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Abstract

In pediatric rehabilitation services, one intervention approach involves using solution-focused caregiver strategies
to support children in their daily life activities. The manual sharing of these strategies is not scalable, warranting
need for an automated approach to recognize and select relevant strategies. We introduce CareCorpus, a dataset
of 780 real-world strategies written by caregivers. Strategies underwent dual-annotation by three trained annotators
according to four established rehabilitation classes (i.e., environment/context, n=325 strategies; a child’s sense of
self, n=151 strategies; a child’s preferences, n=104 strategies; and a child’s activity competences, n=62 strategies)
and a no-strategy class (n=138 instances) for irrelevant or indeterminate instances. The average percent agreement
was 80.18%, with a Cohen’s Kappa of 0.75 across all classes. To validate this dataset, we propose multi-grained
classification tasks for detecting and categorizing strategies, and establish new performance benchmarks ranging
from F1=0.53-0.79. Our results provide a first step towards a smart option to sort caregiver strategies for use in
designing pediatric rehabilitation care plans. This novel, interdisciplinary resource and application is also anticipated
to generalize to other pediatric rehabilitation service contexts that target children with developmental need.
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1. Introduction

Pediatric rehabilitation services are delivered in di-
verse contexts (e.g., home, school, clinic). They
can focus on outcomes such as a child’s functional
skills (e.g., motor or social skills) and participa-
tion, defined as their attendance and involvement
in home, school, and community activities (Imms
et al., 2017). Participation is a key rehabilitation
outcome endorsed by the World Health Organi-
zation (WHO) (World Health Organization, 2001).
Service providers and families typically develop
care plans based on their child’s functional skills
and participation level, and they may exchange
successful strategies with other caregivers to sup-
port their child’s participation in meaningful activi-
ties (Jarvis et al., 2020, 2019; Kaelin et al., 2021a).
We introduce CareCorpus (Kaelin et al., 2023b),

a new dataset of such solution-focused strate-
gies submitted by real caregivers to a web-based
healthcare application that supports pediatric reha-
bilitation service delivery. A solution-focused care-
giver strategy is a plan or action designed by care-
givers to support their child’s participation in daily
life activities (Khetani et al., 2013). We manually
and exhaustively categorized these strategies ac-
cording to a current framework for pediatric reha-
bilitation (Imms et al., 2017) that organizes strate-
gies based on how they support child participation:
strategies targeting a child’s environment/context,
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sense of self, preferences, and activity competen-
cies. Annotated strategies were also grouped into
broader categories of extrinsic (i.e., strategies tar-
geting a child’s environment/context) and intrinsic
(i.e., strategies targeting a child’s sense of self,
preferences, and activity competencies) strategies
(Imms et al., 2017).
Manually determining the most relevant strate-

gies for a family situation from a pool of options
is not scalable. This task is complicated by the
anticipated increase in available strategies gener-
ated when using web-based caregiver tools that
are being developed for use in this domain (Jarvis
et al., 2020; Kaelin et al., 2022a; Bosak et al., 2019;
Khetani et al., 2017, 2015), as well as individual
differences between families’ rehabilitation goals
and preferred strategies. It may be further compli-
cated by structural and stylistic differences in strat-
egy authoring across different caregivers when
using these tools (Villegas et al., 2023). Unlike
other healthcare tasks (Reyes-Ortiz et al., 2015;
Farzana et al., 2020; Khanbhai et al., 2021; Val-
izadeh and Parde, 2022), exploring automated
classification of strategies from caregivers of chil-
dren accessing pediatric rehabilitation services re-
mains rare in NLP, although recent innovations
suggest a pathway to support this process (Zirikly
et al., 2022; Albrecht et al., 2020; Jarvis et al.,
2020; Kaelin et al., 2023a).
We implement predictive models for detect-

ing and automatically classifying solution-focused
caregiver strategies at multiple granularities, vali-
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dating our dataset in settings in which we antici-
pate its real-world use. In doing so, we establish
performance benchmarks ranging from F1=0.79
for coarse-grained strategy detection to F1=0.53–
0.56 for finer-grained strategy classification. Our
primary contributions include:

• We introduce CareCorpus, a dataset of 780
real-world caregiver strategies, organized into
five classes including established pediatric re-
habilitation categories (environment/context,
sense of self, preferences, and activity
competence) and an additional class (non-
strategy) for submitted strategies with indeter-
minate or irrelevant content.

