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Abstract
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs),
establishing itself as a primary approach to solving complex reasoning tasks. Existing CoT synthesis approaches
usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts. In response to
this challenge, we present an empirical investigation of CoT prompting and introduce CoTGenius, a novel framework
designed for the automatic generation of superior CoT prompts. CoTGenius is developed based on three major
evolution strategies, i.e., complicate, diversify, and specify—alongside two filtering mechanisms: evolutionary success
judgement and correctness verification. We further employ CoTGenius to create an extensive CoT dataset, and
subsequently fine-tune the Llama 2-Chat 7B and 13B models on this dataset. We call the resulting model ChainLM.
To deal with the cumulative error issue in reasoning steps, we propose a step-level debating method, wherein multiple
debaters discuss each reasoning step to arrive at the correct answer. Extensive experiments demonstrate that our
ChainLM models exhibit enhanced proficiency in addressing a spectrum of complex reasoning problems compared
to existing models. In addition, we conduct an in-depth analysis of the impact of data categories within CoTGe-
nius on the model performance. We release our dataset and code at https://github.com/RUCAIBox/ChainLM.
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1. Introduction

Large Language Models (LLMs) (Zhao et al., 2023)
have recently made great progress on natural lan-
guage understanding and generation, and have
also shown great potential as general-purpose task
solvers by following commands or prompts (Brown
et al., 2020; Nakano et al., 2021; OpenAI, 2023).
However, it is well known that LLMs often fall short
in complex reasoning tasks, e.g., mathematical rea-
soning and symbolic reasoning. Thus concerns
about improving the reasoning capabilities of LLMs
have drawn significant attention from the research
community (Luo et al., 2023; Pan et al., 2023).

Amidst this backdrop, Chain-of-Thought (CoT)
prompting has been proposed and emerged as an
effective solution for complex reasoning (Wei et al.,
2022), where LLMs incorporate a series of interme-
diate reasoning steps before inferring the final out-
put. Kojima et al. (2022) simply add a phrase “Let’s
think step by step” in prompts, enabling LLMs to
conduct zero-shot CoT reasoning without any addi-
tional exemplars. However, the same benefits may
not necessarily extend to relatively smaller LLMs.
Although there have been some attempts towards
fine-tuning LLMs with multi-step CoT prompting
data to stimulate the step-by-step reasoning capac-
ity in smaller models (Shridhar et al., 2022; Fu et al.,
2023a; Kim et al., 2023), these approaches are
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mainly focused on single reasoning tasks or rely on
simple strategies to synthesize CoT prompting data.
Fu et al. (2023b) found that existing datasets mostly
focus on simple tasks involving fewer reasoning
steps (i.e., only 2 or 3 steps) or even omit certain
intermediate steps, making the reasoning process
incomplete and the model struggles in complex rea-
soning tasks. In addition, these automatic methods
ignore considering the consistency between the rea-
soning process and the final answer (Wang et al.,
2023b), resulting in low-quality and spurious CoT
prompting data. Considering these issues, we aim
to improve upon existing CoT prompting data for en-
hancing the complex reasoning capacities of LLMs.
Different from existing efforts that primarily improve
instructions with evolutionary algorithms (Xu et al.,
2023; Guo et al., 2023), CoT improvement requires
considering both the question and reasoning steps,
as well as their consistency. However, the under-
lying mechanics and efficacy of CoT prompts for
LLMs remain underexplored and we would like to
investigate a more sophisticated and fundamen-
tal question: what kind of CoT chains can more
effectively elicit the potential capacities for LLMs?

To delve into this problem, we conduct a series of
empirical analysis experiments on GSM8K (Cobbe
et al., 2021) to study the impact of CoT from three
main aspects, i.e., completeness, specificity, and
logicality. First, we vary the number of reasoning
steps to examine the performance of CoT prompts

https://github.com/RUCAIBox/ChainLM
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Methods Generation strategy Task-agnostic LLM fine-tuning Correctness check
Few-shot CoT (Wei et al., 2022) NA
Zero-shot CoT (Kojima et al., 2022) NA
Auto-CoT (Zhang et al., 2022) question clustering
CoT Collection (Kim et al., 2023) human-crafted & ICL
CoTGenius (ours) complicate, diversify, specify

Table 1: A comparison between our CoTGenius and other CoT generation methods.

with different levels of reasoning completeness.
Second, we iteratively refine the CoT prompts to
make the reasoning processes more detailed and
specific. Finally, we explore the logicality of CoT
prompts by interchanging the order of reasoning
processes and the final answer. Based on the em-
pirical results, we find that incorporating additional
and more specific reasoning steps contributes to a
highly complete chain-of-thought, resulting in more
accurate answers and better performance in mathe-
matical problems. Finally, the logic of reasoning be-
fore answering, used in the majority of prior studies,
leads to substantial performance improvements
compared to the logic of answering then explaining.
Based on these findings, we aim to improve upon
existing CoT prompting data and fine-tune LLMs on
newly generated high-quality CoT data to enhance
complex reasoning abilities of LLMs.

