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Abstract

Amidst the rapid expansion of Machine Learning (ML) and Large Language Models (LLMs), understanding the

semantics within their mechanisms is vital. Causal analyses define semantics, while gradient-based methods

are essential to eXplainable AI (XAI), interpreting the model’s ’black box’. Integrating these, we investigate

how a model’s mechanisms reveal its causal effect on evidence-based decision-making. Research indicates

intersectionality - the combined impact of an individual’s demographics - can be framed as an Average Treatment

Effect (ATE). This paper demonstrates that hateful meme detection can be viewed as an ATE estimation using

intersectionality principles, and summarized gradient-based attention scores highlight distinct behaviors of three

Transformer models. We further reveal that LLM Llama-2 can discern the intersectional aspects of the detection

through in-context learning and that the learning process could be explained via meta-gradient, a secondary form

of gradient. In conclusion, this work furthers the dialogue on Causality and XAI. Our code is available online (see

External Resources section).
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1. Introduction

The domain of causality offers profound insights

into the data generation processes, revealing the

intricate architecture of the problems at hand. A

meticulous examination of these generative pro-

cesses is indispensable for deep comprehension

of phenomena with significant social implications.

This paper is dedicated to conducting a rigor-

ous case study in this vein, bridging the gap be-

tween the foundational principles of science and

the cutting-edge capabilities of Machine Learning

(ML) technologies.

EXplainable Artificial Intelligence (XAI) emerges

as a critical paradigm in shedding light on MLmod-

els’ often opaque inner workings. While previous

research has ventured into various domains, the

application of XAI principles to causal analysis re-

mains scarcely explored. By integrating causality

and XAI, this study aims to enrich our understand-

ing of social phenomena and how they are re-

flected in state-of-the-art (SOTA) ML models fac-

ing the representation of the phenomena.

The rise of online hate speech, especially hateful

memes (Fig. 1, top) —comprising both text and

image, has prompted significant research. While

multimodal ML algorithms have seen substantial

improvements, efforts focus more on benchmark-

ing and maximizing performance, including the

Hateful MemesChallenge competition (Kiela et al.,

2020), rather than applying XAI methods. Existing

approaches also lack a focus on causal architec-

ture. This study defines hateful meme detection

as an Average Treatment Effect (ATE) estimation

problem for input data modalities (image and text)

and examines the effects through the prism of XAI.
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Figure 1: Visualization of a hateful meme and

its corresponding confounders. (top) Meme sam-

ples and (bottom) their directed acyclic graph

representation. (left) A hateful meme highlights

cross-modal interactions between its image and

text components that contribute to its hateful-

ness. (middle) The image benign confounder

showcases original text and a non-hateful image,

resulting in reduced cross-modal interactions and

a benign classification. (right) The text benign

confounder comprises an original image and non-

hateful text. Note: The samples depicted are il-

lustrative and do not exist in the dataset. ©Getty

Images

Intersectionality1, or the network of connections

between social categories such as race, class, and

gender, especially when this may result in addi-

1Oxford Dictionary
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tional disadvantage or discrimination, acts as a

bridge between ML and social science. Though

broadly applied in social science and used for de-

biasing in ML, its wider applications are limited.

How can we use this concept as a generalized tool

for broader problems? Motivated by this question,

this paper proposes reframed intersectionality, ex-

plores whether causally formalized intersectional-

ity can address a broader range of problems, and

evaluates inductive bias in ML models.

Furthermore, the excellence of Large Language

Models (LLMs) across various benchmarks has

been showcased, particularly in few-shot learn-

ing. The concept of in-context learning presents

a promising avenue, but its formal causal evalua-

tion is limited. Here, we address this problem.

Our contribution could be summarized as:

• Formalization of hateful meme detection as

an intersectional causal effect estimation

problem, allowing performance assessment

based on data generation process.

• Introduction of reframed causal intersection-

ality to evaluate inductive bias, marking a

step towards broader applications, including

demographics-nationality intersectionality, fi-

nancial inclusion, and clinical diagnosis.

• Demonstration that attention attribution

scores (Hao et al., 2021) divided by modality

interaction describe the causal effect ac-

curately, unlike non-divided scores. This

finding opens doors for causal explainability

in multimodal settings (Liu et al., 2022).

• Pioneering formal and empirical analysis of

LLM’s meta-optimization process in the multi-

modal in-context setting.

2. Related Work

2.1. Causal ML and XAI

Causal Inference (CI) occupies a pivotal role in

the elucidation of social phenomena and the in-

terpretation of intervention outcomes. It bifurcates

into two primary methodologies: the graphical

and structural schemas for modeling reality (Pearl,

2001), alongside the framework for potential out-

come prediction (Rubin, 2008). CI’s utility spans

a diverse array of sectors, including but not limited

to, medicine (Vlontzos et al., 2022), manufacturing

(Vuković and Thalmann, 2022), and the social sci-

ences (Sengupta and Srivastava, 2021), guiding

the interpretation of data within these fields. Fur-

thermore, CI principles have been applied within

Machine Learning (ML) and its allied disciplines,

giving rise to the subfield of Causal ML. Causal ML

encompasses research into natural language pro-

cessing (Yang et al., 2022), hate speech detection

(Chakraborty and Masud, 2022), and the study of

image-text multimodality (Sanchez et al., 2022).

Notably, the theoretical underpinnings of hateful

memes, as a convergence of these interests, re-

main underexplored. Our research attempts to

map out graphical and formal representations of

the causal structures underlying hateful memes.

