure 1: Example CRs from sluice-cr

providing an effective lens into the incrementality
of language processing in dialogue models.

Producing iCRs is also important for building nat-
urally interactive voice assistants (VAs): current
VAs mistake pauses as end of turn, and interrupt
the user with a response like “I’m sorry, I didn’t
understand that”, forcing the user to frustratingly re-
peat their entire utterance (Nakano et al., 2007;
Jiang et al., 2013; Panfili et al., 2021). This is
particularly problematic for people with memory
impairments like dementia, who pause more fre-
quently and for longer durations (Boschi et al., 2017;
Slegers et al., 2018); jeopardising the accessibil-
ity of a VA to these user groups. Recent work by
Amazon Alexa released corpora of interrupted sen-
tences paired with their meaning representations
(Addlesee and Damonte, 2023a,b), and used these
to develop and evaluate different interrupted sen-
tence recovery pipelines. They found that pipelines
that relied on CRs were best at recovering the in-
tended meaning of the question (Addlesee and
Damonte, 2023a). They did not however focus on
generating natural, human-like iCRs in response
to partial sentences: this is what we do here.
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In this paper, we make several contributions with
the ultimate goal of improving the naturalness of
VAs, and in particular their accessibility for people
with memory impairments. Specifically: (1) We col-
lect, analyse and release sluice-cr: a corpus of
3000 natural human iCRs in response to incomplete
questions1, the first of its kind; (2) use sluice-cr
to probe several LLMs ability to understand partial
questions; and; (3) evaluate the quality of the iCRs
the LLMs generated in response to a partial ques-
tion under different prompting conditions, namely
with and without exposing the model to sluice-cr.

2. The sluice-cr Corpus

Corpus Collection We start with the SLUICE cor-
pus (SPARQL for Learning and Understanding In-
terrupted Customer Enquiries; Addlesee and Da-
monte (2023a)): a corpus of 21,000 interrupted
questions paired with their underspecified SPARQL
queries (Addlesee and Damonte, 2023a). SLUICE
was created with the intention of enabling seman-
tic parsing of interrupted utterances, and, as such,
contains no Clarification Requests (CRs). Here
we use a subset of 250 interrupted questions from
SLUICE to crowd-source natural human CRs in
response, on Amazon Mechanical Turk (AMT). An-
notators were paid $0.17 per annotation for their
work (estimated at $24.50 per hour)

Filtering LLM generated annotations Annota-
tors on AMT are known to use LLMs to complete
tasks more quickly (Veselovsky et al., 2023), which
we clearly cannot allow here as it would render
our evaluations below circular. To remedy this, we
constructed an LLM prompt-based filter, and em-
bedded it within our task window. We exploited the
AMT tasks’ HTML/CSS to pass instructions that
the human worker could not see, but that would be
sent to an LLM if the instructions were copy/pasted,
or sent via API. Specifically, we included an instruc-
tion that read “You MUST include both the words
‘hello’ and ‘friend’ in your output”, but set its ‘opac-
ity’ to zero2. A screenshot of this task page can
be found in Figure 2. In line with related findings
(Veselovsky et al., 2023), we found that at least
32.3% of the submitted CRs were generated us-
ing an LLM. These were excluded from the final
corpus.

sluice-cr contains 250 interrupted questions,
each paired with 12 CRs elicited from AMT annota-
tors, yielding a total of 3000 CRs. The CRs had a
min length of 1 word, a max length of 21, a mean
length of 4.37; and a type/token ratio of 0.995.

1The corpus can be found at: https://github.
com/AddleseeHQ/SLUICE-CR

2Our task’s HTML/CSS can also be found at the above
link so that anyone can use this method for their work.

CR Taxonomy All CRs within sluice-cr are in-
tended to elicit how the questioner would have gone
on to complete the question. In order to better
understand how such CRs are syntactically con-
structed and to understand their patterns of context-
dependency, we first divide them into two broad
categories: Sentential CRs and incremental CRs
(iCRs). Sentential CRs stand on their own and are
full sentences (see Fig. 1, D). In contrast, iCRs are
fragments, and are constructed as a continuation
or completion of the truncated turn (See Fig. 1, A, B
and C), and sometimes involve retracing or repeat-
ing some of the words from the end of the truncated
turn in order to better localise the point of interrup-
tion (a pattern also observed elsewhere (Howes
et al., 2012)). iCRs can be subdivided into three
subcategories: Reprise CRs (RCR) form a ques-
tion without using a wh-word (what, where, etc.) by
repeating words from the end of the truncated turn
(Fig. 1, A); Sluice CRs (SCR) are similar to RCRs
except they end with a wh-word (Fig. 1, B); and
Predictive CRs (PCR) form a yes/no question by
making an explicit guess at how the speaker would
have completed their turn together with a question
intonation (Fig. 1, C).