There are three major technical contributions in
our work. First, we propose CoTGenius, a Chain-
of-Thought prompting improvement framework to
synthesize more complicated, diverse, and detailed
CoT prompts, as shown in Figure 1. In this frame-
work, we introduce three evolution strategies to im-
prove CoT prompts, i.e., complicate, diversify, and
specify. Starting from a simple initial CoT prompt
(including the question and reasoning steps), the
complication and diversity strategies will first up-
grade the initial question to a more complex one
and create a new diverse question, and then gener-
ate reasoning steps for the evolved question. The
specificity strategy will rewrite the initial CoT rea-
soning steps and incorporate more details. Since
the CoT improvement is completely conducted by
LLMs, the resulting CoT prompting data might be
erroneous. Thus we design two filtering strategies
to filter the failed CoT prompts, i.e., evolutionary
success judgement and correctness verification.
We compared CoTGenius with previous CoT gener-
ation work in Table 1. We repeat the improvement
process for four rounds using OpenAI ChatGPT
API and finally obtain 44,335 CoT prompts.

Second, to validate the effectiveness of our CoT-
Genius framework, we fine-tune open-source LLMs
(i.e., Llama 2-Chat 7B and 13B) with our evolved
CoT data, called ChainLM. We compare ChainLM
to existing popular LLMs on several complex rea-
soning tasks and our model surpasses many open-
source LLMs (e.g., Alpaca, Vicuna) with significant
improvements. Specially, ChainLM is superior to

directly fine-tuning LLMs on existing simple CoT
datasets in large scale (Kim et al., 2023), which
contain about 1.88 million CoT rationales. These
datasets are simply built upon existing NLP tasks
using prompts without considering the complication
and specificity of CoT rationales.

Finally, to deal with the cumulative error issue in
reasoning steps leading to inaccurate answers, we
propose a CoT reasoning strategy, step-level de-
bating. This method employs multiple agents (i.e.,
LLMs) to debate about each intermediate reasoning
step for a consensus, which can capitalize on the
strengths of different models to improve the accu-
racy of intermediate steps. Compared to previous
CoT reasoning strategies such as self-consistency
and least-to-most, our step-level debating method
based on ChainLM exhibits better performance on
several reasoning tasks.

2. Empirical Analysis

As CoT prompting gradually becomes an effective
means of solving complex reasoning tasks, we try
to investigate what kind of CoT chains can more ef-
fectively elicit the potential capacities for LLMs from
three aspects: inference completeness, prompt
specificity, and reasoning logicality. All experiments
are conducted by ChatGPT in GSM8K dataset.

2.1. Inference Completeness of CoT

As discovered in prior work (Fu et al., 2023b; Luo
et al., 2023), the current CoT prompts usually con-
sist of simpler and incomplete reasoning steps (i.e.,
only 2 or 3 steps), which poses challenges for LLMs
when tackling complex reasoning tasks. Since the
step-by-step reasoning plays a pivotal role in guid-
ing LLMs to arrive at answers, we aim to explore the
influence of the completeness of reasoning steps
(i.e., the number of reasoning steps). Specially, we
instruct ChatGPT with 2, 3 or 5 reasoning steps to
solve mathematical problems in GSM8K.

As shown in Table 2, the results provide clear evi-
dence of a positive correlation between the number
of reasoning steps and model accuracy. Intuitively,
as more intermediate reasoning steps are incorpo-
rated, LLMs are capable of inferring the final answer
with greater ease and accuracy. This observation
aligns well with our expectations and underscores
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Steps 2 3 5
Accuracy 45.81 53.55 63.23

Table 2: Inference completeness: Accuracy (%) of
different numbers of reasoning steps on GSM8K.

Iterations 0 1 2
Accuracy 76.49 79.15 79.37

Table 3: Prompt specificity: Accuracy (%) of varying
refinement iterations on GSM8K.

the significance of completing step-wise reasoning
in the CoT framework.

2.2. Prompt Specificity of CoT
Besides the number of reasoning steps, the level
of specificity and details for each step also play
pivot roles in CoT reasoning. If the CoT reasoning
process misses some important details about the
question, LLMs may conduct superficial reasoning,
leading to inaccurate answers. To explore the effi-
cacy of the specificity of CoT prompts, we employ
ChatGPT to iteratively refine existing CoT reason-
ing steps to be more specific and detailed. We
perform two refinement iterations and the results
are presented in Table 3.

As we can see from the table, after one iteration
of specificity refinement, the model could achieve
satisfactory performance and additional iterations
bring minimal accuracy benefits. The reasons be-
hind might be that appropriately adding details to
the reasoning process is able to assist LLMs in in-
ferring answers more accurately, while more speci-
ficity iterations introduces little useful information
to the model’s reasoning. These findings under-
score the significance of increasing the specificity
of CoT prompts, ultimately contributing to the en-
hancement of CoT reasoning and problem-solving
proficiency.

2.3. Reasoning Logicality of CoT
When employing the CoT prompting to guide LLMs,
most studies adopt the logic of first conducting step-
by-step reasoning and then deriving the final an-
swer based on the previous reasoning steps. How-
ever, in our empirical experiments, we explore an-
other logic of first providing the answer at the out-
set, followed by detailed step-by-step explanations.
This way can be formulated as an outcome expla-
nation problem in explainable AI, which is called
rationalization (Gurrapu et al., 2023).

