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Abstract
The Video-Grounded Dialogue generation (VDG) is a challenging task requiring a comprehensive understanding of
the multi-modal information to produce a pertinent response. However, VDG models may rely on dataset bias as a
shortcut and fail to learn the multi-modal knowledge from both video and audio. Counterfactual reasoning is an
effective method that can estimate and eliminate bias on some special aspects of classification tasks. However,
conventional counterfactual reasoning cannot be applied to VDG tasks directly due to the BPE algorithm. In
this paper, we reformulate the counterfactual reasoning from the information entropy perspective and extend it
from the classification task to the generative task, which can effectively reduce the question-related bias in the
auto-regressive generation task. We design CE-VDG to demonstrate the effectiveness in bias elimination of the
reformulated counterfactual reasoning by using the proposed counterfactual entropy as an external loss. Extensive
experiment results on two popular VDG datasets show the superiority of CE-VDG over the existing baseline method,
demonstrating the effective debiasing capability in our model considering counterfactual entropy.

Keywords: counterfactual reasoning, video-grounded dialogue generation, information entropy

1. Introduction

Video-grounded dialogue generation (VDG) task
aims to develop a system that can establish the
capability to see (i.e., understand video scenes),
listen (i.e., perceive audio state), read (i.e., compre-
hend dialogue), and write (i.e., generate responses)
simultaneously (AlAmri et al., 2019), which is de-
picted in Figure 1. However, despite the recent
advancements, the VDG dataset often contains in-
herent bias, which can cause VDG models to learn
spurious correlations between questions and an-
swers (Liu et al., 2022). To illustrate this problem,
Figure 2 demonstrates the bias distribution example
present in the AVSD-DTSC dataset, which reveals
an extremely unbalanced distribution of counting
questions. It is important to note that this bias may
cause the system to only focus on questions when
answering counting questions, disregarding other
useful information. In extreme cases, even when
the multi-modal information is completely different,
the VDG system consistently generates the same
response because the questions are similar to other
counting questions.

To address this problem, several works have
made an effort to mitigate the spurious correlations
by forcing the model to concentrate more on in-
formation other than the question (Li et al., 2021;
Chen et al., 2023a). However, these methods solely
focus on the video and dialogue history, disregard-
ing any bias in the dataset, which can result in
biased generation. One effective approach to re-
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Q1:is he the only person in this video ?
A1:yes he is alone the whole time

Q5:is he looking in the mirror at all ?
A5:no he does not look in the mirror

…

Video

Audio

Dialogue history

Q: does he do anything else？ 

Question

A: he holds the broom and looks around , then he goes 
and sits on the mini fridge or washer in the pantry.

Expect answer

Figure 1: The demonstration of video-grounded
dialogue generation task.

duce this bias is through counterfactual reasoning.
Niu et al. (2021) introduced the VQA, QA, and VA
models, which utilize different modalities for answer
selection and reduce bias through counterfactual
subtraction. Moreover, counterfactual reasoning
is widely applied in classification tasks, such as
scene graph generation (Tang et al., 2020), multi-
modal fake news detection (Chen et al., 2023b),
and multi-modal sentiment analysis (Sun et al.,
2022). However, the conventional counterfactual
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Figure 2: The bias training and inference in AVSD-DSTC when the question type is counting number. As
shown in the answer semantic histogram, even though the system becomes aware of the correct answer
“four" through model training using semantic information from video, audio, and dialogue history, there is
still a significant bias that leads the system to answer “one" during inference.

reasoning method, typically used in classification
tasks as Pfinal = PA−PB , cannot directly apply to
the VDG task due to the byte pair encoding (BPE)
algorithm (Gage, 1994). Although the BPE can re-
duce computation costs by dividing the words into
different common byte pairs, it also brings inherent
context correlation, such as the high probability of
the ‘llo’ after ‘he’ in ‘hello’. However, the inherent
correlation will be drastically reduced by conven-
tional counterfactual reasoning for the probabilities
of the two models are both high in the same context
and the entire generated sentence will deviate from
the ground truth.