• We propose multi-grained classification tasks
for use with CareCorpus, including strategy
detection and finer-grained classification fol-
lowing anticipated need and an established
pediatric rehabilitation framework.

• We present benchmark models for solving
these tasks, achieving performance ranging
from F1=0.53–0.79 depending on task com-
plexity.

• We conduct a clinically-informed analysis of
these results to increase translational impact
and recommend steps for future work.

This research was conducted by an inter-
disciplinary research team bringing together re-
searchers with diverse technical and clinical back-
grounds. This team includes two natural language
processing experts holding PhDs in computer sci-
ence, and two experts holding research doctorates
in rehabilitation science, both of whom have prior
experience as clinicians and research expertise
on the development and/or use of assessments to
capture data on constructs of interest (i.e., solution-
focused caregiver strategies). We close by dis-
cussing the impact of these findings from both clini-
cal and technical perspectives. Our dataset is pub-
licly available (Kaelin et al., 2023b) to encourage
follow-up work.

2. Related Work

Although research towards automatically and in-
telligently simplifying rehabilitation service delivery
is of growing interest to the community, work ex-
amining caregiver strategy detection through pre-
dictive modeling has been limited (Kaelin et al.,
2021b, 2022b). The closest contemporary line
of related work may be in automated behavioral
coding. For example, Cao et al. (2019) observed
high performance in a behavioral coding model
for motivational interviewing (MI), predicting coun-
selor behaviors using a hierarchical gated recur-

rent unit (GRU) trained on a corpus of 353 MI ses-
sions. Gupta et al. (2020) explored automated
coding of Specific, Measurable, Attainable, Real-
istic, and Time-bound (Bovend’Eerdt et al., 2009,
SMART) goal-setting behaviors by training a CRF
model on 2,583 provider-patient text message ex-
changes, with promising success. However, the
data included in these studies were transcribed
interactions or text message exchanges that fo-
cused on goal-setting behavior broadly. In con-
trast, our work seeks to categorize caregiver strate-
gies for supporting child participation specifically—
a more targeted clinical task with unique and chal-
lenging nuances.
A recent NLP study that more closely focuses on

participation sought to classify clinical documents
(i.e., claims for federal disability benefits from the
U.S. Social Security Administration) in two key ar-
eas (mobility and self-care/domestic life) within the
International Classification of Functioning, Disabil-
ity and Health (Newman-Griffis et al., 2021). Their
highest performing model achieves strong perfor-
mance (F1>0.80), but it focuses on adult and not
pediatric services, which differ in their content.
When examining research within participation-

focused pediatric rehabilitation, most studies tar-
get robotics applications rather than opportunities
leveraging language data specifically (Beaudry
et al., 2019; Ljunglöf et al., 2011; Zhanatkyzy et al.,
2020; Kaelin et al., 2021b). For example, So
et al. (2020) demonstrated the use of a robot-
based play-drama intervention to promote joint at-
tention initiations and functional play behaviors of
children with autism spectrum disorder (ASD). The
few studies including participation-focused narra-
tive data aim to capture engagement and rarely in-
clude caregiver-reported data on supporting child
participation (Kaelin et al., 2022b, 2023a). For ex-
ample, Chorianopoulou et al. (2017) experimented
with detecting engagement of individuals with ASD
and typically developing (TD) children through
an utterance-level classification task using video-
recorded sessions, achieving 62% and 59% un-
weighted recall for TD children and children with
ASD, respectively. Thus, there is a well-motivated
need for resources more tailored to supporting chil-
dren’s participation in pediatric rehabilitation con-
texts. With CareCorpus, we take concrete steps
toward filling that gap.