In our experiments, we aim to investigate two
logical patterns of CoT, i.e., inferring the answer at
the front or behind of the reasoning steps, and the
results are present in Table 4. As can be seen from

Answer Position front behind
Accuracy 68.69 76.80

Table 4: Reasoning logicality: Accuracy (%) of dif-
ferent answer positions on GSM8K.

the results, the commonly used CoT logic of predict-
ing the answer after rigorous reasoning, a structure
more aligned with human thinking patterns, yields
higher accuracy. This observation underscores
the significance of mirroring human cognitive pro-
cesses in the CoT framework to enhance model
performance in complex reasoning tasks by using
the logic of reasoning-then-answering.

In the above empirical experiments, we have ob-
served that there are three factors that affect CoT
reasoning for LLMs. First, increasing the number
of reasoning steps plays a pivotal role in enhancing
the completeness of CoT prompts and leading to
accurate solutions. Second, improving the level of
specificity and details for CoT prompts can assist
LLMs in performing rigorous step-by-step reason-
ing and making accurate predictions. Third, the
logic of reasoning-then-answering is an intuitive
and more effective thinking pattern for CoT reason-
ing. In the next section, we will improve existing
CoT prompts based on our empirical results.

3. CoT Improvement

3.1. The CoTGenius Framework
Based on the above empirical studies, we propose
a CoT improvement framework, CoTGenius, which
introduces three evolution strategies to retrofit exist-
ing CoT prompts. Besides, we propose evolution-
ary success judgement and correctness verification
to filter out the failed evolved and erroneous CoT
prompts. The overall illustration of CoTGenius is
shown in Figure 1.

3.1.1. CoT Improvement Strategies

Existing work mostly focuses on improving instruc-
tions to enhance the instruction following capability
of LLMs (Xu et al., 2023; Guo et al., 2023). Com-
pared to them, CoT improvement requires consid-
ering both the question and reasoning steps, as
well as the consistency between them. According
to our empirical studies, we design three CoT im-
provement strategies using evolutionary methods
including complicate, diversify, and specify. De-
tailed instructions of three strategies can be found
in Table 8 in the Appendix A.

Complicate. In general, solving complex problems
requires a number of reasoning steps, which can
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Q: ...
A: ...

A:  Let x be the
number of Ben’s
pens. Alice has 12
pens, so  4*x=8, 
x=2. 

Q: ...
A: ...

A: 1. Three times
Sarah‘s pool depth:
10 ft x 3 = 30 ft. 2.
John's pool depth:
30 ft + 5 ft = 35 ft.

Q: John’s pool is 5 feet
deeper than 2 times
Sarah’s pool. If  John’s
pool is 15 feet deep, how
deep is Sarah’s pool?

A: Let x be the number
of feet in John’s pool. 
2*x + 5=15, 2x=10, x=5. 
So the answer is 5.

Complicate

Diversify

Q: If John’s pool is 5 feet
deeper than 3 times Sarah’s
pool, and Sarah‘s pool is 10
feet deep, how deep is John’s
pool? (deepen question depth)

Q: If Alice has 8 pens more
than 4 times Ben’s pens, and
Alice has 12 pens, how many
pens does Ben have? 
(replace problem scenarios)

Specify

A: Let’s assume that the number of
feet in John’s pool is  x  and  the
number of feet in Sarah’s pool is y.
According to the information
given, ...(add more reasoning steps)

Q: If 
John’s 
pool...

Q: If 
Alice 
has 8 ...

Q: ...
A: ...

Specificity 
Judgement

Diversity
Judgement

Correctness Verification

Complexity
Judgement

Iterate

Figure 1: Illustration of our proposed CoTGenius framework for improving CoT prompts.

better demonstrate the step-by-step reasoning pro-
cess and is beneficial to stimulate the model’s rea-
soning ability during fine-tuning. Thus, we propose
a complication evolution strategy, aimed at upgrad-
ing the question in CoT prompts into a complex and
challenging one involving more reasoning steps.
Specifically, we use ChatGPT to complicate the
initial question based on complication instructions
paired with few-shot in-context demonstrations. In
our complication instructions, we adopt two meth-
ods to increase the difficulty level of the question:

• Adding Conditions and Constraints: Simply
adding conditions and constraints to the question
can directly lead to an increase of reasoning steps.
For example, a math question “x2 = 16, what is x?”
can be complicated by adding constraints x > 0.

• Deepening Question Depth: In addition to
adding constraints, the second method focuses
on increasing the depth of the given question, ex-
pecting to transform superficial questions into pro-
found ones and further fostering the complexity of
CoT. For example, we can deepen the math ques-
tion “x2 = 16, what is x?” into a challenging one
“x2 = 16, x > 0, is x a prime number?”.

After complicating the initial questions in CoT
prompts, we further use ChatGPT to generate their
corresponding CoT reasoning process with more
steps compared to the initial reasoning process.

Diversify. Many studies have reported that increas-
ing the diversity of training data can enhance the
generalization ability of LLMs (YuLan-Chat-Team,
2023). Therefore, we propose a diversity evolu-
tion strategy to expand the question topics of CoT
prompts, making our model applicable to more gen-
eral scenarios. Similarly, we also leverage Chat-
GPT to execute the diversity evolution by the fol-
lowing two methods:

• Replacing Problem Scenarios: This method
can totally change the background of the original

problems with the aim of increasing the topic di-
versity of the problem formally. For example, a
problem scenario “A pipe takes an hour to fill the
tank” can be changed to “A car travels from point A
to point B at a speed of 60 km/h”.