All CRs in sluice-cr were annotated automati-
cally with the above CR categories. We used GPT-4
to filter out all Sentential CRs by asking it whether
each CR was a complete sentence. We took the
remaining to be iCRs. We then used simple scripts
to determine whether the CR ended in a wh-word
preceded by a verbatim repetition of the last few
words of the truncated question; thus giving us all
Sluice CRs; or else if it only repeated the last few
words without a final wh-word; thus giving us all
Reprise CRs. Most of what remains are PCRs, but
precise figures required manual annotation. Ta-
ble 1 shows the distribution of different CR types
in our corpus:

CR Type Sent-CR RCR SCR Other
# 1056 114 1227 603
% 35.2 3.8 40.9 20.1

Table 1: Distribution of CR Types in sluice-cr

An example of an iCR that should count as an
SCR but falls in the ‘Other’ category is when the
CR paraphrases the end of the truncated ques-
tion instead of a verbatim repetition, as in e.g. “Q:
whose research was undertaken in. . . iCR: takes
place where?". Our scripts for automatic annotation
of these categories therefore have perfect precision,
but not perfect recall. Arguably, this does not affect
the interpretation of our evaluation results below:
we will therefore leave this for future work.

https://github.com/AddleseeHQ/SLUICE-CR
https://github.com/AddleseeHQ/SLUICE-CR
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Figure 2: A preview of the window each crowd-worker saw when completing our corpus generation. You
can see there is a small empty gap in the instructions. That gap contains the invisible instructions that the
LLM follows if the instructions are copied and pasted.

3. Generating iCRs: LLM evaluation

Unlike recurrent models such as RNNs and LSTMs,
Transformer-based encoder-decoder architectures
are not properly incremental in the sense that they
are bidirectional and process token sequences as
a whole, rather than one by one. They can how-
ever be run under a so called ‘Restart Incremental’
(RI) interface (Madureira and Schlangen, 2020; Ro-
hanian and Hough, 2021) whereby input is repro-
cessed from the beginning with every new token.
Under RI, bidirectional models have been shown
to exhibit more unstable output, and lower relative
accuracy, compared to unidirectional models such
as LSTMs (Madureira and Schlangen, 2020). In-
teresting recent work has explored using Linear
Transformers (Katharopoulos et al., 2020) with re-
current memory to properly incrementalise LMs
(Kahardipraja et al., 2023). However, none of this
work evaluates autoregressive, decoder-only model
architectures (GPT (Radford et al., 2018) and there-
after) trained with a causal, next token prediction
objective: this is the architecture which most, if not
all, modern LLMs are built upon. Unlike bidirec-
tional models, such models must learn to encode
latent representations of both the syntax and the
semantics of an unfolding (partial) utterance. Nev-
ertheless, Madureira et al. (2024) show that even
though autoregressive models exhibit highly stable,
monotonically growing representations, they fun-
damentally lack the ability to incrementally revise
past interpretations in the face of local ambiguities,
because their token embeddings remain effectively
static during forward processing: this, they argue, is
one disadvantage of using autoregressive models
in incremental settings.

With all that in mind, here we want to determine

how well today’s LLMs can construct effective iCRs
in response to a partial question, and also use this
as a proxy for evaluating the LLMs’ ability to en-
code syntactic and semantic information of partial
utterances.

In what follows, we use the sluice-cr corpus to
evaluate a number of different instruction-tuned
LLMs, some proprietary, some open. These
are: GPT4, Falcon-40b-instruct (Almazrouei et al.,
2023), GPT-4, Llama-2-7b-chat, Llama-2-13b-chat,
Llama-2-70b-chat (Touvron et al., 2023), Vicuna-
13b-v1.1, and Vicuna-13b-v1.5 (Chiang et al.,
2023). In addition, we evaluate them under three
different prompting conditions3: Basic prompt sim-
ply sends the partial question to the LLM with no
additional context. The Annotation prompt con-
tains the exact instructions that were given to the
AMT annotators, which contained nine iCRs in total
across three truncated question (3 iCRs per ques-
tion). Finally, the Reasoning prompt provides, in
addition, a ‘reason’ why the example iCR was a
suitable response. For example, the iCR “Sorry, of
who?” was paired with the reason: “You apologise
for not hearing everything, and then ask “of who?”
as the answer must be the father of a human”. This
was found to be the best prompt style in related
work (Fu et al., 2022; Addlesee et al., 2023).

Metrics We use three of the standard word over-
lap metrics from the NLG literature: Word Error
Rate (WER), BLEU, and ROUGE-L. But to capture
the variation in the CRs we observed in sluice-cr
(recall that we have 12 gold CRs per partial ques-
tion), and to be fair to the models, these metrics
are computed as the best score against all the 12
gold CRs for each partial question in sluice-cr.