In this paper, we propose a new approach to
counterfactual reasoning using information entropy.
We introduce modifications to the total indirect ef-
fect (TIE). By applying this reformulated counter-
factual reasoning algorithm, we extend the conven-
tional classification task to auto-regressive gener-
ation tasks. By incorporating this formulation into
generative tasks, counterfactual reasoning can ef-
fectively reduce bias related to questions in the
dataset. This is achieved by eliminating spurious
causal effects and leveraging multimodal informa-
tion. To demonstrate the effectiveness of our ap-
proach, we introduce a new application of coun-
terfactual reasoning in generative tasks, called
counterfactual entropy. Based on this, we propose
a model called CE-VDG (counterfactual entropy-
based video-grounded dialogue generation), which
consists of a bias estimation model and a genera-
tion model. Specifically, CE-VDG integrates coun-
terfactual entropy as an additional training loss to
mitigate the inherent bias related to questions in
the final output.

To evaluate the performance of CE-VDG, we
compare it with a range of state-of-the-art methods
on two popular VDG benchmarks: AVSD-DSTC
and NExT-OE datasets. The results show that the

performance of CE-VDG significantly surpasses
the existing baseline methods in all benchmarks,
demonstrating the superiority and effectiveness of
the counterfactual entropy.

Our main contributions are three folds:

1) We reformulate counterfactual reasoning from
an information entropy perspective, extend-
ing its application from traditional classification
tasks to generative tasks.

2) We propose CE-VDG, a method designed to
address the bias associated with questions in
datasets and effectively leverage multimodal
information. This is achieved by incorporating
the reformulated counterfactual entropy as an
additional loss.

3) We conduct extensive experiments on two pop-
ular VDG benchmarks. The results show that
our proposed CE-VDG outperforms existing
methods, demonstrating the superior perfor-
mance and effectiveness of our approach.

2. Related Works

The video-grounded dialogue task is to answer
questions based on the content of the video and the
dialogue history and requires perceiving the com-
plex information among the visual, auditory, and
text modalities. Compared to other visual dialogue
tasks, VDG has a greater diversity in responses
(AlAmri et al., 2019), which requires strong informa-
tion integration ability between video and dialogue.
To better extract semantic information, some meth-
ods choose to understand dialogue history seman-
tics more comprehensively, such as the DialogMCF
(Chen et al., 2023a) and multimodal pointer network
(Le and Chen, 2020). Instead of focusing on the
text modality, many methods tend to fully improve
the capability of video reasoning. Many methods
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Figure 3: The illustration of the causal effect among
the medicine, aspirin, and remission.

adopt approaches that provide additional video in-
formation by various extractors, such as video ac-
tion recognition (Huang et al., 2022) and structured
entity graph generation (Geng et al., 2021). Others
adopt various mechanisms to improve the utiliza-
tion of the video, such as memory network (Xie
and Iacobacci, 2020) and video-audio sequence
modeling (Li et al., 2021). However, these methods
make the system more comprehensive understand-
ing of specific aspects without considering the bias
in the dataset and there are always huge spuri-
ous correlations in the trained models (Liu et al.,
2022). In this paper, we introduce the counterfac-
tual reasoning from the information perspective to
the VDG task and propose CE-VDG to reduce the
questions-related bias in the datasets.

3. Preliminaries

This section provides an introduction to the funda-
mental concepts of counterfactual reasoning and
information entropy that will be used in this paper.

3.1. Counterfactual Reasoning

Causal Graph The causal relationship between
different variables can be represented as a causal
graph G = {ν, ε}, where the ν denotes the set of the
variables and ε represents the causal relationships
between them. Figure 3 illustrates the causality
between medicine X and remission R. Besides
the direct effect X → R, headache is a side effect
after medication and prompts the consumption of
aspirin Z, which provides further pain remission R.
Therefore, exploring the causal effect of X on R
requires considering the factors of Z.

To enable computational reasoning and infer-
ence, We formulate the causal graph by setting
X = x and Z = z as

Rx,z = R(do(X = x), Z = z), (1)

where z = Zx = Z(X = x), and the do operator
denotes the intervention operations in causal rea-
soning. In addition, the do operator can be omitted
in the absence of any confounder in X, and the
Rx,z can be represented as:

Rx,z = Rx,Zx
= R(X = x, Z = z). (2)

Regarding counterfactual reasoning, X is set
to different values to determine the impact on R.
Specifically, we use x and x∗ to denote the condition
with and without input X, which leads to Rx,Zx and
Rx∗,Zx∗ respectively.

