Chinese Sequence Labeling with Semi-Supervised Boundary-Aware
Language Model Pre-training

Longhui Zhang', Dingkun Long, Meishan Zhang'*
Yanzhao Zhang, Pengjun Xie, Min Zhang'

! Harbin Institute of Technology (Shenzhen), Shenzhen, China,
{longhuizhang97,longdingkun1993,zhangyanzhao00,xpjandy}@gmail.com
{zhangmeishan,zhangmin2021}@hit.edu.cn

Abstract

Chinese sequence labeling tasks are heavily reliant on accurate word boundary demarcation. Although current
pre-trained language models (PLMs) have achieved substantial gains on these tasks, they rarely explicitly incorporate
boundary information into the modeling process. An exception to this is BABERT (Jiang et al., 2022), which
incorporates unsupervised statistical boundary information into Chinese BERT’s pre-training objectives. Building upon
this approach, we input supervised high-quality boundary information to enhance BABERT's learning, developing
a semi-supervised boundary-aware PLM. To assess PLMs’ ability to encode boundaries, we introduce a novel
“Boundary Information Metric” that is both simple and effective. This metric allows comparison of different PLMs
without task-specific fine-tuning. Experimental results on Chinese sequence labeling datasets demonstrate that the
improved BABERT variant outperforms the vanilla version, not only on these tasks but also more broadly across a
range of Chinese natural language understanding tasks. Additionally, our proposed metric offers a convenient and
accurate means of evaluating PLMs’ boundary awareness.
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1. Introduction

Sequence labeling is an important task in Chinese
natural language processing (NLP), encompassing
various tasks such as Chinese word segmentation
(CWS), part-of-speech (POS) tagging, and named
entity recognition (NER). These tasks inevitably rely
on boundary identification among various grained
semantic units, which are unavailable from the in-
put Chinese sentences (Emerson, 2005a; Jin and
Chen, 2008). There have been extensive studies
that incorporate different types of boundary informa-
tion into task-specific supervised machine learning
models, i.e., subword-based models (Yang et al.,
2019a; Li et al., 2021), lexicon-enhanced mod-
els (Zhang and Yang, 2018a; Diao et al., 2020a; Liu
et al., 2021a). The results of these studies consis-
tently demonstrate the high effectiveness of explicit
boundary modeling in improving the performance
of sequence labeling tasks in Chinese NLP.
Recently, Chinese PLMs, like BERT (Devlin et al.,
2019), have shown significant success in various
NLP tasks (Wei et al., 2020; Gao et al., 2021;
Zhong and Chen, 2021), including sequence la-
beling (Yang et al., 2017; Jiang et al., 2021). BERT
is efficient in capturing general semantic informa-
tion, but it overlooks boundary information required
for Chinese sequence labeling (Devlin et al., 2019;
Diao et al., 2020b; Cui et al., 2021). Besides, sub-
stantial opportunities remain in research on the
integration of boundary information into PLMs. By
encoding boundary information into PLMs, we can
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potentially improve the performance of PLMs on
various Chinese NLP tasks without task-specific
optimizations, greatly benefiting the Chinese NLP
community.

Chinese BABERT (Jiang et al., 2022) is one of
the few exceptions that inject unsupervised statisti-
cal boundary information into vanilla BERT, result-
ing in considerable performance gains on Chinese
sequence labeling tasks. Nevertheless, BABERT
has a notable limitation: due to the long tail prob-
lem in calculating these unsupervised statistical sig-
nals, the statistical boundary information extracted
from raw mining corpus could be unstable and
low-quality. As such, there is an opportunity to
further improve performance by exploring alterna-
tive sources of higher-quality boundary information
more closely aligned with human intuitions.

Along the line of BABERT, in this work, we
present Semi-BABERT, which supplements super-
vised boundary signals to BABERT. We construct
a large-scale lexicon from open sources, which
serves as a reliable resource for high-quality bound-
ary information. To enhance BABERT pre-training,
we design a span-based boundary recognition
objective based on the boundary information ex-
tracted from the lexicon. Considering that boundary
identification from a lexicon may be incomplete, we
propose the utilization of Positive-Unlabeled learn-
ing (PU learning) (Li and Liu, 2005; Peng et al.,
2019; Hu et al., 2021) to address this limitation and
enable auto-complementation. Additionally, we in-
troduce a practical metric to quantify the potential
of Chinese PLMs in encoding boundaries without
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task-specific fine-tuning, which would be useful in
swiftly assessing the adaptability of PLM to Chi-
nese sequence labeling tasks.