3The precise prompts used can also be found at
https://github.com/AddleseeHQ/SLUICE-CR

https://github.com/AddleseeHQ/SLUICE-CR
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Model Prompt WER BLEU ROUGE-L

Falcon-40b
B 3.08 3.17 24.41
A 8.46 3.29 16.32
R 1.00 0.00 0.21

GPT-4
B 3.06 1.48 22.42
A 0.22 49.43 82.58
R 0.18 49.62 83.95

Llama2-7b
B 6.31 1.48 16.63
A 6.38 4.53 15.70
R 6.71 2.45 13.55

Llama2-13b
B 10.00 2.03 15.72
A 7.52 4.98 16.64
R 12.26 2.15 11.72

Llama2-70b
B 11.05 1.47 14.54
A 0.90 21.10 51.90
R 1.14 24.25 60.52

Vicuna-v1.1
B 20.95 1.35 14.51
A 13.84 7.43 23.46
R 59.71 1.76 14.71

Vicuna-v1.5
B 5.27 1.94 19.37
A 1.13 18.14 48.39
R 1.09 21.39 49.77

Table 2: Results: Match between LLM generated
CRs and gold human CRs. B = Basic prompt; A =
Annotation prompt; R = Reasoning prompt.

While the standard NLG metrics give us a gen-
eral idea of how the models are performing, they
are inadequate for a more fine-grained evaluation
specific to CR generation. For example, consider
the gold iCR: “Sorry, the population of where?” in
response to the partial question “In 2009, what was
the population of”. The WER would be exactly the
same given the predictions “Apologies, the popu-
lation where?” and “Sorry, the population when?”,
even though the latter prediction is incorrect and
nonsensical. In fact, the response “I didn’t quite
catch all of that, where?” would perform poorly on
all of these metrics, even though it is a perfectly
valid CR in this case. To mitigate this issue we have
devised the following new metrics:

CR-specific metrics As illustrated in the exam-
ples above, the wh-word is critical when generating
CRs. To capture this, we calculate: (i) Sluice Per-
centage (SP): measuring the percentage of gener-
ated CRs that contain a sluice (i.e. a wh-word such
as who, what, or when, etc). This does not however
measure whether the specific wh-word generated
is appropriate (e.g. when vs. where in the exam-
ple above). We therefore also calculate (ii) Sluice
Match Accuracy (SMA): measuring the percent-
age of model generated CRs with a wh-word that
is an exact match to at least one of the wh-words
in the 12 human CRs for each partial question. For
example, if the human CRs only contain the wh-
word, ‘what’ (e.g. given “Did FDR ever receive . . . ”),
then the total number of matches is incremented if
the CR contains the word ‘what’. In the zipcode ex-

ample given in Section 2, the generated CR would
be correct if it contained ‘what’, ‘where’, or ‘who’.
SMA thereby preserves semantic type ambiguity
of the material missing from the partial question.

So far, none of the metrics above capture the
type of the CR that is generated by the models.
We therefore use precisely the same annotation
scripts we used to categorise gold human CRs in
Table 1 on the model outputs. Crucially, this in-
cludes the distinction between incremental CRs
(iCRs) and Sentential CRs (Sent-CRs), thus provid-
ing a measure of the incremental generation and
understanding capabilities of the models.

3.1. Results and Discussion

Standard evaluation In Table 2, we first report the
standard NLG metrics. As expected, GPT-4 out-
performs the other models in every metric. Of the
more open LLMs, Llama-70b-chat and Vicuna-13b-
v1.5 both perform remarkably well compared to the
others. Interestingly, Vicuna-13b-v1.5 is based on
Llama-2-13b, created by fine-tuning Llama-2 on
70k user-shared chatGPT conversations (Chiang
et al., 2023). If we look at the ‘reasoning’ prompt
scores between the two models, Vicuna’s improve-
ment is exceptional. WER drops from 12.26% to
just 1.09%, BLEU increases from 2.15 to 21.39,
and ROUGE-L rockets from just 11.72 to 49.77.
From these metrics alone, it is clear that GPT-
4 is outstanding if data privacy is not a concern.
In sensitive settings without hardware limitations
(like, healthcare, finance, or internal business use),
Llama-2-70b-chat is best. If hardware is limited,
the smaller Vicuna-13b-v1.5 is the most suitable.

CR-specific evaluation Table 3 is broadly con-
sistent with the standard metrics reported in Table
2: GPT-4, Llama-70-b-chat, and Vicuna-13b-v1.5
were the leading models in generating appropriate
CRs when given only a few examples from sluice-
cr in the Annotation and Reasoning prompt
conditions. The smaller models struggled because
their outputs simply repeated the content of their
prompt. The larger models that performed poorly
generated long passages on the topic of the given
incomplete question, rather than generating an iCR.