3. Data

3.1. Data Collection

We sourced our dataset from content produced
by caregivers of children with developmental need
during two pilot implementation trials in a large
early intervention (EI) program that includes pedi-
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Characteristic, N=125 n (%)

Child Gender
Male 70 (56.0)
Female 53 (42.4)
Missing 2 (1.6)

Child Age (Months)
< 12 1 (0.8)
12-24 53 (42.4)
>24 70 (56.0)

Reason for EI Services
Diagnosis 30 (24.0)
Developmental delay (no diagnosis) 85 (68.0)
Risk for developmental delay 10 (8.0)

Family Income($)
<50,000 24 (19.2)
50,001-100,000 29 (23.2)
>100,001 69 (55.2)

Family Education Level
High school/Some college 19 (15.2)
College degree 36 (28.8)
Graduate education 70 (56.0)

Table 1: Child and family characteristics alongside
their statistics.

atric rehabilitation services such as occupational
therapy (Albrecht et al., 2020; Kaelin et al., 2022a).
Eligible participants: 1) were caregivers of chil-
dren with developmental need; 2) were at least 18
years old; 3) had a child between 0-3 years old
who had received services in the EI program for
at least 3 months; 4) had Internet access; and 5)
could read, write, and speak English. A total of 125
caregivers are represented in our dataset; descrip-
tive statistics of our cohort are provided in Table
1. Multi-institutional ethics approval was obtained
prior to participant recruitment and remained ac-
tive throughout our study.
Participating caregivers completed the home

and community sections of an electronic patient-
reported outcome (e-PRO) measure designed for
use in pediatric rehabilitation. Up to 24 open-
ended items were administered about solution-
focused strategies that caregivers have used to
support their child’s participation in activities for
which change is desired (e.g., “Please describe a
strategy that you have tried to help your child par-
ticipate successfully in basic care routines”). Care-
giver completion of these open-ended items re-
sulted in 780 English-language solution-focused
strategies, with an average of 6.24 and a range
of 1-24 strategies per caregiver. Per IRB pro-
tocol and to preserve participants’ privacy, we
manually de-identified the data (e.g., we replaced

any names appearing within the text with generic
[name] tokens) and we release this de-identified
version for public use.

3.2. Data Annotation
The collected data was dual-annotated and adjudi-
cated according to strategy type by three trained
annotators. The annotators were two undergrad-
uate students and one graduate student, all of
whom were native English speakers on an occu-
pational therapy or pre-occupational therapy track
and with expertise in participation-focused pedi-
atric rehabilitation. Two annotators earned course
credit and/or pay for conducting this work and
one volunteered. Strategy types corresponded to
known drivers of participation (Imms et al., 2017),
environment/context, sense of self, preferences,
and activity competence, detailed as follows:

• Environment/Context (EC): These strate-
gies target “broad objective social and phys-
ical structures” (Imms et al., 2017, p. 20) and
the setting where participation takes place, in-
cluding the people, places, activity, objects,
and time.

• Sense of Self (SOS): These strategies tar-
get “intrapersonal factors related to confi-
dence, satisfaction, self-esteem, and self-
determination” (Imms et al., 2017, p. 20).

• Preferences (P): These strategies target “in-
terests or activities that hold meaning or are
valued” (Imms et al., 2017, p. 20).

• Activity Competence (AC): These strategies
target a child’s “ability to execute the activ-
ity according to an expected standard” (Imms
et al., 2017, p. 20), including cognitive, physi-
cal, and affective skills and abilities.

Any strategies that could not be assigned to one
of those four classes were assigned a no-strategy
label, indicating that they did not describe an iden-
tifiable action (Kaelin et al., 2021a). The four strat-
egy classes can be collapsed into a simplified bi-
nary classification structure (Imms et al., 2017): ex-
trinsic strategies (i.e., environment/context) and in-
trinsic strategies (i.e., sense of self, preferences,
and activity competence). Table 2 presents corre-
sponding examples for each class in our dataset.
Annotators were trained on annotation procedures
and guidelines prior to labeling. Each strategy
was labeled independently by two annotators, and
discrepancies were discussed and resolved with
a third annotator based on majority rule and with
feedback from a key informant, both with clinical
expertise in pediatric rehabilitation and child par-
ticipation.
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Environment/Context (n=325)
1. Preparing her for the activity and letting her

know ahead of time.
2. We’ve tried to add 10 minutes of tidy-up

time into our evening routine.
Sense of Self (n=151)
1. We encourage him to play, say hello, give

hugs.
2. I wipe his mouth then give him the wash-

cloth to wipe his own mouth.
Preferences (n=104)
1. He loves wooden puzzles.
2. I put out costumes and allow her to choose

to wear one if she wants.
Activity Competence (n=62)
1. Hand-over-hand brushing of teeth and

washing of hands.
2. Have her practice certain ”moves” at home

during the weeks so she hears about them.
No-Strategy (n=138)
1. None.
2. She needs to be walking first.