We conduct comprehensive experiments to eval-
uate Semi-BABERT’s capability in Chinese se-
quence labeling, covering various CWS, POS, and
NER datasets. The results consistently demon-
strate that Semi-BABERT improves performance
across all benchmark datasets. In an effort to fur-
ther substantiate the model’s efficacy, we broaden
the scope of our evaluation to other Chinese natural
language processing tasks, such as text classifica-
tion and machine reading comprehension. Simi-
larly, we observe a marked increase in performance
in these tasks, reaffirming the effectiveness of Semi-
BABERT in a series of Chinese language under-
standing tasks. Finally, we present an in-depth
analysis specifically focused on Chinese sequence
labeling tasks. This analysis offers valuable in-
sights into the impact of Semi-BABERT on different
aspects of sequence labeling’.

2. Method

In this section, we first briefly introduce BABERT,
which serves as the foundation for our work. We
then present our Semi-BABERT, which leverages
a lexicon to incorporate large-scale, high-quality
supervised boundary information into BABERT. Fi-
nally, a novel “Boundary Information Metric” is pro-
posed, which can swiftly and efficiently quantify the
model boundary awareness without task-specific
fine-tuning.

2.1. BABERT

As depicted on the left side of Figure 1, BABERT
(Jiang et al., 2022) incorporates unsupervised
statistical boundary information into BERT’s pre-
training process, which consists of three steps.

1) The first step involves constructing a dictio-
nary N to store the statistical boundary informa-
tion. Each entry in the dictionary is a key-value
pair, where the key represents an N-gram g =
{¢1,...,cm} derived from the corpus. The corre-
sponding value comprises three statistical bound-
ary measures: Pointwise Mutual Information (pM1),
Left Entropy (L.E), and Right Entropy (RE).

2) Utilizing the dictionary N, a boundary-aware
representation E = {eq,...,e,} is constructed for
each text x = {¢1, ..., ¢, } in the corpus. This rep-
resentation incorporates the statistical boundary
information.

3) The statistical boundary information is injected
into the model using the unsupervised boundary-

"The source code and pre-trained Semi-BABERT
will be publicly released at http://github.com/
modelscope/adaseq/examples/semibabert.

aware learning pre-training task (UBA task). Addi-
tionally, to capture general semantic information,
BABERT incorporates BERT’s Masked Language
Modeling (MLM) task. Therefore, the overall loss
function for BABERT is defined as follows:

EBABERT = L:MLM + EUBA (1)

The above description provides a high-level
overview of BABERT to facilitate understanding
of our proposed method. For a more comprehen-
sive understanding, one can refer to the original
paper (Jiang et al., 2022).

2.2. Semi-BABERT

To enhance the boundary encoding capability of
PLM, we introduce Semi-BABERT, a novel ap-
proach that incorporates supervised lexicon bound-
ary information into BABERT through a pre-training
task called supervised boundary recognition (SBR
task). As depicted on the right side of Figure 1,
the training of Semi-BABERT consists of several
modules: data source, data processing, and a new
pre-training objective.

Data Source Our data is derived from two key
sources: a knowledge graph and a crowded cor-
pus for pre-training. The knowledge graph pro-
vides supervised lexical boundary information via
rule-based filtering, whereas the crowded corpus
supplies high-quality text data filtered by a large
language model (LLM). Specifically, we employ the
OwnThink Knowledge Graph?, which encompasses
both entity and regular words, providing rich bound-
ary cues. For the crowded corpus, in line with
BABERT (Jiang et al., 2022), we compile a mixed
corpus from Chinese Wikipedia® and Baidu Baike*
for our pre-training. This corpus consists of 3 billion
tokens and 62 million sentences.

Data Preprocessing Data preprocessing plays
a crucial role in ensuring the quality of training data.
Here we describe the two main techniques we em-
ploy for data preprocessing: rule-based lexicon
filtering and LLM-based corpus filtering.

e Rule-based Lexicon Filtering: To ensure lexical
quality, we implement rule-based lexicon filtering,
applying constraints to remove undesirable words.
Specifically, we limit the length of words to 2-4 char-
acters, remove shorter words that are nested or
overlapping with other words, and eliminate words
that contain punctuation marks or English charac-
ters. After applying these filtering rules, we obtain
a lexicon of 30 million words.

2https ://www.ownthink.com
Shttps://zh.wikipedia.org/wiki/
*https://baike.baidu.com/
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Figure 1: The relationship between BERT, BABERT and Semi-BABERT (left) and the supervised boundary

recognition pre-training of Semi-BABERT (right).

e LI M-based Corpus Filtering: The quality of the
pre-training corpus is crucial for the performance
of PLMSs (Liu et al., 2019). In our work, we leverage
the power of LLMs for data cleaning to ensure the
quality of the corpus used for pre-training. LLMs,
thanks to their well pre-training and large-scale pa-
rameters, have demonstrated remarkable success
in various natural language processing tasks (Liang
et al., 2022) and are known to generate high-quality
text (Chen et al., 2023). Therefore, we rely on the
powerful generation capabilities of LLMs for data
cleaning.