In conjunction, EXplainable Artificial Intelligence

(XAI) (Speith, 2022; Joshi et al., 2021; Barredo Ar-

rieta et al., 2020) has sought to demystify the

internal mechanisms of ML models. XAI’s do-

main of inquiry extends across various fields, in-

cluding medicine (Holzinger, 2021) and energy

(Machlev et al., 2022), with a particular focus on

both model-agnostic (Sundararajan et al., 2017;

Gaur et al., 2021; Marcos et al., 2019) and model-

specific (Hao et al., 2021; Holzinger et al., 2021)

evaluations. However, the intersection of causal-

ity with XAI remains nascent. This study investi-

gates XAI’s capability in assessing attributions to

causality metrics, emphasizing gradient-based in-

terpretations as central to XAI endeavors.

Since ML models typically minimize the gradient

for optimization, components with steep gradients

toward the model’s decision-making are consid-

ered crucial. The gradient-based XAI approach

(Selvaraju et al., 2017), often model-specific, finds

pertinent application in the analysis of Trans-

formers (Vaswani et al., 2017), which underpin

most SOTA models in natural language process-

ing (NLP). Here, quantifying the attribution of at-

tention matrix weights via the gradient emerges

as a direct method (Hao et al., 2021). Our re-

search proposes both theoretical and empirical

advancements in causal analysis, leveraging this

gradient-based methodology to enhance under-

standing and interpretation within the causality do-

main.

2.2. Intersectionality

Intersectionality, a bias indicator of multiple de-

mographics within various domains, has inspired

a few causal analyses (Yang et al., 2021; Bright

et al., 2016). While XAI techniques have been

used to alleviate its negative impact in ML lit-

erature (Lalor et al., 2022; Simatele and Ka-

bange, 2022), our work redefines intersectionality

for broader problems, and pioneers the quantifica-

tion of inductive intersectional bias.

2.3. Hate Speech and Hateful Memes

Hate speech and hateful memes have attracted

substantial ML research attention, involving vari-

ous models (Das et al., 2020; Lippe et al., 2020)

and datasets (Kiela et al., 2020; de Gibert et al.,

2018; Davidson et al., 2017; Sabat et al., 2019;

Suryawanshi et al., 2020). Previous analytical

works have focused on racial bias (Sengupta
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and Srivastava, 2021; Sharma et al., 2022), vi-

rality (Ling et al., 2021; Chakraborty and Ma-

sud, 2022), and propaganda techniques (Dimitrov

et al., 2021), and a few have applied XAI meth-

ods (Cao et al., 2021; Hee et al., 2022; Deshpande

and Mani, 2021). This study builds upon these by

formalizing hateful meme detection as a causal ef-

fect estimation problem and emphasizing the im-

portance of modality interaction.

2.4. LLM

Large Language Models (LLMs), known for their

powerful in-context few-shot learning capabilities

(Brown et al., 2020) in various NLP andmultimodal

tasks, are emerging as significant tools (Zhao

et al., 2023). To understand their inner work-

ings, meta-gradient, or the update of the attention

weights as a secondary form of the gradient, ex-

plains in-context learning empirically (Coda-Forno

et al., 2023; Chen et al., 2022) and theoretically

(Dai et al., 2023; von Oswald et al., 2023).

However, understanding LLM’s causal power re-

mains a complex and emerging area of study (Ban

et al., 2023; Kıcıman et al., 2023). Moreover,

unlike the traditional classifier-attached-encoder

model (e.g. BERT (Devlin et al., 2019)) with

predicted probability, how to estimate the causal

effect of chatbot-style LLM and analyze its in-

ner workings quantitatively remains elusive. This

study demonstrates that a dedicated task design

could be used to estimate LLM’s causal effect and

that a meta-gradient could explain its inner work-

ings concerning that effect.

3. Methodology

3.1. Background

3.1.1. Average Treatment Effect

The Average Treatment Effect (ATE) (Rubin,

2008) is a keymetric for assessing causal impacts.

It represents the average difference in outcomes

between treated and untreated groups. This mea-

surement facilitates a standardized evaluation of

causal effects across diverse scenarios. For a bi-

nary treatment BT ∈ (0, 1) yielding outcome θBT ,

ATE is defined as:

ATE = θ1 − θ0 (1)

This research repurposes intersectional ATE to

evaluate hateful meme detection models.

3.1.2. Causal Intersectionality

Building upon the textual definition, causal inter-

sectionality (Bright et al., 2016) challenges the

simplistic aggregation of individual demographic

effects. Instead, it highlights the complex, syner-

gistic interactions between multiple demographic

factors, acknowledging the nuanced dynamics

that influence causal relationships in social stud-

ies. Defining causal intersectionality (Eq. 2)

involves binary vectors for two demographics

(e.g., gender D1 and color D2) marked as D =
{D1, D2}, and the outcome θ.

θD 6=
∑
i

θDi
(2)

Using this causality structure, we assess multi-

modal models within a causal context.

3.1.3. Attention Attribution Score

Simply put, attention attribution score quantifies

the contribution of attention weights to the model’s

decision-making. Initially, a seminal work (Sun-

dararajan et al., 2017) introduced the integrated

gradient method for quantifying model compo-

nent’s attribution. This method calculates the con-

tribution of specific model components based on

the gradient’s integral over that component. Upon

this work, another study (Hao et al., 2021) reported

its applicability to Transformer’s attention weights,

deriving attention attribution score (attr herein).

This approach proves critical for interpreting the

Transformer’s behavior, especially in understand-

ing how the attention matrix influences model out-

puts. Given hyperparameter α, attr computes the

integrated gradient for attention matrix A relative

to a Transformer’s output θ.

attr = A ∗
∫ 1

α=0

∂θ(αA)

∂A
dα (3)

We employ modality-wise averaged attr differ-

ences as causal effect indicators.

3.1.4. Learning Objectives: Binary Classifier

vs LLM

For the classifier-attached-encoder model, hateful

meme detection aligns with binary classification.