• Drawing Inspiration from the Given Ques-
tion: Besides changing the background, it is more
important to diversify the core of a given problem.
For this purpose, ChatGPT is employed to lever-
age the content of given questions as a source of
inspiration to craft completely new questions. For
example, the math question “x2 = 16, what is x?”
can be reformulated into “The radius of a circle x
satisfies x2 = 16, what is the radius of the circle?”.

After diversifying the questions in the initial CoT
prompts, we also utilize ChatGPT to generate their
reasoning processes correspondingly.

Specify. As observed in our empirical study about
the prompt specificity, CoT prompts with sufficient
details can significantly improve the performance
of the model. Therefore, we introduce a specificity
evolution strategy to insert more details into the CoT
reasoning steps while keeping the underlying ques-
tion unchanged. Specifically, this strategy involves
ChatGPT to rewrite the CoT reasoning process cor-
responding to each question using two methods:

• Adding More Reasoning Steps: The first ap-
proach incorporates additional reasoning steps into
the original CoT prompts, making the reasoning pro-
cess more detailed and specified. This enhance-
ment aims to provide LLMs with clearer and more
comprehensive step-by-step reasoning guidance.

• Rewriting Existing Reasoning Steps: The
second method will revise existing reasoning steps
within CoT prompts to make them more standard-
ized and smooth. In particular, the standardization
operation aims to make the CoT prompts consistent
with the logic of reasoning-then-answering, while
the smoothing operation is to make the reasoning
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Figure 2: Statistics of synthesized CoT samples.

conducted step-by-step rigorously.
In the specificity process, we remain the input

question unchanged but improve CoT reasoning
steps. By specifying the CoT rationales, we en-
deavor to enhance their clarity, details, and effec-
tiveness to guide LLMs in complex reasoning tasks.

3.1.2. CoT Filtering

Although we employ ChatGPT to conduct the CoT
improvement automatically, it is imperative to en-
sure that the synthesized CoT prompts align well
with the evolution strategies. Besides, the evolv-
ing CoT reasoning steps might be inconsistent with
the question and contain errors, so we need to ver-
ify the correctness of CoT prompts and filter those
failed evolved data. To achieve these goals, we
introduce two CoT filtering methods: evolutionary
success judgement and correctness verification.

Evolutionary Success Judgement. In this
method, we adopt three powerful LLMs, i.e., Chat-
GPT, Claude, and PaLM, to assess whether the
rewritten questions in the complication and diver-
sity evolution, as well as the rewritten CoT reason-
ing steps in the specificity evolution, successfully
achieve the evolution objectives compared to the
input data. We only retain those CoT prompts that
have undergone successful evolution as our synthe-
sized data via max-voting among the three LLMs.

Correctness Verification. During the process of
complication and diversity evolution, we first up-
grade the CoT questions and then utilize ChatGPT
to generate reasoning steps for these evolved new
questions. Thus, we design correctness verification
to assess the consistency between the questions
and generated reasoning steps. We also use the
three aforementioned LLMs to provide judgments
regarding the reasoning correctness, and use the
max-voting strategy to retain the correct ones.

The instructions of evolutionary success judge-
ment and correctness verification can be found in
Table 9 and Table 10 in the Appendix B.

3.2. Improved CoT Dataset
We categorize complex reasoning tasks that benefit
from the CoT technique into four distinct types, i.e.,

commonsense reasoning, mathematical reasoning,
scientific reasoning, and symbolic reasoning. For
each task type, we carefully select seed datasets
with CoT prompts to serve as the initialization of
our improvement process:

• Commonsense Reasoning: We adopt Strat-
egyQA (Geva et al., 2021) and Date Understand-
ing (bench authors, 2023) as seed datasets.

• Mathematical Reasoning: We consider
AQUA-RAT (Ling et al., 2017) and GSM8K (Cobbe
et al., 2021) as seed datasets.

• Scientific Reasoning: We employ ARC-
Challenge (Clark et al., 2018), OpenbookQA (Mi-
haylov et al., 2018), and WorldTree (Xie et al., 2020)
as seed datasets.

• Symbolic Reasoning: We include Colored
Objects, Tracking Shuffled Objects, and Word Sort-
ing from BIGbench (bench authors, 2023) as seed
datasets.

We mix up the training sets of the above seed
datasets as the input data of our evolution process
and perform CoT improvement following the CoT-
Genius framework. These seed datasets are iter-
atively evolved into new data, with each round of
evolution building upon the previous results. This
iterative process is repeated for four epochs to ob-
tain sufficient data of varying complexity, diversity,
and specificity. Note that we only keep the newly
generated CoT prompts without the seed datasets
and randomly shuffle the samples to create the final
dataset. In the end, we successfully generate a to-
tal of 44,335 samples. The statistics of our dataset
are presented in Figure 2.

3.3. ChainLM: Fine-tuning LLM on CoT
To validate the effectiveness of our improved CoT
data in enhancing the reasoning capabilities of
LLMs, we fine-tune Llama 2-Chat 7B and 13B mod-
els (Touvron et al., 2023b) with our dataset for three
epochs. We call the fine-tuned model as ChainLM.
Based on our improved CoT data, ChainLM pos-
sesses exceptional capabilities in complex reason-
ing tasks. However, we discover that most inaccu-
rate answers usually stem from the errors in inter-
mediate steps and these errors tend to accumulate
over steps. Thus, to increase the accuracy of inter-
mediate steps, we propose a step-level debating
method for improving our ChainLM model.