To evaluate the text quality in the crowded corpus,
we introduce a task called “Text Quality Evaluation”.
The task prompt P is “IEE R — MEEMTE « Fik
R - BRI T SR (Please generate a
grammatically correct, accurately expressed, and
logically rigorous Chinese text). Given the task
prompt P and a text x = {¢y, ..., ¢, }, we calculate
the text quality score s(P,z) using the following
equation:

1
== Zlogp(ci | c<i, P) (2)

p (¢ | c<i, P) represents the generation probability
of the character ¢; conditioned on the prompt P and
the previous text c.;. We use the Qwen-7B (Bai
et al., 2023) LLM for corpus filtering. To ensure
efficiency, we first deduplicate the corpus and then
evaluate the quality of all sentences in the corpus
using Eqg. 2. Finally, we remove the 10% of the
corpus with the lowest score, thereby retaining 90%.

PU Learning PU learning algorithm (Li and Liu,
2005; Peng et al., 2019) trains a binary classifier f
using only labeled positive examples D,, and a mix-
ture of unlabeled positive and negative examples
D... This algorithm has shown success in distantly

supervised NER (Peng et al., 2019). In PU learn-
ing, the loss function L(f) is defined based on D,
and D,, as follows:

L(f)=ympLy(f) + max{O,E'u(f) -Wpﬁgo(f)} (3)

where ﬁ;)//L(f) represents the loss of an example
r € D, conditioned on an assumed positive (de-
noted as “+”) or negative (denoted as “-”) label. The
function L is a binary cross entropy loss function.
mp and  are the hyperparameters of PU learning.
7p is the pre-estimated ratio of positive examples
within D,,. « is the loss weight of £} (f). The pa-
per (Peng et al., 2019) proves a detailed proof of
Eqg. 3 in the PU learning algorithm.

Boundary Recognition Pre-training To address
the instability and low quality of statistical boundary
information in BABERT, we propose Semi-BABERT,
which incorporates supervised lexicon boundary
information. We introduce a supervised boundary
recognition (SBR) task that aims to identify word
boundaries in text based on the lexicon.

Traditionally, boundary recognition is regarded as
a sequence labeling problem (Xu, 2003; Ding et al.,
2020). However, this approach has two limitations.
Firstly, it cannot handle nested boundaries, such as
the distinction between “F 5" (Nanjing) and “F 5%
i1” (Nanjing City). Secondly, supervision method
heavily relies on lexical comprehensiveness, yet
despite extensive size, the lexicon is unable to en-
compass all boundary information.

For the first drawback, we draw inspiration from
research on structured information extraction (Yu
et al., 2020; Ren et al., 2021) and adopt a span-
based boundary recognition strategy instead of se-
quence labeling. This strategy involves training
a binary classifier to determine whether N-grams
in the text correspond to words. To address the
second limitation, when dealing with an incomplete
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Figure 2: Boundary identification results in the ini-
tial and final stages of the SBR task.

lexicon, we employ PU learning (Li and Liu, 2005;
Peng et al., 2019; Hu et al., 2021) to estimate the
model loss under the ideal complete lexicon, and
gradually expand the lexicon to the ideal complete-
ness through multiple iterations.

In our work, we focus on the span-based bound-
ary recognition task (SBR). Given a lexicon and
all N-grams present in the text, we consider the
N-grams that exist in the lexicon as positive exam-
ples D,, while the remaining N-grams as unlabeled
examples D,,. To train a binary classifier f with PU
learning, we formalize the PU learning algorithm
using Eq. 3. During the training process, this algo-
rithm helps us label the unlabeled N-grams in D,
as follows: If an unlabeled N-gram is predicted as
a positive example by the classifier f consecutively
for k times (k is set to 5), we add the N-gram to
the lexicon in the next iteration. The overall loss
Lser of SBR task and the classifier f are defined
as follows:

Lszr = L(f) ()

f((h;,h;)) = sigmoid(W [h;;h;] +b)
The span-based boundary recognition binary clas-
sifier f is trained to determine whether the N-gram
is a correct boundary. It takes the PLM representa-
tions h; and h; corresponding to the left and right
boundary characters of the N-gram {¢;,...,¢c;} as
input. The classifier predicts the probability that
the N-gram is a word, using a sigmoid activation
function applied to the linear transformation of the
concatenation of h; and h; with weight matrix W
and bias b.