Table 2: Examples from each class.

Setting (%) Agreement Kappa
Multinomial
Environment/Context 80.31 0.50
Sense of Self 82.78 0.56
Preferences 72.12 0.48
Activity Competence 75.81 0.48
No-Strategy 89.86 0.49
Binary
Strategy/No-Strategy 95.90 0.80
ES/IS 88.47 0.71

Table 3: Inter-rater agreement, measured using
percent agreement and Cohen’s Kappa. ES/IS =
extrinsic vs intrinsic strategies.

Of the 780 annotated data instances, 138 be-
longed to the no-strategy category. The remain-
ing strategies were distributed across the environ-
ment/context (n=325), sense of self (n=151), pref-
erences (n=104), and activity competence (n=62)
categories. Instances had an average length of
14.62 tokens and a maximum length of 144 to-
kens. To measure annotation quality, we com-
puted the average percent agreement (80.18%)
and Cohen’s Kappa (κ=0.75) across all classes.
Table 3 presents the percent agreement per class
and for binary categories.

3.3. Unique Qualities of the Dataset

To our knowledge, this is the first publicly avail-
able dataset of solution-focused strategies written
by caregivers of young children with developmen-
tal needs. It consists of short and topically- and
stylistically-varied content, raising complex and in-
triguing questions about classifying these strate-
gies. To better understand the caregiver strategies
represented within each class, we conducted topic
modeling using Latent Dirichlet Allocation (LDA)
(Blei et al., 2003). We automatically generated
15 topics per class using LDA. These topics were
carefully analyzed by a researcher with expertise
in pediatric rehabilitation and child participation,
who created topic titles for the top three topics for
each class based on common themes observed
within each topic. Via our topic analyses, we iden-
tified specific topics represented within each class
as outlined in Table 4. For activity competence
we only observed two relevant topic titles. For the
no-strategy class, we did not observe any relevant
topic titles, which was expected; instead of content
related to participation strategies, the identified top-
ics referred to different aspects of caregiver and
child life contexts.
The shared dataset reveals an imbalance

among classes (see Table 2). Specifically, the
class environment/context has the highest num-
ber of cases (n=325) while the class activity com-
petence has the fewest (n=62). When grouping
the entries into broader classes, such as strate-
gies and no-strategies or extrinsic and intrinsic
strategies, for less complex classification tasks,
an imbalance persists between the classes strate-
gies (n=642) and no-strategies (n=138). However,
there is no imbalance between extrinsic (n=325)
and intrinsic strategies (n=317).

4. Proof of Concept

To validate our dataset in settings in which we an-
ticipate its real-world use, we implemented clas-
sification models to establish new benchmarks
for caregiver strategy detection and classifica-
tion. In Section 4.1 we describe our preprocess-
ing steps for both classical machine learning and
Transformer-based models, and in Section 4.3 we
outline our modeling algorithms in detail. In Sec-
tion 4.4, we describe three classification tasks for
use with this dataset, of varying complexity.

4.1. Data Preprocessing

We applied the following preprocessing tech-
niques to the dataset prior to training our models:

• Spelling Correction: We used
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Environment/Context
1. Parent is involving toys, setting a time and

day and showing the child how to do an ac-
tivity

2. Using pictures, preparing ahead
3. Going to the park or taking the child to the

park
Sense of Self
1. Asking the child to help with an activity

(e.g., cleaning, putting dishes away, vac-
uum cleaning, holding something)

2. Using positive reinforcement and including
the child into an activity

3. Encouraging new things, activities, and ex-
periences

Preferences
1. Including the child’s ideas and choosing ac-

tivities (e.g., play) that a child loves and en-
joys

2. Making activities fun
3. Making activities a game and letting the

child pick activities or toys
Activity Competence
1. Working on gross motor and fine motor

skills and vision
2. Providing instructions about the activity or

hand-over-hand support

Table 4: Topics per class.

pyspellchecker1 to check and vali-
date the spelling of words in our dataset, and
replace errors with suggested corrections
(Wankhede et al., 2018).