Causal Effects Causal effects quantify the im-
pact on R under different treatments (e.g. X = x
and X = x∗), and we use the total effect (TE) as the
measurement. Concretely, TE can be formulated
as

TE = Rx,Zx −Rx∗,Zx∗ . (3)
To assess the causal effects in a more fine-grained
manner, TE can be further divided into the total
indirect effect (TIE) and natural direct effect (NDE).
Compared to TE, TIE reflects the effect of Z on R,
while NDE reflects the effect of X on R given Zx∗ ,
and they are defined respectively as

TIE = Rx,Zx −Rx,Zx∗ , (4)

and
NDE = Rx,Zx∗ −Rx∗,Zx∗ . (5)

Considering a dataset with bias, the TIE can re-
duce the bias related to X as the reduced portion
Rx,Zx∗ can reflect the causal effect of x on R with-
out Z. Therefore, it is widely used in classification
tasks to reduce bias as these tasks only need to
complete a single inference without considering the
BPE in sequential inference tasks.

3.2. Basics of Information Entropy
Given a discrete random variable K with n possible
values, the information entropy H(K) is defined as
the average level of the uncertainty inherent to the
possible outcomes of K, which is formulated as

H(K) = −
n∑

i=1

p(ki) ∗ logp(ki), (6)

where p(ki) denotes the probability of ki. For the
sake of convenience, we simplify the formulation
as:

H(K) = −
∑
K

PK ∗ logPK , (7)

Given a set of variables K and T , the conditional
entropy H(T |K) is defined to quantify the uncer-
tainty of T in the condition of K, and formulated
as

H(T |K) = −
∑
KT

PKT ∗ logPT |K . (8)
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Figure 4: The causal graph of the video-grounded
dialogue generation task.

To measure the amount of information in T |C by
observing K, we introduce the conditional mutual
information I(K;T |C) as

I(K;T |C) =
∑
KTC

PKTC ∗ log(
PK,T |C

PK|CPT |C
). (9)

4. Method

In this section, we first introduce the video dialogue
generation task, then reformulate the counterfac-
tual reasoning problem from the information entropy
perspective, and finally describe the implementa-
tion details of utilizing counterfactual entropy as an
external training loss.

4.1. Task Formulation
The video dialogue generation task aims at gen-
erating an appropriate and fluent response Y =
{y1, y2, ..., yt} containing t words, given the ques-
tion Q, video V , audio A, and the dialogue history
D as system inputs, among which the dialogue his-
tory comprises multiple rounds of questions and
answers. The task can be formulated as

P (Y |V,A,D,Q) =

t∏
i=1

P (yi|V,A,D,Q, Y <i). (10)

4.2. Counterfactual Entropy
Causal Graph Definition To apply counterfac-
tual reasoning, we first translate the VDG task into a
causal graph. As shown in Figure 4, the generation
of final response Y is determined by the question
Q and multimodal information M , which consists of
the video V , audio A, and dialogue history D. M
is also denoted as Mvad when setting V,A,D as
v, a, d respectively.

To assess the impact of the multimodal informa-
tion (e.g. video input V ) on the final result, we set
V = v∗ to represent the condition without the video
as input, and the other modalities follow a similar
manner. As described in Section 3.1, we use the

TIE to reduce the question-related bias by eliminat-
ing question-related causal effect and enhancing
multi-modal information, which is formulated as

TIE = Yq,Mvad − Yq,Mv∗a∗d∗ , (11)

For conciseness, we denote Yq,Mvad
and Yq,Mv∗a∗d∗

as Yq,M and Yq,M∗ respectively in the following
parts of this paper.

Formulation Based on the definition of causal
effects, the TIE we have formulated in Equation
(11) reflects the importance of multimodal informa-
tion provided by video, audio, and dialogue history
inputs. However, the conventional strategy to uti-
lize the TIE cannot be applied to generative tasks
directly as the result of the BPE in sequential infer-
ence. Therefore, we provide a detailed derivation
of counterfactual reasoning from the perspective
of information entropy and utilize Equation (11) as
an example to demonstrate the application of our
proposed approach to VDG tasks.