In Figure 2, we demonstrate an example of the
SBR task with PU learning. We consider the text
“Bi T KILKH” (Nanjing Yangtze River Bridge).
In the initial stage, only four words “Bi 5" (Nanjing),
“ii K" (mayor), “KJL” (Yangtze River), and “X#7f”
(Bridge) are included in the lexicon, as shown in
Figure 2(a). However, with the help of PU learning
and multiple iterations of the model, the boundary
information of all N-grams such as “B§ &= " (Nan-
jing City) and “K{LK#” (Yangtze River Bridge)
can be identified and added to the lexicon, as il-

lustrated in Figure 2(b). It is important to note
that we only consider N-grams {c;, ..., c;} where
1 < j —i < 4. Hence, the lower triangle area is
ignored as j —i < 1, and certain parts of the upper
triangle area do not require prediction as j — i > 4.

Pre-training Objective The architecture of Semi-
BABERT, depicted on the left side of Figure 1,
builds upon the foundations of BERT and BABERT.
Therefore, apart from the span-based boundary
recognition task, Semi-BABERT aligns with the
training objectives of these base models. Conse-
quently, the total pre-training loss for Semi-BABERT
can be formulated as follows:

Lsemi-papert = Lurm + Lusa + Lspr (5)

2.3. Boundary Information Metric

Given the close relationship between the bound-
ary awareness capability of PLMs and their perfor-
mance on downstream Chinese sequence labeling
tasks during fine-tuning, it is crucial to evaluate
the boundary awareness capability of these PLMs.
Previous research relied on downstream task per-
formance as an evaluation metric (Liu et al., 2021a;
Jiang et al., 2022). Although this evaluation metric
is valid, it is unintuitive and resource-consuming. To
address this issue and provide a more reasonable
assessment for Chinese PLMs’ boundary aware-
ness, we introduce a novel evaluation metric called
the “Boundary Information Metric” (BIM). This met-
ric can evaluate PLMs’ boundary recognition ability
without task-specific fine-tuning.

We begin by assuming that: an ideal boundary-
aware sentence representation should exhibit
higher similarity between characters within words °.
To quantify the boundary information, we consider
a character ¢ and define any other character within
the same word as a positive sample c¢™, while the
character in a different word is considered to be a
negative sample ¢~. We calculate the similarity be-
tween c and ¢*, denoted as S1M,,,. Similarly, the
similarity between negative samples ¢ and ¢~ is de-
noted as SIM,.,. The BIMis then calculated based
on the difference between SIM,,, and SIM,.,. We
employ the cosine function to calculate the similar-
ity between the vector representations h, h*, and
h™ corresponding to ¢, ¢*, and ¢~, respectively. A
higher BIM indicates a stronger boundary aware-
ness in the model. The final computation process
of BIM can be formulated as:

SIMyps = E  sim(h,ht
P () ~ppos (h.h")
SIMpeg = E sim (h7 h_) (6)
(h,h ™) ~pneg
BIM = STMpos — STMpey

®This assumption is empirically verified in Section 3.4
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Intuitively, the similarity between character pairs
not only depends on whether they are within the
same word but also on their distance from the whole
text. Characters farther apart tend to have lower
similarity. To mitigate the influence of character
distance on the BIM, we constrain the distance be-
tween the negative sample pair (¢, ¢~). Specifically,
we make DIS(c, ¢~) approximately equal to DIS(c,
c*), where DIS notes the distance between char-
acters. Since c and c¢* are within the same word
and are typically close to each other, we restrict the
distance between c and ¢, i.e., the DIS(c, ¢c™) to a
value less than a threshold L. In our works, we set
L to 2. This constraint facilitates accurately quantify
the boundary awareness of PLMs regardless of the
character distance in the text.

3. Experiments

3.1.

In order to assess the effectiveness of Semi-
BABERT for Chinese sequence labeling tasks, we
conduct an extensive evaluation on a total of 13
diverse datasets. These datasets encompass a
range of Chinese NLP tasks, including CWS, POS,
and NER. These tasks are particularly relevant for
evaluating the boundary awareness of PLMs, as
they heavily rely on accurate boundary information.

For the CWS task, we utilize three datasets:
CTB6 (Xue et al., 2005), MSRA, and PKU (Emer-
son, 2005b). For the POS task, we deploy three
different datasets: CTB6 (Xue et al., 2005), UD1,
and UD2 (Nivre et al., 2016; Shao et al., 2017).
Lastly, for NER, we employ a total of seven datasets:
Onto4 (Weischedel et al., 2011), Book (Jia et al.,
2020), News (Jia et al., 2020), Finance (Jia et al.,
2020), MSRA (Levow, 2006a), Resume (Yang et al.,
2019b), and Weibo (Peng and Dredze, 2015, 2016).