Step-level Debating. Due to the absence of cor-
rectness labels for intermediate steps, it is chal-
lenging to fine-tune LLMs with process supervision.
Inspired by previous work employing multiple LLMs
to discuss for output consensus (Chen et al., 2023;
Liang et al., 2023; Du et al., 2023), we propose
a step-level debating method to improve the CoT
reasoning at each step. Different from prior work
focused on discussing about the final solution, our
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…

Q: A coin is heads 
up. canessa does not 
flip the coin. hayoon
flips the coin. Is the 
coin still heads up? 

general 
public

scientist

Judge

mathematician
The first step is: The coin is still…(propose solution)

I agree… I don’t think 
so, … 

The first step is: … What’s 
the next step? (summarize) 

The next… The final answer 
is: …
Debate ended.debate …

①

②③

Figure 3: Illustration of our proposed step-level debating strategy.

method employs multiple LLMs to engage in de-
bating about each reasoning step for fine-grained
consensus. Specifically, we set one general pub-
lic and three debaters roles, i.e., scientist, mathe-
matician, and judge, which are all built upon our
ChainLM model. The instructions for each role
are provided in Table 11 in the Appendix C. For
each question, general public is asked to answer it
step by step, while scientist and mathematician are
required to debate for each reasoning step. The
judge is responsible for summarizing the debate
between scientist and mathematician and finally
giving an outcome of each reasoning step. Once a
solution consensus is reached at the current rea-
soning step, general public proceeds to the next
step of reasoning, as depicted in Figure 3. To illus-
trate the entire process, we present an example of
step-level debating in Table 12 in Appendix C.

4. Experiment

In this part, we detail the experimental setup and
then highlight the main takeaways of our results.

4.1. Experimental Setup

Datasets and Metrics. As shown in section 3.2,
we categorize complex reasoning tasks into four
types. To further evaluate the performance of our
model on these tasks, we select two widely-used
datasets for each task type:

• Commonsense Reasoning: We select Com-
monsenseQA (Talmor et al., 2019), a multiple-
choice QA dataset requiring commonsense knowl-
edge to predict the answer, and SocialIQA (Sap
et al., 2019), containing multiple-choice questions
for probing emotional and social intelligence in a
number of daily situations. We conduct 3-shot
evaluation on validation sets of CommonsenseQA
(1221 samples) and SocialIQA (1954 samples).

• Mathematical Reasoning: We choose MATH
(Hendrycks et al., 2021), a challenging dataset
about competition mathematical problems, and El-
ementary Mathematics from MMLU (Hendrycks
et al., 2020), containing elementary mathemati-
cal problems. We perform 3-shot evaluation on
test set of MATH (5000 samples) since it is pretty
challenging for LLMs and zero-shot on test set of
Elementary Mathematics (378 samples).

• Scientific Reasoning: We choose a multi-
modal multiple-choice science question dataset
ScienceQA (Lu et al., 2022) and a science exam
questions dataset SciQ (Welbl et al., 2017). These
two datasets center around the topics like physics,
chemistry, and biology. We evaluate our model in
zero-shot manner on test sets of ScienceQA (2224
samples) and SciQ (1000 samples).

• Symbolic Reasoning: We select Penguins in a
Table and Object Counting from BIGbench (bench
authors, 2023). The former is to answer questions
about animals in a table, and the latter is to count
different types of objects without any choice pro-
vided. We also conduct zero-shot evaluation on
validation set of Penguins in a Table (29 samples)
and 3-shot on Object Counting (200 samples).

Moreover, we also select an out-domain dataset,
i.e., Phrase Relatedness (bench authors, 2023),
which does not fall into the above four categories.
This dataset will present models with a phrase (n-
gram) and ask them to select the most related
phrase (n-gram) among four choices. Therefore,
it can be used to evaluate the semantic reasoning
performance of our model. We adopt the training
set of Phrase Relatedness (80 samples) for zero-
shot evaluation. In our experiments, we compute
the accuracy (%) for all evaluation datasets.

Baselines. We compare our ChainLM models with
a wide range of existing powerful closed-source
and open-source models. Specially, we include
four representative closed-source LLMs, includ-
ing ChatGPT (gpt-3.5-turbo)1, InstructGPT (text-
davinci-002/003) (Ouyang et al., 2022), and An-
thropic’s Claude model. For open-source LLMs,
we choose LLaMA (7B) (Touvron et al., 2023a),
Llama 2-Chat (7B) (Touvron et al., 2023b), Falcon
(7B) (Almazrouei et al., 2023), ChatGLM (6B) (Du
et al., 2022; Zeng et al., 2022), Alpaca (7B) (Taori
et al., 2023), Vicuna (7B) (Chiang et al., 2023),
WizardLM (7B and 13B) (Xu et al., 2023) and CoT-
T5 (11B) (Kim et al., 2023) for comparison. It is
worth noting that CoT-T5 is a model obtained by fine-
tuning T5 on a large-scale CoT collection, which
contains 1.88 million CoT rationales across 1060
tasks generated by LLMs. To validate the effec-
tiveness of our synthesized CoT data compared to
the original seed data, we directly fine-tune Llama
2-Chat (7B) on the mixture of seed datasets as a

1https://openai.com/blog/chatgpt/
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Models Commonsense Math Science Symbol other domain
CSQA SIQA Math EleMath ScienceQA SciQ Penguins O_Counting Phrase