As counterfactual reasoning and information en-
tropy share similar semantics, we utilize the infor-
mation entropy as the measurement of the causal
effect. Specifically, the subparts of Equation (11)
can be formulated from the information entropy per-
spective with the same semantics, and we use →
to denote the transformation from the statistical
perspective to the information entropy field. The
transformations are formulated as:

Yq,M∗ → H(Y |Q), (12)

and
Yq,M → H(Y |Q,M). (13)

As shown in Equations (12) and (13), Y is gener-
ated given only Q, or both Q and M respectively.
To assess the effect of the above two conditions on
the result Y , we calculate the conditional informa-
tion entropy H(Y |Q) and H(Y |Q,M) respectively,
which have similar semantics with the original form
of the counterfactual concept. Therefore, Equa-
tion (11) can be written as:

TIE = Yq,M − Yq,M∗

→ H(Y |Q,M)−H(Y |Q).
(14)

Moreover, to analyze the feasibility of utilizing this
transformation approach, we further explore the
exact meaning of H(Y |Q,M)−H(Y |Q). For Equa-
tion (12), it can be rewritten as follows:

H(Y |Q) =
∑
Y Q

PY Q ∗ logPY |Q

= −
∑
Y Q

(−
∑
M

PY QM ) ∗ logPY |Q

= −
∑
Y QM

PY QM ∗ logPY |Q

= −
∑
Y QM

PY QM ∗ logPY Q

PQ
.

(15)
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For Equation (13), it can be calculated as follows:

H(Y |Q,M) = −
∑
Y QM

PY QM ∗ logPY |QM

= −
∑
Y QM

PY QM ∗ log(PY QM

PQM
).

(16)

Thus, Equation (11) can be calculated as:

H(Y |Q,M)−H(Y |Q)

= −
∑
Y QM

PY QM ∗ log(PY QM

PQM
) +

∑
Y QM

PY QM ∗ logPY Q

PQ

= −
∑
Y QM

PY QM ∗ log(PY QMPQ

PQMPY Q
)

= −
∑
Y QM

PY QM ∗ log(PY QM

PQ
∗ PQ

PQM
∗ PQ

PY Q
)

= −
∑
Y QM

PY QM ∗ log(
PM,Y |Q

PM|QPY |Q
)

= −I(M ;Y |Q).

(17)
Finally, we transfer the Equation (14) as:

TIE → −I(M ;Y |Q), (18)

which reflects that I(M ;Y |Q) and TIE both rep-
resent the influence of M on Y |Q. As a result,
both equation derivation and semantic similarity
can demonstrate that I(M ;Y |Q) can replace the
TIE to measure the causal effect.

After the reformulation, we establish the connec-
tion between the causal effect TIE and the con-
ditional mutual information I(M ;Y |Q), which can
prove the effectiveness of the TIE in the continuous
domain. Furthermore, we can introduce TIE as the
external training loss combined with the information
theory. By doing so, we mitigate the biases related
to the question by eliminating the question-related
causal effect and enhancing the significance of the
multimodal information. Compared to conventional
applications on classification tasks, such a method
utilizes the TIE via information entropy and there-
fore avoids considering the BPE.

Definition Therefore, we provide two methods
for counterfactual reasoning via information the-
ory. For counterfactual reasoning can be utilized
in generative tasks, we use information theory to
measure the changes in counterfactual reasoning.
As the common setting in generative tasks, we use
the cross-entropy as the measurement, which is
formulated as:

−
T∑

t=1

logP (yt | M,Q, Y<t) +

T∑
t=1

logP (yt | Q,Y<t)︸ ︷︷ ︸
TIECR

,

(19)
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LFOMLCD
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Figure 5: The overview of the CE-VDG, which con-
sists of the BEM and FOM.

Nonetheless, this formulation can reflect counter-
factual changes within the ground truth, it cannot re-
flect the effect on the whole vocabulary. Therefore,
we further adopt the conditional entropy without
ground truth as the measurement, which is formu-
lated as:

−
∑
QMY

PQMY ∗ logPY |QM +
∑
QY

PQY ∗ logPY |Q︸ ︷︷ ︸
TIECE

, (20)

In this way, we can utilize the counterfactual rea-
soning in the generative tasks through these two
formulations, as both TIECR and TIECE can reflect
the counterfactual effect which we can use as the
measurement.