Datasets

3.2. Experimental Settings

We conduct pre-training of Semi-BABERT on a
distributed setting using eight NVIDIA Tesla V100
GPUs, each equipped with 32GB memory. The
hyperparameters and configurations of the baseline
PLMs and Semi-BABERT are as follows:

Hyperparameters Following BABERT (Jiang
et al., 2022), during pre-training, we use vanilla
BERT to initialize the weights of Semi-BABERT.
To accommodate different contexts, we pre-train
two variations of Semi-BABERT, namely Semi-
BABERT-base and Semi-BABERT-lite. Semi-
BABERT-lite consists of 6 transformer layers, 8
self-attention heads, a hidden dimension of 512,
and a total of 30 million parameters. In contrast,
Semi-BABERT-base comprises 12 transformer lay-
ers, 12 self-attention heads, a hidden dimension

of 768, and a total of 110 million parameters. For
both variations, we adopt the same training hyper-
parameters: a batch size of 4096, a learning rate of
1e-4, a warmup ratio of 0.1, a maximum sentence
length of 512, and a maximum N-gram length of 4.
In the PU learning equation (Eq. 3), we set 7, to
0.2 and v to 0.5.

Baselines To evaluate the effectiveness of Semi-
BABERT, we compare its performance against
several baseline models, including the following
state-of-the-art approaches: BERT-lite (Devlin
et al., 2019), BERT (Devlin et al., 2019), BERT-
wwm (Cui et al., 2021), ERNIE-Baidu (Sun et al.,
2019), ERNIE-Gram (Xiao et al., 2021), ZEN (Diao
et al., 2020a), NEZHA (Wei et al., 2019), and
BABERT (Jiang et al., 2022).

To ensure a fair and consistent comparison,
we adopt the fine-tuning approach proposed by
BABERT (Jiang et al., 2022), which incorporates
PLMs with a conditional random field (CRF) layer
for sequence labeling. During the inference stage,
we utilize the Viterbi algorithm to generate the op-
timal label sequence. To mitigate the effects of
randomness, we perform fine-tuning using five dif-
ferent random seeds and subsequently average the
results. This process allows us to obtain robust and
reliable performance estimates for Semi-BABERT
and the baselines, enabling a comprehensive and
unbiased comparison.

3.3. Main Results

In this section, we present the fine-tuning results of
Semi-BABERT on 13 sequence labeling tasks, com-
paring it to various baselines. Table 1 summarizes
the results, and we draw the following observations:

(1) Effectiveness of Semi-BABERT: Among mod-
els of the same scale, Semi-BABERT consistently
achieves the highest average performance across
all datasets. Specifically, Semi-BABERT-lite outper-
forms BERT-lite. When compared to the state-of-
the-art BABERT, Semi-BABERT-base exhibits an
average score increase of 0.8 (90.4-89.6) across
all datasets. These results clearly demonstrate that
Semi-BABERT surpasses PLMs of the same size,
emphasizing the significance of supervised bound-
ary information in achieving superior performance.

(2) Importance of boundary information: Apart
from the scale of the training data, boundary infor-
mation plays a crucial role in sequence labeling
tasks. NEZHA, for instance, was pre-trained on
three datasets (Chinese Wikipedia, Baidu Baike,
and Chinese News) with a collective token count of
11 billion, four times larger than our dataset (Wei
et al., 2019). Compared to NEZHA, the average
score of Semi-BABERT with enhanced boundary
information increases by 0.7 (90.3-89.6). Further-
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Model Ccws POS NER AVG
CTB6 MSRA PKU CTB6 UD1 UD2 Onto4 Book News Finance MSRA Resume Weibo Score
BERT-wwm 97.4 983 965 948 955 954 809 762 793 85.0 95.7 95.8 68.6 89.2
ERNIE-Baidu 974 982 963 949 953 951 804 76.6 80.4 86.0 95.1 95.6 70.0 89.3
ERNIE-Gram  97.3 983 964 949 953 952 81.0 772 80.0 85.3 95.8 95.6 68.4 89.3
ZEN 97.3 983 965 948 955 955 80.1 75.7 80.2 85.0 95.2 95.4 66.7 88.9
__NEZHA =~ 975 986 967 950 956 955 817 770 _798 852 _ 966 =957 703 896
BERT 97.3 982 963 947 950 949 81.0 761 79.2 85.3 95.8 95.6 69.6 89.2
BABERT 97.5 984 967 950 957 955 819 768 803 86.9 96.3 95.8 68.3 89.6
Ours 97.4 986 968 952 957 956 822 80.7 819 87.1 96.3 96.0 71.0 90.3
BERT-lite 97.0 98.1 96.1 944 93.7 933 77.2 76.0 791 83.9 93.9 954 64.4 87.9
Ours-lite 97.0 982 964 945 946 944 788 80.1 80.2 84.3 94.4 95.5 65.9 88.8
ChatGPT 94.3 929 931 886 920 921 694 709 804 79.3 90.1 95.7 70.1 85.3

Table 1: Fine-tuning results on Chinese sequence labeling tasks. We report the F1-score on the test set.

cws R SCASEAT 5718 - i TP S0 A1/
W27 . A [TEXT]. HiH:
Please segment the text into words. Output

format is “word1/word2”. Text: [TEXT]. Output:

XN R SR AT A AR, H A
51| % F[Category List] fi i JE = Ftype1:
word1; type2: word”. CA: [TEXT]. Hit:
Please provide part-of-speech tagging for the
following text, where the tag list is [Category
List]. Output format is “type1: word1; type2:
word”. Text: [TEXT]. Output:

HI SR T G T 71 R # SR - B
P “FH1: LA, 20 k2. Kl
[Category List] 3CA: [TEXT]. %ith:

Please list all entities in the text that fit the
following category. Output format is “type1:
entity1; type2: entity2;”. Category: [Category
List]. Text: [TEXT]. Output:

POS

NER

Table 2: ChatGPT prompts for three tasks.

more, despite the limited training data from Resume
and Weibo (Liu et al., 2021a), Semi-BABERT still
outperforms other models. These findings indicate
that the inclusion of boundary information can com-
pensate for the lack of training data.

(3) Importance of model size: The incorporation
of high-quality boundary information enables the
6-layer Semi-BABERT-lite to surpass the 12-layer
BERT on the Book and News datasets of NER task.
However, BERT still maintains an average score 0.4
points higher than Semi-BABERT-lite (89.2-88.8),
underscoring the continued significance of the size
of PLMs, despite the gains made by Semi-BABERT-
lite from incorporating boundary information.

In addition to the Chinese PLMs, LLMs have
also achieved impressive performance in various
tasks (Liang et al., 2022). ChatGPT © is the most
representative among them. To evaluate its perfor-
mance on Chinese sequence labeling tasks, we
conduct further tests. Due to ChatGPT'’s closed-
source setup and large-scale parameters, fine-
tuning it becomes challenging. As a result, we

Shttps://openai.com/blog/chatgpt

PKU Onto4

10 50 100 10 50 100
BERT-wwm 84.7 88.0 888 128 431 594
ERNIE 843 87.0 882 199 43.0 508
ERNIE-Gram 84.0 86.6 88.0 284 459 60.0
NEZHA 844 88.7 89.7 145 441 592
BERT ~~ ~ ~ ~ 84.0 879 882 14.9 42.4 580
BABERT 84.7 89.5 90.0 32.1 46.6 60.6
Ours 85.2 90.5 920 50.8 59.2 64.5
BERT-lite 80.3 84.2 856 128 40.1 57.0
Ours-lite 848 89.6 918 476 57.1 597

Table 3: Few-shot results on PKU (CWS task) and
Onto4 (NER task), using 10, 50, and 100 examples
of the training data.

only test ChatGPT in unsupervised scenarios. The
prompts used for evaluation are provided in Ta-
ble 2. The averages scores in Table 1 demonstrate
that unsupervised ChatGPT remains less effective
than supervised PLMs. Nevertheless, unsuper-
vised ChatGPT exhibited noteworthy progress on
certain datasets. Specifically, unsupervised Chat-
GPT outperforms supervised BERT on the News
and Weibo datasets of the NER task. This outcome
may be attributable to the limited scale of these
datasets (Liu et al., 2021a), which likely provided
inadequate training for the supervised PLMs.

3.4. Analysis

In this section, we provide a comprehensive anal-
ysis of Semi-BABERT from four different perspec-
tives: few-shot setting, probing, BIM evaluation,
and case study.

Few-Shot PLMs have shown great performance
in low-resource scenarios due to their extensive
pre-training. To further investigate the capabilities
of Semi-BABERT, we conduct fine-tuning experi-
ments on various PLMs using 10, 50, and 100 ran-
domly selected examples from the original training
data of PKU (CWS) and Onto4 (NER) datasets.
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PKU UD2 Onto4
BERT-wwm 88.8 55.3 325
ERNIE-Baidu 88.4 55.7 42.2
ERNIE-Gram 87.9 549 329
ZEN 88.7 556 31.8
NEZHA 88.7 559 383

"T "BERT ~  87.4 547 312
BABERT 88.9 56.1 442
Ours 89.2 56.5 45.7

Table 4: The results of fine-tuning with frozen PLM
on PKU (CWS), UD2 (POS) and Onto4 (NER).

Table 3 presents the results of these few-shot
experiments, and it is evident that Semi-BABERT-
base consistently outperforms various baselines
across all few-shot settings. In the 10-shot setting
of Onto4, Semi-BABERT-base achieves a remark-
able score increase of 18.7 (50.8-32.1) points com-
pared to BABERT, showcasing its effectiveness in
low-resource scenarios. Additionally, the 6-layer
Semi-BABERT-lite performs better than any other
12-layer PLMs, except in the 100-shot scenario of
Onto4. These findings highlight the considerable
performance gains attainable by effectively encod-
ing boundary information, particularly in few-shot
situations.