• Punctuation Mark Removal: We removed
all punctuation marks from our dataset.

• Number Replacement: To prevent our mod-
els from overfitting to specific number values
or introducing unnecessary noise to the learn-
ing process, we replaced all numbers in our
dataset with generic [number] tokens.

• Case Normalization: We converted all text to
lowercase to avoid introducing noise associ-
ated with capitalization inconsistencies to the
learning process.

When training statistical classification models,
we applied two extra preprocessing steps to the
data. First, we removed stopwords (Kaur and But-
tar, 2018) using the NLTK English stopwords list
(Bird, 2006). Then, we lemmatized (Plisson et al.,

1https://pypi.org/project/
pyspellchecker

2004) words in our dataset, using NLTK’s Word-
NetLemmatizer, to base forms from the WordNet
dictionary (Fellbaum, 2010) when available to re-
duce data sparsity.

4.2. Feature Representations
We represented our feature spaces differently for
statistical and Transformer-based models. For sta-
tistical models, we used TF-IDF vectors with a vo-
cabulary size of the 5000 most-frequent words in
our dataset (Zhang et al., 2011). For Transformer-
based models, we used contextual word em-
beddings generated by the pretrained language
model.

4.3. Models
We experimented with both statistical and
Transformer-based classification models to vali-
date our dataset, compare model performance,
and establish a performance benchmark. Sta-
tistical machine learning models often work well
for low-resource tasks or problems leveraging
smaller training datasets (Meetei et al., 2021),
but recently Transformer-based models have
also performed competitively in those settings
(Cruz and Cheng, 2020; Wu and Dredze, 2020).
For our initial model comparison experiments,
we performed a multinomial classification of
caregiver strategies across our full five-class data
distribution, comparing logistic regression, naïve
Bayes, BERT, and Bio-ClinicalBERT models to a
most-frequent-class baseline. We briefly motivate
each below:

• Logistic Regression (LR): LR is a straight-
forward, widely-utilized feature-based model
that often achieves strong results for text clas-
sification problems (Lee et al., 2006; Ganesan
and Subotin, 2014). We applied LR because
it has been often used as an approach in re-
lated research (Le Glaz et al., 2021).

• Naïve Bayes (NB):NB is based on the Bayes’
probability theorem (Joyce, 2003) and is often
useful for classifying documents and text seg-
ments (Kim et al., 2006). We applied NB be-
cause it is known to perform well with small
datasets (Jurafsky and Martin, 2008).

• BERT: BERT is a powerful pre-trained
Transformer-based model that has achieved
success on a wide variety of NLP tasks,
in many cases outperforming previously
introduced models (Devlin et al., 2018).

• Bio-ClinicalBERT: BERT is pre-trained on
general-domain text, but the patterns learned
from these data may not generalize well to

https://pypi.org/project/pyspellchecker
https://pypi.org/project/pyspellchecker
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Figure 1: Classification settings considered in our experiments. EC=environment/context; SOS=sense
of self; P=preferences; AC=activity competence; S/NS=strategy vs. no-strategy; ES/IS=extrinsic vs. in-
trinsic strategies.

some clinical problems. Bio-ClinicalBERT
(Alsentzer et al., 2019) is a BERT-based
model that is pre-trained on two million clinical
notes from the MIMIC-III v1.4 database (John-
son et al., 2016). We hypothesized that its use
may carry advantages similar to, but perhaps
better than, those expected with BERT.

• Baseline: Since there is no existing bench-
mark for our task, to set a performance floor
we predicted the most frequent class from
the training set for each instance. This per-
mitted us to illustrate the learnability of our
dataset and associated task at a higher rate
than chance.

We split the data into training (90%) and test
(10%) sets to train and evaluate our statistical mod-
els. We optimized model parameters via 10-fold
cross-validation on the training set (Refaeilzadeh
et al., 2009). The best-performing model was then
retrained using the full training set and applied to
the held-out test set.
For the Transformer-based models, we split the

data into training (80%), validation (10%), and test
(10%) subsets, training our models on the training
set and fine-tuning models and optimizing hyper-
parameters using the validation set. The collective
training and validation sets used for Transformer-
based models were the same data used in the
the training set for our statistical models, and like-
wise the test sets were identical for statistical and
Transformer-based models. To ensure no unin-
tentional biases, we kept all strategies authored
by the same participant in the same set for all
models. We trained Transformer-based models
using a learning rate of 3e-5 and batch size of
two. We trained BERT for three epochs and Bio-
ClinicalBERT for four epochs. We used our top-
performing model from our model comparison for
our later experiments.