In summary, given both hateful and benign pairs,

the classifier tries to maximize the classification

performance. With a ground-truth label ygt and

a loss function floss, the learning objective when

training a model θ is:

argmin
θ

−{ygtfloss(θ) + (1− ygt)floss(1− θ)} (4)

On the other hand, in in-context learning, hate-

ful samples and their counterpart confounders are

presented to LLM in parallel. This differs from the

objective above in that the information of hateful

samples is not used to handle confounders, and

vice versa. For example, facing the hateful sam-

ple in the zero-shot setting, the meta-objective it is

trying to meta-optimize to is:

argmin
θ

−ygtfloss(θ) (5)

This study delves into the meta-objective for LLM

in a few-shot context for the equivalent compari-

son.
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3.1.5. Meta-Optimization in Few Shot Setting

Meta-optimization, in the realm of in-context learn-

ing, mirrors gradient descent (Irie et al., 2022; Dai

et al., 2023). Given query q as an input, a dual

learning process of linear attention θ - fine-tuning

and in-context learning with attention update ∆A -

is contrasted with AZSL, the weight in a zero-shot

setting.

θ = (AZSL +∆A)q (6)

∆A functions as a gradient variant named meta-

gradient. Our extension encapsulates attention at-

tribution and its subsequent in-context learning re-

sults.

3.2. Proposed Methodology Overview

Expanding on the original causal intersectionality

(Eq. 2), we define intersectionality for text T and

image I modalities. With X1 = (T1, I1) indicating
hateful content and two types of benign samples

X0 ∈ {(T1, I0), (T0, I1)}, the multimodal intersec-

tionality is:

θX1 6=
∑
X0

θX0 (7)

The remainder of this section elaborates on causal

intersectionality in meme detection, attr-based
modality assessment, and LLM evaluation, visu-

alized in Fig. 2.

Hateful Samples and Conterpart Confounders

Hateful Image Benign Text Benign

(text) (text) (text)

Original Dataset

Other Samples

e.g. Hateful Samples
w/ No Confounders

Confounder
Extraction

In-Scope Samples

(text)

(text)

(text)

Extraction
Prompt

BLIP-2

Prompt Design

Image
Description

Experiment II: 
In-Context LLM

LLaMA2 Function Analysis

Meta-Gradient
Analysis

Causally Designed Prompt

Experiment I: Fine-Tuned Transformer

Vilio
Causal Effect

(miATE) Estimation

Modality Attribute
(MIDAS) Analysis

miATE vs 
MIDAS

Figure 2: A schematic overview of our proposed

methodology. Rectangular boxes denote data or

models, while circular shapes represent the pro-

cesses involved.

3.3. Causal Multimodal Intersectionality

3.3.1. Intersectionality Reframed

We broaden causal intersectionality, positing its

utility beyond human demographics to include ar-

bitrary components. This reframed intersection-

ality assesses interconnections between arbitrary

categories such as user demographics or input

modalities, and how they amplify effects on signif-

icant issues - capturing indirect effects2 in social

contexts. This adaptation remains consistent with

the original causal formalism (Eq. 2).

3.3.2. Performance Measurement with

Causal Intersectionality

In the data generation process of hateful memes,

a text and an image, which are benign in isolation,

jointly produce hate. Applying demographic inter-

sectionality concepts, we introduce themultimodal

intersectional Average Treatment Effect (miATE).

miATE = θX1 −
∑
X0

θX0 (8)

Model performance is assessed considering differ-

ences in each modality. Hateful samples are cat-

egorized by original benign text confounders T org
0

and image benign confounders Iorg0 . The Con-

founder Extraction section provides more details.

3.4. Attention Attribution Score by
Interaction

We introduce the Modality Interaction Disentan-

gled Attribution Score (MIDAS), which quantifies

the contribution from various interaction types

t ∈ {within_image, within_text, cross_modal} to
a model’s decision. Given an input Xi = (T, I),
with N denoting the number of elements for in-

teraction type t, MIDAS computes the modality-

wise average avgt of the attention attribution score
attrXi , analogous to miATE. Following the ini-

tial work on attention attribution score (Hao et al.,

2021), MIDAS is calculated from the last hidden

layer, excluding [CLS] and [SEP ] tokens.

MIDAS = avgt{attrX1 −
∑
X0

(attrX0)}

avgt(X) =
1

N

t∑
X

(9)

Note that to mitigate the negative impact of class

imbalance (Hossain et al., 2022), θ and attr is

averaged per sample and confounder category

(T1, I1), (T1, I0), (T0, I1).

2Defined as an effect of two variables X1 and X2 to

variable X3 via another variable Z
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3.5. Formal Relation between miATE
and MIDAS

We examine the relationship between miATE
and MIDAS by proposing that MIDAS can be

perceived as an attention attribution to miATE.
Given G(A) as the one-step gradient for an atten-

tion matrix A, we see that attr approximates the

product of the gradient and the attention (Eq. 10 -

true whenα = 1). MIDAS is expressed as the dif-

ference of that value between hateful and benign

content (Eq. 11). Furthermore when MIDAS is

aggregated across n samples that are represen-

tative of the entire dataset, it depicts the variation

in attention expectancy normalized with the func-

tion N across these samples, as shown in Eq.

11. In essence, we propose that MIDAS acts as

an attention-focused representation of the model’s

causal effect, i.e. miATE.

attrXi ' AXi ∗G(AXi)

where G(AXi) =
∂θ(A)

∂AXi

(10)

MIDAS ' avgt{AX1 ∗Gnorm(AX1)

−
∑
X0

(AX0 ∗Gnorm(AX0)

∑
n

MIDAS ' E[AX1 ]−
∑
X0

E[AX0 ] (11)

where Gnorm(A) = N (G(A))

N (G(A)) : G(A) → (0, 1)

3.6. LLM

3.6.1. Causal Objective: Implicit miATE

maximization

Before discussing LLM, we show that training a

classifier implicitly addresses the miATE maxi-

mization problem. Specifically, the objective (Eq.