Probing The evaluation method based on full-
parameter fine-tuning primarily assesses the per-
formance of the fine-tuned models rather than the
pre-trained ones. To gain further insights, we adopt
a straightforward approach where the PLMs are
frozen during fine-tuning, and only additional pa-
rameters, such as the CRF layer, are trained. Ta-
ble 4 presents the results obtained using this fine-
tuning method for various PLMs.

Interestingly, under the PLM frozen setting, Semi-
BABERT demonstrates clear advantages over
the full-parameter fine-tuning approach. Specif-
ically, when comparing to BABERT in the full-
parameter fine-tuning scenario (Table 1), Semi-
BABERT achieves improvements of 0.1, 0.1, and
0.3 on the PKU, UD2, and Onto4 datasets, respec-
tively. However, in the PLM frozen scenario (Ta-
ble 4), these improvements are enhanced to 0.3,
0.4, and 1.5, respectively. This significant differ-
ence in performance highlights the effectiveness
of Semi-BABERT’s ability to enhance boundary
awareness during pre-training.

BIM Evaluation In this subsection, we evaluate
the effectiveness of the BIM, a boundary-aware
quantification method that does not require task-
specific fine-tuning. To assess the performance
of BIM, we apply it to various PLMs. As BIM re-
quires sentence segmentation, we conduct experi-
ments on the CTB6 test set (Xue et al., 2005) of the

SIMpos SIMpeg BIM
BERT-wwm 72.0 60.7 11.2
ERNIE-Baidu  78.1 64.5 13.6
ERNIE-Gram 86.2 72.6 13.6
ZEN 81.7 70.6 11.1
NEZHA 48.9 35.1 13.8

"BERT T 676 ~ 571 ~ 105

BABERT 65.2 51.2 14.0
Ours 62.5 47.3 15.2
BERT-lite 59.0 48.6 10.5
Ours-lite 57.8 43.6 14.1

Table 5: SIM,es, SIMpeqy and BIM of various PLMSs.

BEE  KBITFHR (REKE) gane.
SHEEZHT LB B AT oy e FIIE -
Mafia 2., is akin to Grand Theft Auto ;.ne
with an ambiance reminiscent of the prior
movie Gangster Legend o :ec-

Text

BERT BF5 2R BT I (BREEE) gare.
SEVE T LR B AR HIRE -
BABERT BF52 ane B T (BRERE) Gane.
SEE T LB B R R HIBRE -
BFEW2 ane BT WER (BREEE) gane.
SEE T LB B L AT o1 HIPRIE -

Ours

Table 6: Case study on NER task. Red (Blue)
represents correct (incorrect) entities.

Chinese Word Segmentation task, which provides
high-quality word segmentation annotations.

The results, presented in Table 5, demonstrate
that for all models, S1M,,, (the similarity between
characters within words) is consistently higher than
SIMpeqy (the similarity between characters across
word boundaries). This observation validates BIM’s
underlying assumption that character representa-
tions within words tend to be more similar. Addi-
tionally, Semi-BABERT-base consistently achieves
a higher BIM score compared to other PLMs, reaf-
firming its superior boundary awareness.

Two phenomena are surprising: (1) BERT-lite
and BERT yield the same BIM score. (2) Semi-
BABERT-lite achieves a higher BIM score than
the larger-scale BABERT. The results suggest that
the BIM is independent of the model scale, as it
primarily measures boundary awareness of the
model. Consequently, BIM serves as a more accu-
rate quantification method for boundary information
than task-specific fine-tuning.

Case Study To illustrate the clear advantages
of Semi-BABERT over BERT and BABERT, we
present a case study focusing on the NER task,
as shown in Table 6. In this case, BERT, lacking
explicit boundary information, fails to correctly iden-
tify the entities “IF472” (Mafia 2) and “EB# %2
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Model TC MRC AVG
AFQMC TNEWS IFLYTEK OCNLI WSC CSL CMRC ChiD C3 Score
MacBERT 69.9 57.9 60.4 674 747 821 735 795 589 69.4
PERT 736 54.5 57.4 667 761 828 738 802 580 692
NEZHA 73.5 58.5 55.7 69.0 767 826 719 871 752 722
“ERNIE-THU 729 566 ~ 593 680 758 824 730 802 563 694
ERNIE-Baidu  73.1 56.2 60.1 675 758 821 729 800 576 695
K-BERT 73.2 55.9 60.2 678 762 822 727 803 575 696
CKBERT 732 56.4 60.7 685 764 826 736 817 579 70.
© BERT =~ 727 552 595 665 725 818 734 792 579 688
BABERT 71.1 57.1 60.0 656 731 802 713 831 681 700
Ours 73.1 59.4 61.9 685 803 811 739 874 770 736

Table 7: Performance of different PLMs on CLUE benchmarks.