4.4. Classification Settings
Our dataset yields high real-world clinical rel-
evance by enabling automated classification of
solution-focused caregiver strategies into different
rehabilitation-relevant categories. This includes
1) strategy classification into all five classes (i.e.,
environment/context, sense of self, preferences,
activity competence, and non-strategies), and 2)
pipelined filtering of non-strategies followed by
classification of the remaining strategies into ex-
trinisic strategies (i.e., strategies focusing on the
environment/context) and intrinsic strategies (i.e.,
strategies focusing on a child’s sense of self, pref-
erences, or activity competencies). We com-
pared models across both scenarios using 1) the
model comparison described for our preliminary
experiments, and 2) a pipelined approach where
we experimented with a sequential classification
paradigm (see Figure 1).
For our pipelined approach, the first strategy ver-

sus no-strategy (S/NS) task was a binary strategy
detection task designed to filter out instances that
do not qualify as caregiver strategies. We trained
and evaluated our models using a strategy class
(containing instances from environment/context,
sense of self, preferences, and activity compe-
tence) and a no-strategy class. This separation
facilitates further analyses in our second pipelined
task including only caregiver strategies. Our sec-
ond extrinsic versus intrinsic strategy (ES/IS) clas-
sification task was designed to classify the care-
giver strategies into the extrinsic and intrinsic
groups defined in Section 3.2. This setting may
enable clinicians or downstream applications to be-
gin distinguishing between more specific types of
strategies, allowing for decisions to be made with-
out requiring finer-grained precision.

5. Evaluation

We evaluated the performance of our models us-
ing accuracy, precision (P), recall (R), and F1. In
Section 5.1, we compare the performance of our
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Model Acc (%) Precision Recall F1

Baseline 40.78 0.08 0.20 0.11
LR 57.89 0.69 0.43 0.46
NB 53.95 0.85 0.38 0.38
BERT 64.47 0.73 0.53 0.56
Bio-
ClinicalBERT 53.94 0.71 0.40 0.39

Table 5: Model performance comparison in the
five-class multinomial setting. Acc = accuracy; LR
= logistic regression; NB = naïve Bayes.

Model Acc (%) P R F1

S/NS 88.15 0.82 0.76 0.79
ES/IS 58.06 0.64 0.58 0.53

Table 6: Model comparison for the pipelined steps.
S/NS = strategy vs. no-strategy; ES/IS = extrinsic
vs.intrinsic strategies; P = precision; R = Recall.

baseline, LR, NB, BERT, and Bio-ClinicalBERT
models. We then discuss our findings from the
pipelined approach introduced in Section 4.4, us-
ing the highest-performing model from Section 5.1.

5.1. Task Validation

5.1.1. Model Comparison

We present the results for each model condition
(baseline, LR, NB, BERT, and Bio-ClinicalBERT)
in a five-way multinomial classification setting in
Table 5. BERT achieves the highest performance
overall, with accuracy=64.47%, P=0.73, R=0.53,
and F1=0.56. It outperformed both our highest
performing statistical model (LR, by relative
performance increases of accuracy=11.36%,
P=5.79%, R=23.25%, and F1=21.73%) and
the other Transformer-based classifier (Bio-
ClinicalBERT, by relative performance increases
of accuracy=19.52%, P=2.81%, R=32.5%, and
F1=43.58%). The BERT model surpassed our
most frequent class baseline by percent increases
in accuracy, precision, recall, and F1 of 23.69%,
65.0%, 20.0%, and 28.0%, respectively.
Since our test set was relatively small, we re-

port our per-class prediction results holistically in
Figure 2. We observed that predictions were best
for the environment/context class, followed by the
sense of self class. The lowest overlap between
predicted and true labels was found in the activity
competence class.

Figure 2: Heatmap with true and predicted labels
for the BERT model. EC=environment/context;
SOS=sense of self; P=preferences; AC=activity
competence.