6) over a hateful-confounder pair could be written

as:

argmin
θ

−{floss(θX1) +
∑
X0

floss(1− θX0)} (12)

Here, we see that the first term maximizes the first

term of Eq. 8 and the second term minimizes the

second term of Eq. 8. In contrast, zero-shot LLM

only addresses the first term of Eq. 12. In the next

section, we show how we design the task for LLM

to aim for the same goal.

3.6.2. Causal Task Design

To meta-optimize to the causal task, the hateful-

confounder pair should be given to an identical, not

separate, meta-optimizer, or the optimizer cannot

have any information about intersectional causal-

ity (second term of Eq. 12). Table 1 shows

User: Out of image-caption pairs #0 to

#2, select the most likely hateful or sar-

castic pair with a potential label (hate-

ful or sarcastic). If all pairs are benign,

please say so.

#0: image: ’Skunk’, caption: ’Love the

way you smell today’

#1: image: ’Rose flower’, caption:

’Love the way you smell today’

#2: image: ’Skunk’, caption: ’Love the

way skunks smell’

System:

Table 1: An illustrative prompt for the causal ob-

jective in the zero-shot scenario. In the few-shot

context, answers are delivered succinctly (e.g., #0

is hateful.).

the causality-oriented design of a representative

prompt for hateful meme detection.

Note that this task design inherently counteracts

sample imbalance since it simultaneously repre-

sents these hateful, original benign, and picked

benign samples.

3.6.3. Meta-Optimization for Causal

Objective

Meta-optimization for the causal objective poses

challenges (Niu et al., 2021) like complicated in-

struction and varied available labels. The opti-

mization process consists of:

1. Task Type Classification (TTC). LLM recog-

nizes the task as a binary classification.

2. Label Identification (LI). LLM provides proba-

ble labels, e.g., hateful, sarcastic (Chauhan,

2020), and benign. Note that including the

sarcastic label addresses its nuanced over-

lap with hatefulness (Sundaram et al., 2022),

capitalizing on LLM’s comprehension of com-

plex social phenomena embedded in training

corpora. We still regard this task as a binary

classification of all-pair-benign vs one-pair-

hateful, with a subtask of hateful-sarcastic

classification.

See Table 2 for a set of examples.

Subtask Label Response

TTC Negative Sorry, I couldn’t under-

stand your instructions.

TTC Positive #1 could be sarcastic.

LI Negative #1 could be sarcastic.

LI Positive #0 could be hateful.

Table 2: Synthesized responses and subtask la-

bels for in-context learning. Refer to Table 1 for

the corresponding instruction prompt.
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The meta-optimization process is segmented into

these subtasks, with the understanding that LI fol-
lows a successful TTC, denoted as TTC = 1.
The output of meta-optimized Transformer block

θ could be formalized as:

θSubTask = (ASubTask +∆ASubTask)q

θ =

{
θTTC + θLI (TTC = 1)
θTTC otherwise

where SubTask ∈ {TTC,LI}

(13)

4. Experimental Settings

4.1. Data Preparation

4.1.1. Hateful Memes Dataset

Our study utilizes the Hateful Memes Challenge

dataset (Kiela et al., 2020) and focuses primarily

on the dev_seen subset. Unimodal hateful sam-

ples (Das et al., 2020; Lippe et al., 2020) are omit-

ted from our study.

4.1.2. Confounder Extraction

From the dataset, 162 pairs of hateful (T org
1 , Iorg1 )

and benign samples (T org
1 , Iorg0 ) or (T org

0 , Iorg1 ) are
identified. Since most of the pairs have either one

of the text or image confounders, not both, three

random inputs with the missing modality (Ipicked0 or

T picked
0 ) are concatenated with the other modality

to accommodate the requirements of Eq. 8, re-

sulting in a uniquely crafted subset (T org
1 , Ipicked0 )

and (T picked
0 , Iorg1 ). The structure of this subset is

summarized in Table 3.

Sample Category
Number of

Samples

Hateful 162

Image Benign 78

Text Benign 84

Picked Image Benign 234

Picked Text Benign 252

Table 3: Samples utilized in our analysis.

This table categorizes samples as Hate-

ful (T org
1 , Iorg1 ), Image Benign (T org

1 , Iorg0 ),
Text Benign (T org

0 , Iorg1 ), Picked Image Be-

nign (T org
1 , Ipicked0 ), and Picked Text Benign

(T picked
0 , Iorg1 ).

4.2. Experiment I: Fine-Tuned
Transformer

4.2.1. Analysis Type

Assuming the predominant contribution of

original inputs over the picked ones, in re-

spect of the authors’ effort of making the task

challenging, we divided the analysis into that

of {(T org
1 , Iorg1 ), (T org

1 , Iorg0 ), (T picked
0 , Iorg1 )}

(denoted as org. text), and of

{(T org
1 , Iorg1 ), (T org

0 , Iorg1 ), (T org
1 , Ipicked0 )} (org.

image).

4.2.2. Models

We employ author implementation of the SOTA

(Kiela et al., 2021) Vilio framework (Muennighoff,

2020) for its superior capabilities and adaptable

framework, focusing on its three main models: Os-

car (Li et al., 2020b), UNITER (Chen et al., 2020),

and VisualBERT (Li et al., 2020a), summarized in

Table 4. Each model type has three submodels

(training corpora or random seed variants), all in-

cluded in our analysis but the results shown here

are from selected one submodel (preliminary anal-

ysis shows all submodels exhibit similar trend).

Type Encoder Pretraining Task

O BERT (base) 1) Object tag (or an-

chor) detection 2)

Text-image contrastive

learning

U BERT (base) 1) Masked language

modeling 2) Masked

image modeling 3)

Image-text matching 4)

Word-region alignment

via optimal transport

V BERT (base) 1) Masked language

modeling 2) Image

captioning

Table 4: A categorization of Vilio’s submodels

leveraged in our research. The models are clas-

sified into three groups: Oscar (O), UNITER (U),

and VisualBERT (V).