4.3. Implementation
4.3.1. Overview

As described in Section 4.2, we utilize the coun-
terfactual entropy I(M ;Y |Q) to establish the coun-
terfactual effect Yq,M − Yq,M∗ on generative tasks.
Specifically, we mitigate the bias of Q and force the
system more attentive to M by minimizing the coun-
terfactual entropy, which is named counterfactual
entropy-based video-grounded dialogue genera-
tion (CE-VDG). The overview of CE-VDG is shown
in Figure 5. We prepare two models to eliminate the
bias: factual output model (FOM) and bias estima-
tion model (BEM) responsible for Yq,M and Yq,M∗

respectively. To enhance the generation ability of
the FOM, we adopt the counterfactual entropy to
eliminate the question-related bias provided by the
BEM.

For FOM and BEM, we select BART as our back-
bone model, named VideoBART. Considering the
encoder and decoder are more powerful in seman-
tic extraction and complex reasoning respectively,
we utilize the BART encoder for feature extraction
of the video and dialogue history, and employ the
BART decoder for response generation according
to the question. In detail, visual and auditory fea-
tures are extracted from the video respectively, and
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concatenated with dialogue history embedding into
a joint representation. Finally, the response is gen-
erated by the BART decoder using the encoder
state and the input question.

4.3.2. Feature Extraction

The video information is composed of visual infor-
mation and auditory information. To further utilize
the semantics from the video, we extract the vi-
sual features and auditory features from the video
respectively by pre-trained feature extractors.

Visual Feature The video is segmented into n
consecutive video frames F = {f1, f2, . . . , fn} in 1
frame per second, and then the visual feature FV is
obtained by ActionCLIP (Wang et al., 2021) image
encoder as

FV = Concat(ActionCLIP(fi)) |ni=0 . (21)

Auditory Feature The audio is divided into n con-
tinuous waves W = {w1, w2, . . . , wn} where the
duration of the w is 1 second, and then the auditory
feature FA is obtained by using Wav2CLIP (Wu
et al., 2022) as

FA = Concat(Wav2CLIP(wi)) |ni=0 . (22)

The visual feature FV and auditory feature FA

are concatenated into the video feature as the input
to the model.

4.3.3. Causal Effect Establishment

To establish different causal effects and estimate
the question-related bias, we employ a final output
model (FOM) to generate Yq,M and bias estimation
model (BEM) to generate Yq,M∗ .

Factual Output Model FOM is responsible for
accurate response generation. We train the FOM
with information from all the modalities, including
the video V , dialogue history D, and question Q.
Additionally, FOM uses the cross-entropy loss as
the training loss:

LFOM = −
T∑

t=1

logP (yt | V,A,D,Q, Y<t) . (23)

Bias Estimation Model BEM aims to estimate
the question-related bias in the dataset. To achieve
this, we restrict the input to only the question Q.
Specifically, the input of the BART encoder is re-
placed with Q, and the BART decoder is trained
with the same settings as FOM. The training loss of
BEM is the cross-entropy loss, which is formulated
as

LBEM = −
T∑

t=1

logP (yt | Q,Y<t) , (24)

4.3.4. Counterfactual Debias Process

We utilize the FOM and BEM and compare the
output of them to represent TIE. Specifically, we
maximize TIE by minimizing the counterfactual en-
tropy for better question-related bias reduction, in
which the counterfactual entropy loss is:

LCE ∈ {TIECR, T IECE}. (25)

To further enhance the accurate generation abil-
ity of the FOM, we combine the cross entropy loss
and the counterfactual loss and obtain the final
objective function as:

LOBJ = LFOM + αLCE, (26)

where $\alpha$ is a hyper-parameter considering
the trade-off between the LFOM and LCE.

5. Experiments

5.1. Datasets and Metrics

Experiments were conducted on two popular VDG
benchmarks, which include AVSD-DSTC datasets
and NExT-OE datasets.