5.1.2. Pipelined Classification Tasks

We trained and evaluated our highest-performing
model, BERT, for the pipelined classification set-
ting introduced in Section 4.4 and present our re-
sults in Table 6. We observe that the binary strat-
egy vs. no-strategy performance is higher than ob-
served in the multinomial model comparison, with
increases in accuracy, precision, recall, and F1 of
36.73%, 12.32%, 43.39%, and 41.07%. The over-
all strong accuracy (88.15%) and F1 (0.79) sug-
gest that our benchmark model is well-equipped
to perform binary strategy detection.
For the next stage of the pipeline, we trained

and evaluated our model using only caregiver
strategies (instances with gold labels of environ-
ment/context, sense of self, preferences, and
activity competence). We observe that our
model achieves promising performance at extrin-
sic strategy vs. intrinsic strategy classification (ac-
curacy=58.06%, P=0.64, R=0.58, and F1=0.53),
although lower than that observed for the strategy
vs. no-strategy condition and slightly lower than
that observed in themodel comparison experiment
(Table 5). This may suggest that inclusion of a non-
strategy class trivializes the task due to the ease of
distinguishing this class from others, whereas con-
ditions without this class remain more complex.

6. Discussion

Existing pediatric rehabilitation tools already so-
licit for information about strategies and may em-
ploy manual approaches to identify suitable goal
attainment strategies (Kaelin et al., 2021a), but
the increase of users submitting strategies to
these tools complicates the task of sorting and
selecting relevant strategies and increases care-
giver burden (Kaelin et al., 2021a). CareCor-
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pus enables and encourages research on au-
tomated strategy classification, filling an exist-
ing void. We empirically demonstrate that high-
performing Transformer-based language models
can be fine-tuned to capably classify strategies
using CareCorpus, with results for the five-way
classification task reaching an accuracy of 64.47%
and F1=0.56. These results are comparable to and
slightly higher than prior participation-related clas-
sification tasks using videorecordings for engage-
ment detection among children with ASD, which
reached an unweighted accuracy=53.90% (Chori-
anopoulou et al., 2017).
Beyond the clinical need for this work, CareCor-

pus creates new opportunity to study rich,
open-ended, domain-specialized language in
a lower-resourced setting. Participation and
its related constructs are widely recognized as
being complex in nature (Imms et al., 2017;
World Health Organization, 2001), as supported
by our own investigation. For example, BERT out-
performed Bio-ClinicalBERT in our experiments,
despite the latter’s clinical focus. Analyses on
Bio-ClinicalBERT’s predictions revealed low per-
formance for the preferences, activity competence,
and no-strategy classes (see Figure 3), which
may be explained by stylistic differences between
health-related data obtained from patients stay-
ing in critical care units and caregiver-submitted
strategies (Johnson et al., 2016). Specifically,
data pertaining to the classes preference and no-
strategy are less common in clinical notes (Gaudry
et al., 2017; Choong et al., 2018) and are po-
tentially more related to general-domain language.
Bio-ClinicalBERT’s lower performance on activity
competence is more surprising from that perspec-
tive, but reinforces findings from prior classifica-
tion tasks for mobility and self-care/domestic life
(Newman-Griffis et al., 2021). Preferences, ac-
tivity competence, and no strategy were all also
less frequent in the dataset, and mispredictions for
these classes were generally labeled as members
of more frequent classes.
The least challenging of our proposed tasks was

the strategy detection task. Our own annotators’
agreement was also high for this task, further sup-
porting this. Interestingly, macro-averaged F1 in
the initial model comparison experiments (i.e., five-
way classification task) was slightly higher than
for the ES/IS classification (the second stage of
the proposed pipelined tasks). This may sug-
gest that the non-strategy class is particularly easy
to identify—the per-class F1 for non-strategy is
slightly above the average F1 across other classes
(see Figure 2 for additional breakdown of predic-
tions). Thus, inclusion of this class may have re-
sulted in deceptively high macro-averaged scores
in the model comparison experiments.

Figure 3: Heatmap with true and pre-
dicted labels for the Bio-ClinicalBERT model.
EC=environment/context; SOS=sense of self;
P=preferences; AC=activity competence.