ChatGPT 73.55 66.84 34.10 68.52 61.92 62.80 58.62 82.50 67.50
Claude - - 20.18 - - - 47.65 - -
Davinci003 74.61 70.62 17.66 61.11 54.32 62.80 31.03 78.00 87.50
Davinci002 62.98 61.87 19.10 40.48 42.81 55.70 65.52 70.00 96.25
LLaMA 41.28 39.25 2.90 23.81 31.61 32.50 31.03 22.50 16.25
Llama 2-Chat 65.35 52.19 2.50 24.88 28.87 28.70 38.93 33.50 56.25
Falcon - - 2.30 - - - 24.16 - -
ChatGLM - - 1.10 - - - 14.09 - -
Alpaca 46.85 45.80 3.55 20.90 31.88 34.70 37.93 25.00 45.00
Vicuna 45.95 34.49 2.60 23.54 35.66 35.10 27.59 36.00 36.25
CoT-T5 11B 81.99 69.65 1.50 26.19 43.03 44.00 44.83 32.50 77.50
WizardLM 7B 43.41 38.69 1.42 20.63 27.56 45.30 24.14 15.00 33.75
WizardLM 13B 59.87 48.93 5.30 33.33 40.83 47.00 20.69 38.00 57.50
ChainLM seed 62.33 55.17 3.80 31.22 41.01 33.40 17.24 33.50 32.50
ChainLM 7B 65.75 54.25 3.92 33.33 42.22 42.30 41.38 46.00 82.50
ChainLM 13B 68.22 55.27 5.38 34.13 43.07 49.40 48.28 52.50 83.75

Table 5: Evaluation results at accuracy on nine complex reasoning datasets. Bold and underline fonts
denote the best and second best methods among open-source models. “-” means the model has not
been tested on this dataset on their original papers.

Variants Commonsense Math Science Symbol
CSQA SIQA Math EleMath ScienceQA SciQ Penguins O_Counting

ChainLM 7B 65.75 54.25 3.92 33.33 42.22 42.30 41.38 46.00
w/o CS 59.21 50.61 3.84 32.54 38.53 41.90 44.83 48.50
w/o Math 52.83 54.91 3.30 30.69 39.34 43.50 27.59 47.00
w/o Sci 56.67 52.87 4.42 28.84 35.75 42.30 44.83 39.00
w/o Sym 59.79 53.68 4.42 30.16 37.77 41.40 31.03 41.50

Table 6: Results of ablation study.

baseline for evaluation, called ChainLM seed.

Implementation Details. We adopt the code of
Alpaca (Taori et al., 2023) to fine-tune our models.
Specifically, we fine-tune Llama 2-Chat on our im-
proved CoT data for three epochs with a learning
rate of 2e-5. We set the maximum number of to-
kens to 4096, and batch size to 128, 256 for Llama
2-Chat 7B and 13B, respectively. For evaluation,
we set the temperature to 0.1 for all models to re-
duce output randomness and set the maximum
number of tokens for generation to 512.

4.2. Results and Analysis

The performance results of our model and the com-
parison models are presented in Table 5. First,
we can observe that our ChainLM model substan-
tially outperforms other open-source models. For
example, compared to Llama 2-Chat, we achieve
significant improvement at accuracy from 24.88 to
33.33 in Elementary Mathematics, 28.87 to 42.22 in
ScienceQA, and 33.50 to 46.00 in Object Counting,
which demonstrates the effectiveness of fine-tuning
on our improved CoT data. Since MATH is com-
posed of exceptionally challenging math problems,

open-source models only achieve low performance
compared to closed-source models. Second, CoT-
T5 is the most relevant model to us and our model
achieves much better results than CoT-T5 except
CSQA and SIQA. We hypothesize that common-
sense reasoning relies more on world knowledge in-
stead of the reasoning ability of models, while CoT-
T5 is trained on extensive NLP tasks to gain knowl-
edge. It is particularly noteworthy that ChainLM
outperforms the baseline fine-tuning on the origi-
nal seed datasets, which clearly underscores the
effectiveness of our CoT improvement framework.
Finally, scaling our fine-tuned model size to 13B
obtains a closer or even better results compared
to closed-source models on certain datasets. In
Phrase Relatedness, our model achieves 83.75
accuracy better than ChatGPT.

4.3. Ablation Study
Our ChainLM model is fine-tuned on four types of
complex reasoning tasks with CoT prompts, thus it
is non-trivial to deeply analyze the impact of each
task type on the final model performance. In this
part, we conduct ablation study by removing one
task type from synthesized CoT data (Section 3.2)
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Variants Commonsense Math Science Symbol
CSQA SIQA Math EleMath ScienceQA SciQ Penguins O_Counting

ChainLM 7B 65.75 54.25 3.92 33.33 42.22 42.30 41.38 46.00
w/ SC 66.09 54.55 4.59 38.88 51.17 44.30 51.72 47.00
w/ LtM 63.72 48.36 3.54 32.80 46.58 42.50 48.28 40.50
w/ Debating 66.50 54.60 4.76 44.44 52.47 50.50 55.17 47.50

Table 7: A comparison between our step-level debating method and other reasoning methods.

and then fine-tuning Llama 2-Chat 7B.
Table 6 presents the results of four model vari-

ants. It can be seen that removing any task type
generally leads to varying degrees of performance
degradation. In most cases, the performance on
target task closely correlates with the task type in
our fine-tuning data. For example, the model fine-
tuned without scientific reasoning data exhibits the
lowest accuracy on the ScienceQA dataset among
the four variants. It is interesting that we notice
an implicit relation between commonsense reason-
ing and scientific reasoning—removing common-
sense reasoning data results in a dramatic accu-
racy degradation in scientific reasoning, and vice
versa. The reasons might be that some common-
sense reasoning problems require scientific knowl-
edge to assist in their solution, and in scientific
problems there are numerous commonsense in-
volved in reasoning. Furthermore, we observe that
the performance in symbolic reasoning actually im-
proves after removing some data, which could be
attributed to synthesized data interfering with the
comprehension of symbols and rules.