AVSD-DSTC AVSD-DSTC datasets (AlAmri
et al., 2019) were expanded from the Charades
dataset (Sigurdsson et al., 2016) with question-
answer pairs, which consist of the AVSD-DSTC7,
AVSD-DSTC8, and AVSD-DSTC10 dataset. The
question-answer pairs are closely correlated with
the relationship between the person and objects,
and the length of the answers is between 5 to 9
words. Specifically, each new version of the AVSD-
DSTC dataset is expanded by additional follow-up
questions, which require more detailed video
understanding abilities. Therefore, conducting
experiments on different versions of AVSD-DSTC
datasets enables more comprehensive evaluation
of the capability, including comprehensive under-
standing and detailed recognition. In this paper,
we use BLEU, METEOR, ROUGE-L, and CIDEr
as the evaluation metrics.

NExT-OE NExT-OE dataset (Xiao et al., 2021) is
constructed based on YFCC-100M (Thomee et al.,
2015), in which the types of questions are divided
into casualty, temporary reasoning, and descriptive
ability. Different from the AVSD-DSTC dataset, the
answers are mostly shorter than 4 words and the
Wu-Palmer Similarity (WUPS) score is used to eval-
uate the semantic similarity between the generated
answer and the ground truth.
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Methods BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGH-L CIDEr
AVSD-DSTC7 official test set

Naive Fusion (2019a) 0.644 0.500 0.395 0.318 0.220 0.500 0.779
MTN* (2019) 0.692 0.556 0.459 0.368 0.259 0.537 0.964
JST (2019b) 0.686 0.557 0.458 0.382 0.254 0.537 1.005
BiST (2020a) 0.715 0.560 0.477 0.390 0.259 0.552 1.030
CE-VDG (Ours) 0.741 0.615 0.513 0.431 0.280 0.583 1.216

AVSD-DSTC8 official test set
DMN (2020) - - - 0.270 0.208 0.482 0.714
VideoGPT* (2021) 0.677 0.556 0.462 0.387 0.249 0.544 1.022
SCGA (2021) 0.675 0.559 0.459 0.377 0.269 0.555 1.024
MED-CAT (2022) - - - 0.376 0.247 0.547 0.982
CE-VDG (Ours) 0.711 0.585 0.484 0.404 0.271 0.567 1.110

AVSD-DSTC10 official test set
AV-trans (2022) - - - 0.247 0.191 0.437 0.566
NLM (2022) 0.641 0.489 0.379 0.298 0.225 0.502 0.804
MAG (2022) 0.646 0.489 0.380 0.299 0.225 0.499 0.787
TSF(ensemble)* (2022) 0.680 0.558 0.461 0.385 0.247 0.539 0.957
DialogMCF (2023a) 0.693 0.556 0.450 0.369 0.249 0.536 0.912
CE-VDG (Ours) 0.721 0.588 0.481 0.397 0.267 0.559 1.008

Table 1: Evaluation results of our model compared with baseline approaches on AVSD-DSTC7, AVSD-
DSTC8 and AVSD-DSTC10 official test sets. The * denotes the best performance in the corresponding
AVSD-DSTC challenge.

Methods WUPS
HCRN (2020b) 23.92
HME (2019) 24.06
UATT (2017) 24.25
HGA (2020) 25.18
ClipBERT (2021) 24.17
KcGA (2023) 28.20
CE-VDG(Ours) 28.71

Table 2: WUPS scores of our model compared with
baseline approaches on NExT-OE dataset.

5.2. Experimental Settings
In our experiments, we initialize our model by BART-
base 1 and the $\alpha$ is 0.01. We choose the
TIECE as the final counterfactual loss. We adopt
an AdamW optimizer with a learning rate of 6.25e-
5 for causal effect establishment and the counter-
factual debias process and the batch size is 32.
During the inference phase, we use the factual out-
put model for response generation and the beam
search as the generation algorithm. The beam size
is 6 and the penalty factor is 0.6.

5.3. Baseline Methods
We use the following methods as our baseline
system. (i) VideoGPT which chooses GPT-2 as
the backbone and involves integrating visual-audio
features and dialogue text as a combined input.

1https://huggingface.co/facebook/
bart-base

Methods BLEU4 CIDEr
VideoBART 0.384 0.987
VideoBART+TIECR 0.389 0.998
VideoBART+TIECE 0.397 1.008

Table 3: Evaluation results of definitions ablation
experiments on AVSD-DSTC10 official test set.