Overall, results support feasibility of all pro-
posed caregiver strategy classification tasks
and general validity of the dataset. From a
clinical perspective, components of the pipelined
paradigm, such as a model that successfully de-
tects and filters non-strategies, might be sufficient
for automatically prompting caregivers towards
submitting valid strategies when using electronic
pediatric rehabilitation tools. High-performing
finer-grained classification models are more suit-
able for building large-scale end-to-end systems.
Our results and subsequent analyses reveal op-
portunities to improve model performance for both
settings. CareCorpus could be leveraged by
others, including in the ways outlined here, to
optimally support caregivers when searching for
solution-focused strategies to help develop pedi-
atric rehabilitation care plans. It could also offer
value as an experimental sandbox for other sim-
ilarly challenging, low-resourced, domain-specific
language tasks.

7. Conclusion

In this work, we introduce CareCorpus, a new
dataset created by an interdisciplinary research
team to support the smart classification of care-
giver strategies into established pediatric rehabil-
itation strategy types. The dataset includes 780
caregiver-submitted strategies collected using a
working pediatric rehabilitation tool, each of which
are dual-annotated for strategy type by individuals
with expertise in participation-focused pediatric re-
habilitation. Inter-annotator agreements, reflecting
the complexity of constructs related to participation
(Imms et al., 2017), together with our validation ex-
periments support the feasiblity of this dataset for
learning.
Our findings also provide a framework for fu-
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ture dataset augmentation using various meth-
ods to strengthen model performance, which is
currently underway. We compare a variety of
strategy classification models, achieving a macro-
averaged F1=0.56 when classifying across all strat-
egy categories. This provides evidence of classi-
fication feasibility while also highlighting the chal-
lenging nature of this task. We also introduce
two pipelined classification tasks for use in down-
stream clinical applications, including a strategy
detection task (S/NS) and an extrinsic versus in-
trinsic strategy classification task (ES/IS, and em-
pirically validate them. We make our dataset pub-
licly available. Ultimately, this work offers a foun-
dation for follow-up translational efforts geared to-
wards assisting caregivers in developing personal-
ized care plans for their child’s pediatric rehabilita-
tion services.

Limitations

In this work, we introduced a publicly available
dataset of real-world caregiver strategies catego-
rized into established rehabilitation classes and a
no-strategy class. Our work is limited by three
factors. First, although CareCorpus is larger and
more clinically diverse than many datasets in the
healthcare domain (Albrecht et al., 2020), it is
still relatively small for training deep learning mod-
els. Second, the dataset is imbalanced (EC=325
strategies, SOS=151 strategies, NS=138 strate-
gies, P=104 strategies, and AC=62 strategies).
Balancing our class distribution may result in im-
provements for each class, and in turn greater
overall model performance. Third, CareCorpus
includes only English-language strategies. En-
glish is a high-resource language, and it is un-
clear whether the proposed techniques would yield
similarly high performance in less-resourced lan-
guages. Thus, the methods and findings within
are limited in their scope and may not generalize
beyond the English language. In the long term, it
is our hope to extend this work to other languages.

Ethics Statement

Like in other healthcare tasks (Kaelin et al., 2022b),
real-world data is needed for the development
of smart applications for pediatric rehabilitation
service delivery. However, protecting the rights
and privacy of research participants is critical
(Abouelmehdi et al., 2018; Soceanu et al., 2015).
Multi-institutional ethics approval was obtained
prior to participant recruitment and remains active
for this study. Per IRB protocol, we ensured that
each participant provided consent for study par-
ticipation and was informed about their rights to
withdraw their participation at any time. Partici-

pants were reimbursed with a $10 gift card. We
also de-identified our dataset by eliminating any
usernames or other identifying data, and replac-
ing any names written directly within instances with
generic name tokens (i.e., [name]). Data is avail-
able in the Inter-university Consortium for Politi-
cal and Social Research (ICPSR) portal (Kaelin
et al., 2023b). The intended use for the dataset
is to analyze solution-focused caregiver strategies
such as by exploring automated classification to
support rehabilitation service provision. Part of
this dataset can be linked to another dataset with
restricted access. ICPSR requests IRB approval
for researchers to access this additional linked
dataset to ensure research done with this dataset
aligns with ethical regulations and principles.
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