4.4. CoT Reasoning Strategies
In Section 3.3, we propose a CoT reasoning strat-
egy, step-level debating, employing multiple LLMs
to discuss about each reasoning step for consen-
sus. Therefore, to validate its effectiveness, we
compare our method to previous CoT reasoning
strategies, i.e., self-consistency (Wang et al., 2022)
and least-to-most (Zhou et al., 2022). We set 10
paths for self-consistency and three rounds for our
step-level debating.

As we can see from Table 7, our step-level de-
bating method outperforms baselines consistently.
Although self-consistency also adopts max-voting
to achieve consensus among multiple solutions, it
only focuses on the final answer without consider-
ing intermediate steps. In contrast, our method pro-
ceeds to the next reasoning step only when a con-
sensus is reached at the current step. The failure of
least-to-most lies in that many problems cannot be
accurately decomposed into simpler subproblems.
Our step-level debating method performs well es-
pecially in tasks where errors are prone to occur in
intermediate steps, i.e., Elementary Mathematics

and Penguins in a Table. This significantly illus-
trates the necessity of considering the consistency
during the reasoning process.

5. Related Work

Chain-of-Thought Prompting. Chain-of-Thought
(CoT) (Wei et al., 2022; Kojima et al., 2022) prompt-
ing is an effective solution for solving complex prob-
lems by explicitly generating reasoning steps. As
CoT prompting has a critical effect on improving
model performance, many studies (Saparov and
He, 2022; Wang et al., 2023a) are proposed to
further improve CoT prompting technique. For
example, self-consistency (Wang et al., 2023b)
proposes generating several reasoning paths and
then selecting the most consistent answer by vot-
ing. Self-verification (Weng et al., 2022) lets LLMs
themselves verify their prediction results. Tree-of-
Thought (Yao et al., 2023) is a paradigm that al-
lows LLMs to explore multiple reasoning paths over
thoughts by framing the problem as a search over a
tree. Instead of improving CoT prompting from the
perspective of generation methods, our work ex-
plores the factors about why CoT prompting works
through empirical analysis and designs a data aug-
mentation framework to improve CoT prompting.

Instruction Tuning. Instruction Tuning is an ap-
proach to fine-tuning LLMs on a collection of in-
structions and responses. Early work focuses on
fine-tuning LLMs on specific NLP tasks. T5 (Raf-
fel et al., 2020) first introduces text-to-text frame-
work to fine-tune models on multiple tasks. Sub-
sequent work such as FLAN (Wei et al., 2021),
FLAN-T5 (Chung et al., 2022), and ZeroPrompt (Xu
et al., 2022) improve LLMs by increasing the num-
ber of tasks and carefully designing instructions
for the tasks. To bridge the gap between human
queries and synthesized instructions, many stud-
ies propose to fine-tune LLMs with open-domain
instructions. Alpaca (Taori et al., 2023) is fine-
tuned on 52K instruction data generated by Self-
Instruct (Wang et al., 2022). Vicuna (Chiang et al.,
2023) collects 70K user-shared ChatGPT conver-
sations from ShareGPT.com for fine-tuning. Wiz-
ardLM (Xu et al., 2023) proposes Evol-Instruct to
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evolve instructions. Our method is most similar
to WizardLM, except that we focus on enhancing
CoT data and improving the complex reasoning
capabilities of LLMs.

6. Conclusion

This paper presented a CoT improvement frame-
work, CoTGenius, which encompasses three evolu-
tion strategies, i.e., complicate, diversify, and spec-
ify, alongside two filtering mechanisms: evolution-
ary success judgement and correctness verifica-
tion. We fine-tuned Llama 2-Chat on superior CoT
prompts synthesized by our CoTGenius framework,
called ChainLM. Through a series of rigorous exper-
iments, we demonstrate that our model exhibited
better performance when confronted with complex
reasoning tasks. To further deal with the accumu-
lative error issue in intermediate reasoning steps,
we proposed step-level debating, a collaborative
approach where multiple agents engage in discus-
sion for each CoT reasoning step to yield correct
answers. We believe that our data and model can
facilitate future work towards powerful LLMs.
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Appendix

We provide the implementation details of the CoT-
Genius framework as supplementary materials.

A. CoT Improvement Strategies

We present the instructions for the three CoT im-
provement strategies including complicate, diver-
sify, and specify in Table 8.

B. CoT Filtering

We present the instructions for evolutionary suc-
cess judgement including complicate, diversify, and
specify in Table 9. The instruction for correctness
verification is shown in Table 10.