(ii) TSF which extracts the visual feature through
TimeSformer and improves performance through
the ensemble. (iii) AV-trans which proposes bi-
modal attention to fuse audio-visual features via
the encoder-decoder structure without pre-training.
(iv) NLM which recognizes the visual and auditory
actions as video features, and feeds them to the
GPT-2 to obtain the answer with the text input.

5.4. Main Results

The main results are presented in Table 1 and
Table 2. Compared to other baselines, our pro-
posed CE-VDG demonstrates consistent superior-
ity across all the metrics on both the AVSD-DSTC
and NExT-OE datasets. This affirms the effective-
ness of counterfactual debiasing in improving the
video dialogue generation performance on both
long sentences and short texts. As shown in Table
1, CE-VDG substantially outperforms other meth-
ods across all the metrics, especially on BLUE4
and CIDEr, which reflects the capabilities for accu-
rate and fluent response. Furthermore, the results
in Table 2 illustrate that our method can produce
closer results semantically to the ground truth, and

https://huggingface.co/facebook/bart-base
https://huggingface.co/facebook/bart-base
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Methods BLEU4 CIDEr
VideoGPT* 0.380 0.937
VideoGPT+CE 0.392 0.988
TSF(ensemble) 0.385 0.957
TSF(unensemble)+CE 0.389 0.965
AV-trans 0.247 0.566
AV-trans+CE 0.287 0.660
NLM 0.298 0.804
NLM+CE 0.383 0.972
VideoBART 0.384 0.987
VideoBART+CE 0.397 1.008

Table 4: Evaluation results of baseline ablation
experiments on AVSD-DSTC10 official test set. The
* denotes the results we reproduced and the CE is
an abbreviation of the counterfactual entropy.

achieve debiased inference from biased training by
reducing the question-related causal effect.

5.5. Ablation Study

5.5.1. Ablation Study on Definitions

To validate the effectiveness of TIECE than TIECR,
we apply the TIECR as the LCE in ASVD-DSTC
dataset, which is shown in Table 3. As shown in
this table, both the TIECE and TIECR can improve
the effectiveness of the system. Specifically, the
TIECE can reflect the counterfactual effect among
the whole vocabulary, which can enhance the im-
pact of counterfactual effects for better bias mitiga-
tion.

5.5.2. Ablation Study on Baselines

To validate the robustness of our proposed coun-
terfactual entropy, we apply it to various baseline
models of the AVSD-DSTC challenge and evalu-
ate the performance on the AVSD-DSTC10 official
test set, which is shown in Table 4. Specifically,
we conduct experiments on five baseline models
that differ in feature extractors, architectures, and
modality fusion strategies. Considering the results
are absent on the AVSD-DSTC10 official test set,
we reproduced the result on the VideoGPT by of-
ficial code. As shown in Table 4, the inclusion of
additional counterfactual entropy loss enhances the
performance of all models, particularly the base-
lines that rely solely on the decoder architecture.
Furthermore, our model demonstrates compara-
ble performance compared to the ensemble model,
even without utilizing ensemble learning, thanks to
the proposed counterfactual debiasing process.

5.5.3. Ablation Study on Modality

To validate the effectiveness of our method on bias
reduction for different modalities, we conduct a se-

BEM BLEU4 CIDEr
VideoBART 0.384 0.987
VideoBART+Q 0.397 1.008
VideoBART+QD 0.395 1.008
VideoBART+QVA 0.400 1.015
VideoBART+VAD 0.397 1.004

Table 5: Evaluation results of BEM ablation experi-
ments on AVSD-DSTC10 dataset. The VideoBART
+ X denotes the BEM is established with X and is
proposed to reduce X-related bias.

ries of experiments on a variety of modalities on
BEM. The results are shown in Table 5. Specifically,
It is important to note that all the different settings
on BEM lead to performance improvement. Among
the settings, VideoBART+Q shows significant per-
formance gains, indicating that the counterfactual
debias process effectively improves response accu-
racy by reducing question-related bias and utilizing
multi-modal information more. Additionally, BEM
with QV outperformed BEM with QD, suggesting
that the QVA-related bias is more severe and lever-
aging dialogue history can effectively mitigate this
bias.