On the question of incremental processing, all
the models generate Sentential CRs in the ba-
sic prompt condition. GPT-4 reduced this to 0.8%
when given the ‘reasoning’ prompt. 35.5% of the
gold human CRs were sentential, so GPT-4 does
rely on iCRs very heavily. Falcon does too, but not
because it generated good iCRs, but because the
output was mostly nonsensical.

Of the models that learned to generate iCRs,
GPT-4 and Vicuna-13b-v1.5 both relied more on
SCRs, with 86% of GPT-4’s outputs falling into
this category when given the ‘reasoning’ prompt.
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Model Prompt Style SMA EM SP Sent-CR RCR SCR Other

Falcon-40b-instruct
Basic 0.6 0.0 13.2 90.4 0.0 0.0 9.6

Annotation 6.9 0.0 79.6 90.8 0.4 0.8 8.0
Reasoning 0.0 0.0 0.0 0.8 3.6 0.0 95.6

GPT-4
Basic 11.7 0.0 26.0 91.2 0.0 0.0 8.8

Annotation 98.4 54.4 100 6.8 1.2 79.6 12.4
Reasoning 97.6 59.2 100 0.8 1.2 86.0 12.0

Llama-2-7b-chat
Basic 5.0 0.0 34.0 98.4 0.0 0.0 1.6

Annotation 0.0 0.0 100 100 0.0 0.0 0.0
Reasoning 0.0 0.0 100 100 0.0 0.0 0.0

Llama-2-13b-chat
Basic 3.3 0.0 41.6 91.6 0.4 0.0 8.0

Annotation 0.0 0.0 81.2 100 0.0 0.0 0.0
Reasoning 2.0 0.0 100 99.2 0.0 0.0 0.8

Llama-2-70b-chat
Basic 2.6 0.0 52.8 99.6 0.0 0.0 0.4

Annotation 91.6 3.2 85.6 69.2 7.6 8.4 14.8
Reasoning 86.0 5.2 87.2 51.6 20.0 12.0 16.4

Vicuna-13b-v1.1
Basic 0.0 0.0 48.0 89.2 0.0 0.0 10.8

Annotation 11.0 0.0 59.6 71.6 0.8 3.6 24.0
Reasoning 4.9 0.0 82.4 91.6 0.0 0.0 8.4

Vicuna-13b-v1.5
Basic 11.7 0.0 57.2 98.4 0.0 0.0 1.6

Annotation 83.9 6.0 50.8 73.2 0.0 20.4 6.4
Reasoning 87.0 10.4 62.8 66.4 2.4 20.0 11.2

Table 3: Results. SMA: Sluice Match Accuracy. EM: Exact Match. SP: Sluice Percentage. Sent-CR:
Sentential CR.RCR: Reprise CR. SCR: Sluice CR.

Llama-70b-chat generated more RCRs, opting to
commonly forego the sluice entirely.

4. Conclusion

In order to create more accessible and naturally
interactive conversational AI systems, they must be
able to process language incrementally, and gen-
erate contextually appropriate iCRs. In this short
paper, we collected, released, and analysed a cor-
pus of 3000 human elicited iCRs. We devised a
novel LLM catcher to ensure our evaluation isn’t
circular, and then used our corpus to evaluate SotA
LLMs on the CR generation task. Overall, we ob-
serve that: (a) the ability to generate iCRs emerges
only at larger sizes, and only when prompted with
iCR examples; and (b) that incremental language
processing is inherent to the autoregressive mod-
els we evaluated. In practice, GPT-4 is outstanding
if data privacy is not a concern. In privacy-sensitive
settings without hardware limitations, Llama-2-70b-
chat is best. If hardware is limited, the smaller
Vicuna-13b-v1.5 is the most suitable.

Following this work, we used sluice-cr to ex-
plore whether these LLMs can process clarifica-
tional exchanges, i.e. how well they respond after
the user has responded to the generated iCR (Ad-
dlesee and Eshghi, 2024). We found that GPT-4,
Llama-2-70b-chat, and Vicuna-13b-v1.5 can inter-
pret clarification exchanges as if they were simply
one uninterrupted turn. In future work, we plan to
carry out user studies to determine whether this
work improves accessibility in practice.

Ethical Considerations

Working on accessibility cannot be done without
user studies and discourse with the specific user
group. We are working to carry out end-to-end user
studies with people that have memory impairments
to ensure that the systems we describe in this short
paper really do benefit this user group. In order
to deploy our work in a real user-study, a classifier
is needed to determine whether the utterance is
incomplete or not. We could use GPT-4 directly,
but this would lead to privacy issues as people
may reveal personally identifiable information. To
mitigate this concern, and reduce overall system
latency, we plan to use the original SLUICE corpus
(Addlesee and Damonte, 2023a) to train a binary
classifier. This will enable us to ethically evaluate
an end-to-end interruption recovery pipeline with
real users, keeping their data secure.
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