4.3. Experiment II: LLM

4.3.1. Models

HuggingFace Llama-2-13b-chat-hf (Touvron

et al., 2023) is our language model backbone,

optimized for chat-style interactions. To convert

the image into its textual description, we utilize the

BLIP-2 (Li et al., 2023) model with a FlanT5-XXL

(Chung et al., 2022) backbone.

4.3.2. In-Context Learning

We study Llama-2’s behavior on image caption in

the original dataset and image description gener-

ated by BLIP-2. For in-context learning, the num-

ber of samples is limited due to memory restric-

tion. After the response is generated, one of the

authors conducts manual labeling since the num-

ber of samples is limited (available at our GitHub

repository). We gauge performance through accu-

racy.

4.3.3. Meta-Gradient Evaluation

During our evaluations, we mask redundant sub-

text (e.g., #0: image: and caption:) in input
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prompts.

4.4. Shared Settings

4.4.1. Probing

We employ a probing (Alain and Bengio, 2017) ap-

proach with LightGBM (Ke et al., 2017) to explore

the impact of modality interaction and in-context

learning on causal effect. Responses are split into

training (56%), validation (14%), and test (30%)

sets. We achieve hyperparameter tuning using

Optuna (Akiba et al., 2019). To assess the ef-

fects of interaction type t (Experiment I, II) and

model type (Experiment I), corresponding categor-

ical variables and interaction terms with MIDAS
(Experiment I) or summed attention weights (Ex-

periment II) are added to our analysis. We deter-

mine significance using a t-test (p < 0.05).

4.4.2. Text-Only Pretrained BERT

For VisualBERT encoder replacement (Experi-

ment I) and BLIP-2-fused-BERT (Experiment II),

we use HuggingFace bert-base-uncased. In Ex-

periment II, the last four layers of BERT and a lin-

ear classifier are trained for 100 epochs with an

Adam optimizer (learning rate 5e-5), evaluating its

performance across different seeds.

4.4.3. External Resources

All code and experiments are accessible at

https://github.com/HireTheHero/
CausalIntersectionalityDualGradient.
Experiments are conducted on a single NVIDIA

A100 GPU, either through Google Colaboratory

Pro+ or locally.

5. Results & Discussion

5.1. Experiment I: Fine-Tuned
Transformer

5.1.1. miATE

First, we assessed eachmodel’s performance with

miATE (Fig. 3). VisualBERT exhibited the high-

est disparity, highlighting its bias for text-based

tasks (Table 4).

5.1.2. MIDAS Global Analysis

Next, we assessed the model’s inner workings

(Fig. 4 and 5). MIDAS of Oscar and UNITER

(Fig. 4, first and second row) showed predictable

trends of attending to one modality while the other

is the same. In contrast, VisualBERT’s behav-

ior of attending to text-related interactions (third

row) mirrored its pretraining tendencies biased to-

wards text (Table 4). Furthermore, replacing Vi-

sualBERT’s encoder with the one pretrained only

with text enhanced the bias (fourth row), which

supports the presence of pretraining bias repre-

sented in MIDAS. We observed no significant

model differentiation with the original attr (Fig. 4,

V

0.5

0.3
0.4

U

0.1
0.2

0.0

org. text
org. image

O

Figure 3: Multimodal Intersectional Average Treat-

ment Effect (miATE) across Oscar (O: left),

UNITER (U; middle), and VisualBERT (V; right)

models, contrasting the samples with original im-

age confounders (org. image, cyan) and those

with original text confounders (org. text, magenta).

left column of each graph), suggesting a simple yet

important contribution of modality-wise split.

attattr
text

image
cross

1.0e-4
0.8e-4
0.6e-4
0.4e-4
0.2e-4

0.0

2.0e-5

0.0

-2.0e-5

-4.0e-6

O

1.5e-4
1.0e-4
0.5e-4

0.0
-0.5e-4

2.0e-5
1.0e-5

0.0
-1.0e-5
-2.0e-5
-3.0e-5

U

5.0e-5
4.0e-5
3.0e-5
2.0e-5
1.0e-5

0.0

2.0e-6

1.0e-6

0.0
-0.5e-6

V

org. image org. text

1.4e-4

1.0e-4

0.6e-4

0.4e-4

0.0

4.0e-6
2.0e-6

0.0
-2.0e-6
-4.0e-6

V
(replaced)

Figure 4: MIDAS for org. image (left) and org.

text (right) samples featuring Oscar (top), UNITER

(second row), VisualBERT (third row), and Vi-

sualBERT with text-only-pretrained encoder (bot-

tom). From left to right, each graph displays

attr with no modality division, MIDASwithin_text,

MIDASwithin_image, and MIDAScross_modal.

5.1.3. MIDAS Local Analysis

To see if we can interpret the single hateful-benign

pair, we extracted local explanation (Chai et al.,

2021; Hee et al., 2022). A representative pair (Fig.

5) illustrates that UNITER captures the contrast

between a woman and cargo in image confounder

analysis (first and third row), and the model simi-

larly attended to the words dishwasher and driving

for text analysis (first and second row).

https://github.com/HireTheHero/CausalIntersectionalityDualGradient
https://github.com/HireTheHero/CausalIntersectionalityDualGradient
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Text Benign

Hateful

ImageImage Benign

Figure 5: Conceptual portrayal of hateful, text

benign, and image benign samples derived

from UNITER. MIDAS reflects heightened

attrcross_modal (green), attrwithin_image (red), or

attrwithin_text (blue) values. Both image and text

inputs spotlight top-scored ROIs and tokens. The

text is abbreviated for clarity.