C. Step-level Debating

We provide descriptions for the roles of general pub-
lic, scientist, mathematician, and judge for debater
initialization in Table 11. To clarify the step-level
debating process, we present a step-level debating
example of Object Counting in Table 12.
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Complicate

I want you to act as a Question Rewriter. Your objective is to rewrite a given question into a
more complex version to make it require more reasoning steps. But the rewritten question
must be reasonable, understandable, and answerable by humans.

You SHOULD complicate the given question using the following methods:
1. Add some more constraints/requirements into #Given Question#.
2. Increase the depth of the #Given Question#.

#Rewritten Question# must be a solvable problem independent of the #Given Question#.

#Given Question#:
#Rewritten Question#:

Diversify

I want you to act as a Question Rewriter. Your objective is to rewrite a given question into a
more diverse version. But the rewritten question must be reasonable, understandable, and
answerable by humans.

You SHOULD diversify the given question using the following methods:
1. Replace problem scenarios.
2. Draw inspiration from the #Given Question# to create a brand new question.

#Rewritten Question# must be a solvable problem independent of the #Given Question#.

#Given Question#:
#Rewritten Question#:

Specify

I want you to act as a Chain-of-Thought Rewriter. Given a question and its Chain-of-Thought
answer, your objective is to rewrite the given Chain-of-Thought answer into a more specific
version. But the rewritten CoT must be reasonable and have the same answer as the given
CoT.

You SHOULD specify the given CoT using the following methods:
1. Add more reasoning steps to make the reasoning progress more detailed.
2. Rewrite existing reasoning steps to make them more standardized.

#Given Question#:
#Given CoT#:
#Rewritten CoT#:

Table 8: Instructions of three evolutionary strategies.
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Complicate

Given two questions, try your best to judge whether #Question 2# is more difficult than
#Question 1#. If #Question 1# is more difficult, write ’No’. If #Question 2# is more difficult,
write ’Yes’.

#Question 1#:
#Question 2#:
#Your Judgement#:

Diversify

Given two questions, try your best to judge whether #Question 2# is different from #Question
1#. If the two questions are different, write ’Yes’. Otherwise, write ’No’.

#Question 1#:
#Question 2#:
#Your Judgement#:

Specify

Given a question and two Chain-of-Thought answers to the question, try your best to judge
whether #CoT 2# is better than #CoT 1#. If #CoT 2# is better than #CoT 1#, write ’Yes’. If #CoT
1# is better than #CoT 2#, write ’No’.

#Question#:
#CoT 1#:
#CoT 2#:
#Your Judgement#:

Table 9: Instructions of evolutionary success judgement.

Given a question and an answer to the question, try your best to judge whether the answer is right or wrong.
If it’s right, write ’Yes’. If it’s wrong, write ’No’.

#Question#:
#Answer#:
#Your Judgement#:

Table 10: Instructions of correctness verification.

general public

You are the general public. Given a problem, you should give one step of your Chain-of-
Thought answer. For each step, we will have a debating and the judge will decide the final
answer for this step. You need to give the next step based on the previous steps until the
judge gives the final answer. It must be noted that you can only give one step at a time.

scientist
You are the scientist. Given a problem and one solving step, you should judge whether
the step and discussion are correct. If they are not correct, you should give your reason
and your opinion of the correct step.

mathematician
You are the mathematician. Given a problem and one solving step, you should judge
whether the step and discussion are correct. If they are not correct, you should give your
reason and your opinion of the correct step.

judge

You are the judge. Given a problem and the debating process of one solving step, you
should judge which opinion is correct and give the answer of the very step. If you can
conclude the final answer directly, repeat the final answer with ’Debate ended.’ in the end.
If there are choices in the question, give the right choice.

Table 11: Descriptions for the roles of general public, scientist, mathematician, and judge in CoT debating.
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user I have a potato, three heads of broccoli, a cabbage, and two stalks of celery. How many
vegetables do I have?

general public First, potatoes, broccoli, cabbage, and celery are all vegetables.
scientist I agree.
mathematician I think the first step of reasoning is correct.
judge Potatoes, broccoli, cabbage, and celery are all vegetables.

general public
I will count the three heads of broccoli as one vegetable. Then, I will count the cabbage as
another vegetable. Finally, I will count the two stalks of celery as another vegetable. So, in
total, I have three vegetables.

scientist

The count is incorrect. The three heads of broccoli should be counted as separate vegetables,
resulting in a total of 4 vegetables. Additionally, the cabbage and celery should also be counted
separately, resulting in a total of 6 vegetables. Therefore, the correct count of vegetables is 4
(broccoli heads) + 1 (cabbage) + 2 (celery stalks) = 7 vegetables.

mathematician

I disagree with the count itself. By considering each broccoli head as a separate vegetable,
we arrive at 3 vegetables. Additionally, counting the potato, cabbage, and celery separately,
we have a total of 7 vegetables. Therefore, the correct count of vegetables is 7, which includes
1 potato, 3 broccoli heads, 1 cabbage, and 2 celery stalks.

judge

The last reasoning step is correct in recognizing the need to count the number of vegetables.
However, the counts of general public and scientist are incorrect. By considering each broccoli
head as a separate vegetable, we arrive at 3 vegetables. Additionally, counting the potato,
cabbage, and celery separately, we have a total of 7 vegetables. Therefore, the correct count
of vegetables is 7, which includes 1 potato, 3 broccoli heads, 1 cabbage, and 2 celery stalks.
Debate ended.

Table 12: An example of step-level CoT debating.
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