5.5.4. Ablation Study on Questions Types

To explore the effect of different types of ques-
tions, we evaluate the performance of our method
with various question types. The results are pre-
sented in Table 6. These results demonstrate that
the counterfactual debias process effectively re-
duces biases introduced by the training set for most
question types. Specifically, the performance of
descriptive questions shows a significant improve-
ment, indicating enhanced utilization of video infor-
mation through the counterfactual debias process.
However, the performance gains for temporal and
causal questions are not as satisfactory, likely be-
cause the BEM does not specifically consider tem-
poral and causal information.

Question Types VideoBART CE-VDG
Casualty Why 19.25 19.77
Casualty How 25.06 25.32
Temporal Next 16.41 15.74
Temporal Current 26.51 27.93
Descriptive Choice 69.91 71.94
Descriptive Counting 42.58 44.43
Descriptive Location 46.77 48.41
Descriptive Open-Form 52.80 53.85

Table 6: The WUPS score on different types of
questions ablation study in NExT-OE dataset.
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Q: how many steps does he take 
after getting up ?

REF: he takes a couple of steps .

CE-VDG: he takes two steps after 
getting up.

BART: he takes one step after getting 
up.

Q: what does the lady in black do 
after picking the black costume ?

REF: puts it

CE-VDG : put on her head 

BART: walk away

(a) Successful Case

Q: what is he wearing besides a red 
shirt ?

REF: he is wearing a black pants .

CE-VDG: he is wearing a red shirt 
and red pants.

BART: he is wearing a red shirt and 
blue jeans.

Q: is the fan turned on or off ?

REF: the fan is currently off in this 
video .

CE-VDG : the fan is on the whole 
time.

BART: the fan is on but he doesn 't 
turn it off

(b) Failed case
Figure 6: Four examples are taken from the AVSD-DSTC10 and NExT-OE datasets. The reference
response is highlighted in yellow, and noteworthy parts are highlighted in red. It is important to note that
the questions about counting and coarse-grained actions can be improved a lot but the questions about
color and object state are not satisfactory for us.

5.6. Case Study
We also evaluate the ability of the proposed method
to generate dialogues using two datasets. As
shown in Four examples in Figure 6, the CE-VDG
model, which incorporates counterfactual entropy,
is compared to the original model without it. The left
results demonstrate that CE-VDG can mitigate the
bias present in the training dataset related to the
question and the right results illustrate that there is
still a huge room to be improved. Specifically, the
first example in the left part shows that CE-VDG
can address the inherent bias in counting numbers
and generate responses that are more relevant and
appropriate based on the video content. However,
the second example in the right part shows that
CD-VDG cannot detect the state of the object ac-
curately, compared to the coarse-grained actions
in the right part. So, the effect is highly correlated
to the question types, the more serious in bias of
this type of question the better the performance of
the counterfactual entropy.

6. Conclusion

To address the bias in the video-grounded dialogue
generation task, we propose a reformulation of the
counterfactual reasoning process using informa-
tion entropy. This allows us to extend the appli-
cation of counterfactual reasoning to generative
tasks. Specifically, we introduce the concept of
counterfactual entropy to mitigate question-related
bias by eliminating causal effects and enhancing
multi-modal information. Additionally, we present
CE-VDG, a method that applies counterfactual rea-
soning to the VDG task by utilizing counterfactual
entropy as an external loss. Through extensive
experiments on two VDG benchmarks, we demon-
strate the effectiveness of our proposed approach
compared to various state-of-the-art methods.

Limitations

We propose CE-VDG to reduce the bias introduced
by the unbalanced data and achieve superiority in
two video-grounded dialogue generation datasets.
However, there are still many aspects that require
improvement on our end. We provide two defini-
tions of counterfactual entropy and the main dif-
ference is the subjects of the distribution, which
are the ground truth and the whole vocabulary.
However, we can explore the rate between the two
objects to obtain the two distributions for bias re-
duction. Furthermore, the improvement is highly
related to the degree of the bias and we fail to en-
hance the performance for little biased questions,
such as color questions, because the original ca-
pability lacks this. In the future, we will improve the
original capability of the model by focusing more
on model architecture.
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