5.1.4. Empirical Relation between MIDAS &

miATE

To probe the relationship between MIDAS
and miATE, we first modeled the entire

(MIDAS,miATE) pairs of all the models by

a single probe, resulting in a moderate AUC of

75.6 ± 4.20. Next, to see the effectiveness of

probing for each model, we applied one probe

for one model, resulting in the highest AUC for

V (AUC 94.1 ± 3.01), while low-to-moderate for

O (60.8 ± 5.18) and U (74.3 ± 2.39). In addi-

tion, to see if the probes reflect the findings on

MIDAS, we analyzed the feature importance

(Table 5). Consistent with previous findings, Vi-

sualBERT and within-text appear with the highest

frequency among model type and interaction

type, respectively. In summary, our findings

showed a moderate correlation between MIDAS
and miATE for BERT-based models, with a

Interaction Type O U V

within-text 35±25 30±26 253±66
cross-modal 19±14 35±22 223±75
within-image 30±23 54±32 169±74

Table 5: LightGBM probe’s feature importance be-

tween MIDAS and miATE. Values represent

frequency counts.

# Few-Shot Accuracy

Samples All(S-) TTC(S-) TTC(S+)

0 46.2 61.6 62.6

1 62.9 62.9 60.6

2 62.5 62.5 61.0

3 59.2 59.2 57.6

4 64.3 64.3 71.4

Table 6: Zero-shot (first row) and few-shot (sec-

ond to fifth row) Llama-2 performance. All signi-

fies cumulative sample results, while TTC relates

to correct TTC samples. Parentheticals (S+ or S-)

denote the inclusion of the sarcastic label in either

positive or negative samples.

particularly robust link for VisualBERT, echoing

its distinct model nature.

5.2. Experiment II: LLM

5.2.1. Effectiveness of BLIP-2 information

retrieval

To assess themerit of BLIP-2 information retrieval,

we utilized its image description and the original

captions to fine-tune BERT pretrained only with

text. The resultant enhanced performance (Ac-

curacy 66.9 ± 0.84, AUC: 71.2 ± 1.55) to unimodal

BERT benchmarks (Kiela et al., 2020) underlines

BLIP-2’s effective image information extraction ca-

pabilities.

5.2.2. In-Context LLM Performance

Our evaluation with Llama-2 shows that all-sample

accuracy improved after one sample (Table 6,

left). Interestingly, after just one in-context exam-

ple, the model achieved exactly the same perfor-

mance for all samples and TTC = 1 samples,

meaning impeccable TTC Recall. These results

suggest the critical role of in-context examples in

task comprehension when the task is challenging

in zero-shot settings. Marking the sarcastic label

as positive led to better performance at the zero-

shot setting but dropped after one example (Ta-

ble 6, middle and right), implying uncertainty in the

decision-making for this label.

5.2.3. Meta-Optimization Evaluation

To gauge the influence of meta-optimization, we

applied a probe model to examine the relationship
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Interaction Type A ∆A

within-text 65±41 24±17
cross-modal 58±33 31±21
within-image 43±25 14±8

Table 7: LightGBM probe’s feature importance in

Experiment II. Features of zero-shot weights (A)
or their few-shot updates (∆A) are divided by in-

teraction types.

between summed attention weights (A,∆A) and
TTC label, revealing a moderate AUC of 82.3 ±
6.16. Furthermore, a detailed extraction of fea-

ture importance (Table 7) from the probe model

allowed us to determine how A and ∆A impact

the probe model (left and right). Our findings

suggest that while A carries substantial weight in

decision-making, its meta-optimized counterpart

∆A also plays a vital role. Regarding the effects

of modality interaction (top and bottom), captured

by interaction-type-divided weights A+∆A, each
interaction type did contribute to TTC. When ex-

amining the differential impacts of each type, how-

ever, no significant disparities in their contributions

were identified. Addressing the challenge of dis-

cerning between them will be a part of the future

work.

5.3. Discussion

The primary goal of this paper is to assess models

based on the data generation process and its un-

derlying concepts - hatefulness in the case of hate-

ful memes. While this deviates from standard ML

evaluations focusing on performance metrics like

accuracy, it is scientifically valid and relevant to ML

problems, like Rubin started his line of causal in-

ference works to analyze the impact of nulled vari-

ables (Rubin, 2008). In our study, we demonstrate

that the generation of hateful memes embodies

multimodal intersectionality, and the SOTA Trans-

former models effectively capture this nature of the

data but are biased by pretraining datasets. In the

future, we hope to apply our method to other multi-

modal problems like the missing modality problem

(Ma et al., 2021; Wang et al., 2023), an inherently

close one to nulled variable evaluation.

Our study carves a niche by reconceptualizing

hateful meme detection through the lens of modal-

ity interaction and causal effect. Compared to

the seminal work on causal intersectionality (Bright

et al., 2016), beyond mere technical insights, we

proffer a paradigm shift in causal intersectionality.

Our method’s key advantage is its unique capabil-

ity for modality-wise causal analysis, a novel con-

tribution in this field. Despite its simplicity, the

causal effect of the modalities is neither investi-

gated nor formally defined in the existing literature.

Empirically, Experiment I unveils model biases

overlooked by traditional methods like attention at-

tribution scores (Hao et al., 2021; Hee et al., 2022)

without consideration for modality.

For Experiment II, our exploration of few-shot LLM

performance has provided an understanding of

how LLM adapts to different levels of input infor-

mation, shedding light on their capabilities and

limitations in various scenarios. Applying meta-

gradients has allowed us to assess the attribution

of attention weights, adding granularity to the in-

terpretability landscape. Evaluating the effective-

ness of the causal task over the causal evaluation

of LLMs is challenging since it is a new concept.

Nonetheless, this could be a valuable benchmark

for future model evaluations. Despite relying on

a specific instruction prompt for the causal task,

we could adapt the design for broader applica-

tions. For example, with a simple modification to

the prompt, we could test LLMs with multi-class

meme classification (Davidson et al., 2017).