(Gangster Legend). Although BABERT improves
upon BERT by successfully identifying “22 572
(Mafia 2), it still falls short with an incomplete en-
tity. Only Semi-BABERT accurately identifies all
entities and their respective categories. This case
study serves as a compelling demonstration of how
high-quality boundary information can significantly
enhance the performance of models on sequence
labeling tasks.

3.5. Additional Results on CLUE

To assess the broader effectiveness of Semi-
BABERT across various tasks, we conduct exper-
iments on the widely-used CLUE benchmark (Xu
et al., 2020a), specifically focusing on Chinese
text classification (TC) and machine reading com-
prehension (MRC) tasks. The TC task consists
of 6 datasets: AFQMC, TNEWS, IFLYTEK, OC-
NLI, WSC, and CSL. The MRC task comprises 3
datasets: CMRC, ChID, and C3. Following (Zhang
et al., 2022), we use the fine-tuning code provided
by CLUE benchmarks’.

In addition to boundary information, the CLUE
benchmarks also require models to possess signif-
icant knowledge, including structured relational in-
formation in a knowledge graph (Zhang et al., 2022).
Therefore, we compare Semi-BABERT with sev-
eral knowledge-enhanced PLMs, namely ERNIE-
THU (Zhang et al., 2019), ERNIE-Baidu (Sun
et al., 2019), K-BERT (Liu et al., 2020), and CK-
BERT (Zhang et al., 2022).

Table 7 presents the results of various PLMs
on the CLUE benchmark. From an average score
perspective, Semi-BABERT outperforms all PLMs,
highlighting its significant advantage. Given the
complexity of the CLUE benchmarks, knowledge-
enhanced models typically exhibit superior per-
formance compared to models like BERT and
MacBERT. However, Semi-BABERT achieves ex-

"https://github.com/CLUEbenchmark/
CLUE/

ceptional results on this benchmark, even without
additional knowledge information. Notably, Semi-
BABERT surpasses the knowledge-enhanced CK-
BERT (70.1) and NEZHA (72.2), despite the latter
models being pre-trained on larger corpus. This
observation suggests that the inclusion of bound-
ary information can compensate for the absence of
extensive knowledge, demonstrating its compen-
satory effect on model performance.

4. Related Work

PLMs learn sentence representations through pre-
trained tasks on a large-scale corpus. For exam-
ple, BERT (Devlin et al., 2019) proposes two pre-
trained tasks, Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP), to learn bidi-
rectional sentence representation. Recent stud-
ies have explored extensions of the BERT model.
RoBERTa (Liu et al., 2019) used strategies such
as a larger corpus, a dynamic mask mechanism,
and only applying MLM tasks for pre-training. AL-
BERT (Lan et al., 2020) reduced BERT size by
sharing layers parameters and compressing word
embeds. These works have achieved very suc-
cessful results.

However, unlike English, Chinese lacks explicit
word boundary markers such as spaces between
words, posing challenges for PLM-based sequence
labeling tasks such as CWS, POS and NER (Cui
et al., 2021; Wei et al., 2019; Liu et al., 2021a;
Jiang et al., 2022). Recent work explores meth-
ods to incorporate boundary information into Chi-
nese PLMs. For MLM tasks, ERNIE-baidu (Sun
et al., 2019) and BERT-wwm (Cui et al., 2021) ap-
ply three different masking granularities — tokens,
entities, and phrases, allowing the model to learn
coarse-grained boundary information at the word
and phrase levels rather than just at the charac-
ter level. ERNIE-Gram (Xiao et al., 2021) detects
entities and phrases through statistical algorithms.

In the unsupervised approach, BABERT lever-
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ages a large-scale corpus to extract a substantial
amount of statistical boundary information (Jiang
et al.,, 2022). Building upon this unsupervised
boundary information, a specific unsupervised
boundary-aware learning objective is designed.
While these methods successfully introduce bound-
ary information, our paper’s focus lies in combining
the strengths of unsupervised statistical informa-
tion with supervised high-quality information. We
aim to leverage the advantages of both approaches
to enhance the overall performance of the model.

5. Conclusion

This paper introduces Semi-BABERT, a model
specifically designed for Chinese sequence label-
ing tasks. Semi-BABERT incorporates lexicon-
based high-quality boundary information into
BABERT through a span-based boundary recogni-
tion pre-training task. Experimental results on 13
sequence labeling datasets, including tasks such
as CWS, POS, and NER, demonstrate that Semi-
BABERT exhibits stronger boundary awareness
than other PLMs like BABERT. Furthermore, Semi-
BABERT demonstrates broad effectiveness across
various NLP tasks. Additionally, we propose the
Boundary Information Metric (BIM), which accu-
rately quantifies the boundary encoding potential
of Chinese PLMs without task-specific fine-tuning.
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