6. Conclusion

We posit that hateful meme detection transcends

mere classification, gravitating towards intersec-

tional causal effect analysis. Our evaluations

spanned various Transformer architectures in

unique settings. To ensure our approach’s univer-

sality, extending our evaluations to other hateful

memes datasets (Gomez et al., 2020; Das et al.,

2023) will be pivotal. In the quest for broader in-

sights, exploring diverse challenges, such as the

intersectionality in multimodal medical analyses

(Azilinon et al., 2023), will be part of our future

work. For scalability, utilizing more of the power

of LLMs will be promising for confounder extrac-

tion and response evaluation.
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7. Ethical Considerations

In this research, we aim to develop innovative an-

alytical methods for identifying and mitigating the

proliferation of hateful memes, a pressing con-

cern given the complex interplay of text and im-

agery in propagating hate speech online. The na-

ture of this endeavor necessitates rigorous ethical

scrutiny, especially concerning the selection, uti-

lization, and presentation of these memes within

our scholarly work and its broader dissemination.

Herein, we delineate the principal ethical consid-

erations guiding our study.

The hateful memes we examine originate from a

prior investigation (Kiela et al., 2020). We direct

readers to the original study for insights into the

ethical measures employed during the dataset’s

compilation. Our engagement with this dataset is

underpinned by a firm commitment not to propa-

gate or validate the adverse messages it encom-

passes.

Our sample selection approach is predicated on

a causality framework detailed in the Confounder

Extraction section, ensuring a comprehensive ex-

amination of hate speech manifestations across

diverse community targets. This methodology un-

derscores our commitment to a nuanced analysis

that refrains from generalizations or biases.

A pivotal aspect of our ethical strategy is to recon-

cile the imperative of methodological transparency

with the necessity to limit harm. Consequently,

we exhibit restraint in our presentation of hate-

ful memes. Specifically, Figure 5 is the sole in-

stance within our publication where an actual hate-

ful meme is depicted. We have exercised metic-

ulous care to ensure that neither the accompany-

ing text description nor the figure caption dissemi-

nates any form of hate speech.

This strategy is emblematic of our broader ethical

stance, emphasizing the conscientious handling of

sensitive content. Our research is animated by a

profound dedication to combating hate speech in

all its forms, reflecting an unwavering commitment

to ethical research practices that respect the dig-

nity of all individuals and communities. Through

this work, we aspire not only to advance the field of

hate speech detection but also to contribute mean-

ingfully to creating more inclusive and respectful

digital spaces.

8. Limitations

This study’s primary limitation concerns the unver-

ified generalizability of its findings. Hateful memes

represent an evolving area of concern that neces-

sitates extensive, openly accessible datasets for

comprehensive analysis and validation. Our re-

search endeavors to tackle this challenge, yet the

broader scope for future exploration is highlighted

by the potential applications of our findings, as de-

tailed in the Discussion and the Conclusion sec-

tions.

A further constraint is the linguistic homogeneity

of the dataset employed, with the Hateful Memes

Challenge dataset comprising exclusively English-

language textual content. This presents a critical

limitation in the context of the global escalation of

extremism, where hate speech proliferates across

linguistic boundaries. The detection of multilingual

hate speech thus emerges as a crucial area for fu-

ture research, necessitating methodologies capa-

ble of navigating language-specific nuances and

cultural contexts.

Additionally, the field of hate speech detection

faces resource limitations, notably in the size and

diversity of available datasets. Hateful speech

datasets are generally small, restricting the depth

and breadth of training data for machine learning

models. We believe future studies could utilize

LLMs as dataset curators.

In summary, while this study contributes valu-

able insights into detecting and mitigating hate-

ful memes, it also underscores the need for fur-

ther research. Addressing the limitations related

to dataset generalizability, linguistic diversity, and

the scarcity of training data are pivotal steps to-

ward developing more effective and universally

applicable solutions for combating online hate

speech. Exploring innovative methods, such as

LLM-based dataset curation, represents a promis-

ing direction for overcoming these challenges.

From a theoretical standpoint, the groundwork of

our in-context learning analysis relies upon the

principles of simplified linear attention (Irie et al.,

2022; Dai et al., 2023). However, this founda-

tion’s direct applicability to conventional Trans-

former models invites scrutiny. Consequently, a

more nuanced interpretation (Ren and Liu, 2023)

may be imperative for advancing our understand-

ing in future investigations.
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A. Appendix

A.1. Further Exploration for Local
Explainability

Sample analysis for Oscar (Fig. 6) shows a sim-

ilar trend to UNITER (Fig. 5). Interestingly, Visu-

alBERT does not attend to the key components

(woman or cargo) in the image, supporting its bias

towards textual information.

Hateful

Text Benign

ImageImage Benign

Figure 6: Sampled derived from Oscar.

A.2. Breakdown of Attention Attribution
Score

The attention attribution score attr (Eq. 3) is the

product of the attention weight matrix and the inte-

gral of the gradient. To see the separate impact,

we replaced the attr term of the MIDAS equa-

tion (Eq. 9) with the attention MIDASatt or the

gradient MIDASgrad for comparison. In general,

MIDASatt (Fig. 8-10) shows a more similar trend

to the originalMIDAS thanMIDASgrad (Fig. 11-

13). This result implies that the attention weights

decide the model’s strategy, while the gradient ad-

justs the impact of the individual component.

Hateful

Text Benign

ImageImage Benign

Figure 7: Samples derived from VisualBERT.

1.5e-3

1.5e-3

0.5e-3

0.0

1.5e-3

1.5e-3

0.5e-3

0.0

-0.5e-3

1.5e-3
1.5e-3
0.5e-3

0.0
-0.5e-3

0.5e-4

0.0

-0.5e-4

-1.0e-4

0.5e-4
0.0

-0.5e-4
-1.0e-4
-1.5e-4
-2.0e-4

O36(image) O36(text)

O50(image) O50(text)

OV50(image) OV50(text)

all
text

image
cross

1.0e-4

0.0

-1.0e-4

-2.0e-4
-2.5e-4

Figure 8: Oscar MIDASatt.



2916

3.0e-3

2.0e-3

1.0e-3

0.0

-1.0e-3

4.0e-4

2.0e-4

0.0

-2.0e-4

-4.0e-4

1.0e-4
0.0

-1.0e-4
-2.0e-4

-4.0e-4
-3.0e-4

U36(image) U36(text)

U50(image) U50(text)

U72(image) U72(text)

all
text

image
cross

3.0e-3

2.0e-3

1.0e-3

0.0

-1.0e-3

2.5e-3
2.0e-3

1.0e-3

0.0

-1.0e-3

2.0e-4

0.0

-2.0e-4

-4.0e-4
-5.0e-4

Figure 9: UNITER MIDASatt.

1.0e-3

0.8e-3

0.6e-3

0.4e-3

0.0

0.2e-3

1.0e-3

0.8e-3

0.6e-3

0.4e-3

0.0

0.2e-3

1.0e-3

0.8e-3

0.6e-3

0.4e-3

0.0

0.2e-3

V45(image) V45(text)

V90(image) V90(text)

V135(image) V135(text)

all
text

image
cross

7.0e-5
6.0e-5

4.0e-5

2.0e-5

-1.0e-5
0.0

7.0e-5

6.0e-5

4.0e-5

2.0e-5

-1.0e-5
0.0

7.0e-5
6.0e-5

4.0e-5

2.0e-5

-1.0e-5
0.0

Figure 10: VisusalBERT MIDASatt.

4.0e-11

3.0e-11

2.0e-11

0.0

1.0e-11

0.0

-0.5e-11

-1.0e-11

-2.0e-11

-1.5e-11

4.0e-12

2.0e-12

0.0

-4.0e-12

-2.0e-12

6.0e-12

2.0e-12

1.0e-12

0.0

-2.0e-12

-1.0e-12

-3.0e-12

0.8e-11
0.6e-11
0.4e-11

0.0
0.2e-11

1.0e-11

O36(image) O36(text)

O50(image) O50(text)

OV50(image) OV50(text)

all
text

image
cross

0.0

-1.0e-11

-2.0e-11

-3.5e-11
-3.0e-11

-0.5e-11

-1.5e-11

-2.5e-11

Figure 11: Oscar MIDASgrad.

0.5e-11

0.0

-0.5e-11

-1.5e-11

-1.0e-11

1.0e-11

0.0

-1.0e-11

-2.0e-11

-3.0e-11

1.0e-11
U36(image) U36(text)

U50(image) U50(text)

U72(image) U72(text)

all
text

image
cross

0.6e-10
0.4e-10

1.4e-10

1.0e-10
1.2e-10

0.8e-10

0.2e-10
0.0

0.0
-1.0e-12

-3.0e-12
-2.0e-12

-4.0e-12

-6.0e-12
-5.0e-12

-7.0e-12

0.0

-0.2e-10

-0.6e-10

-0.4e-10

-0.8e-10

-1.0e-10

0.2e-10

0.0
-0.5e-11

-1.5e-11
-1.0e-11

-2.0e-11
-2.5e-11

0.5e-11

-3.0e-11

Figure 12: UNITER MIDASgrad.

V45(image) V45(text)

V90(image) V90(text)

V135(image) V135(text)

all
text

image
cross

0.5e-12

0.0

2.5e-12

1.5e-12

2.0e-12

1.0e-12

-0.5e-12

0.5e-12

0.0

2.5e-12

1.5e-12

2.0e-12

1.0e-12

-0.5e-12

0.5e-12

0.0

2.5e-12

1.5e-12

2.0e-12

1.0e-12

-0.5e-12

0.5e-12

0.0

1.5e-12

1.0e-12

-0.5e-12

1.0e-11

0.0

-2.0e-11

-3.0e-11

-1.0e-11

1.0e-11

0.0

-2.0e-11

-3.0e-11

-1.0e-11

Figure 13: VisusalBERT MIDASgrad.


	Introduction
	Related Work
	Causal ML and XAI
	Intersectionality
	Hate Speech and Hateful Memes
	LLM

	Methodology
	Background
	Average Treatment Effect
	Causal Intersectionality
	Attention Attribution Score
	Learning Objectives: Binary Classifier vs LLM
	Meta-Optimization in Few Shot Setting

	Proposed Methodology Overview
	Causal Multimodal Intersectionality
	Intersectionality Reframed
	Performance Measurement with Causal Intersectionality

	Attention Attribution Score by Interaction
	Formal Relation between miATE and MIDAS
	LLM
	Causal Objective: Implicit miATE maximization
	Causal Task Design
	Meta-Optimization for Causal Objective


	Experimental Settings
	Data Preparation
	Hateful Memes Dataset
	Confounder Extraction

	Experiment I: Fine-Tuned Transformer
	Analysis Type
	Models

	Experiment II: LLM
	Models
	In-Context Learning
	Meta-Gradient Evaluation

	Shared Settings
	Probing
	Text-Only Pretrained BERT
	External Resources


	Results & Discussion
	Experiment I: Fine-Tuned Transformer
	miATE
	MIDAS Global Analysis
	MIDAS Local Analysis
	Empirical Relation between MIDAS & miATE

	Experiment II: LLM
	Effectiveness of BLIP-2 information retrieval
	In-Context LLM Performance
	Meta-Optimization Evaluation

	Discussion

	Conclusion
	Ethical Considerations
	Limitations
	Acknowledgments
	References
	Appendix
	Further Exploration for Local Explainability
	Breakdown of Attention Attribution Score


