Can Language Models Learn Embeddings of
Propositional Logic Assertions?

Nurul Fajrin Ariyani', Zied Bouraoui?, Richard Booth',Steven Schockaert'
Cardiff NLP, Cardiff University, UK, 2CRIL-CNRS & University of Artois, France
{ariyaninf, boothr2, schockaerts1}@cardiff.ac.uk, zied.bouraoui@cril.fr

Abstract
Natural language offers an appealing alternative to formal logics as a vehicle for representing knowledge. However,
using natural language means that standard methods for automated reasoning can no longer be used. A popular
solution is to use transformer-based language models (LMs) to directly reason about knowledge expressed in natural
language, but this has two important limitations. First, the set of premises is often too large to be directly processed
by the LM. This means that we need a retrieval strategy which can select the most relevant premises when trying
to infer some conclusion. Second, LMs have been found to learn shortcuts and thus lack robustness, putting in
doubt to what extent they actually understand the knowledge that is expressed. Given these limitations, we explore
the following alternative: rather than using LMs to perform reasoning directly, we use them to learn embeddings of
individual assertions. Reasoning is then carried out by manipulating the learned embeddings. We show that this
strategy is feasible to some extent while at the same time also highlighting the limitations of directly fine-tuning LMs

to learn the required embeddings.

Keywords: formula embeddings, language models, deductive reasoning, propositional logic

1. Introduction

Many Natural Language Processing (NLP) tasks
involve some form of reasoning. For instance, an-
swering scientific or technical questions typically
involves using available knowledge (e.g. heat trav-
els through a thermal conductor, steel is made of
metal, metal is a thermal conductor) to infer spe-
cific facts (e.g. heat travels through a steel spoon)
(Mihaylov et al., 2018). When such inferences only
involve general knowledge, recent Large Language
Models (LLMs) can often perform such reason-
ing steps implicitly. However, many knowledge-
intensive tasks require reasoning with application-
specific facts and rules. Consider, for instance, the
problem of checking whether a given scenario or
process is compliant with some policy (Zhong et al.,
2018; Bonatti et al., 2020). Current approaches for
addressing such problems mostly rely on formal
knowledge representation techniques. However,
formalising policies is non-trivial and highly time-
consuming, severely limiting the real-world impact
of Al techniques in this area. Ideally, we would
like to directly reason about the original, natural
language specification of the policy.

Using Language Models (LMs) in such applica-
tions is challenging. First, we cannot simply feed
the available knowledge as input to an LLM, be-
cause the set of assertions is simply too large (e.g.
real-world policies are often hundreds of pages
long). Thus, we need a kind of retrieval mechanism
to select the knowledge that is needed to complete
a given reasoning task. Second, the ability of lan-
guage models to faithfully carry out complex rea-

soning tasks remains limited (Creswell et al., 2023).
This problem is exacerbated when only smaller LMs
can be used, which is often the case in practice
due to the prohibitive cost of using LLMs. While
smaller BERT-style (Devlin et al., 2019) LMs can
be fine-tuned to carry out reasoning tasks (Clark
et al., 2020), such models tend to learn statistical
artefacts of the training set rather than the meaning
of logical formulas (Zhang et al., 2023).

To address these concerns, in this paper, we
study the possibility of learning embeddings that
capture the meaning of individual assertions. In
line with recent work (Clark et al., 2020; Zhang
et al., 2023), we focus on assertions that can be
formalised using propositional logic and which are
expressed in a simplified form of natural language.
We focus on this simplified setting as it allows us
to analyse the limitations (and potential) of LMs for
this task more clearly. In contrast to this previous
work, we focus on embedding individual formulas,
rather than using a joint encoder where all premises
and the hypothesis are fed to the model together.

Formally, we want to learn an encoder ENc
which allows us to check whether some premises
p1,...,pr entail a hypothesis h by first pooling
the embeddings ENC(p1), ..., ENC(py) in some way
and then comparing the resulting embedding with
Enc(h). While this approach may vyield slightly
lower performance than a joint encoder, it offers
significant advantages. First, the encoder Enc can
straightforwardly be used to develop a bi-encoder
retrieval model, allowing us to efficiently retrieve
relevant pre-computed premises from a potentially
large knowledge base. Second, we hypothesise

2766

LREC-COLING 2024, pages 27662776
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

that this model will be less prone to shortcut learn-
ing: since each formula is embedded separately,
the model is intuitively forced to capture the mean-
ing of the formulas.

2. Related Work

Reasoning with Language Models. There are
several major lines of research that are focused on
the reasoning abilities of NLP models. One line
focuses on the problem of Natural Language Infer-
ence (NLI), which requires models to decide the log-
ical relationship between a premise and a hypothe-
sis, both formulated in natural language (Bos and
Markert, 2005; Bowman et al., 2015). The notion of
entailment which is used in this setting is inherently
informal: the focus is on deciding whether a human
who believes the premise would also assume that
the hypothesis is likely. A second research line is
essentially focused on decomposing questions that
are difficult to answer directly. In earlier work on
multi-hop question answering (Yang et al., 2018;
Welbl et al., 2018), the actual reasoning aspect
was often more or less straightforward. In more
recent benchmarks, however, it can be harder to in-
fer which reasoning steps are needed (Geva et al.,
2021). Finally, there is also a large body of work
that focuses on more specialised reasoning tasks,
such as numerical reasoning (Roy and Roth, 2015;
Cobbe et al., 2021; Amini et al., 2019). While impor-
tant challenges remain, scaling up LLMs has led to
significant improvements in the reasoning abilities
of NLP systems, especially with strategies such
as chain-of-thought prompting (Wei et al., 2022),
where the model is given step-by-step explanations
of how similar problem instances can be solved.

Logical Reasoning with Neural Networks. The
aforementioned works focus on informal reasoning.
The question of whether LMs, or neural networks
more generally, are able to learn the semantics
of formal logics has also been addressed. For in-
stance, within the context of automated theorem
proving, there has been considerable interest in the
problem of learning embeddings of logical formulas
to help with premise selection (Wang et al., 2017;
Paliwal et al., 2020; Crouse et al., 2019). In this set-
ting, formulas are represented in symbolic form (e.g.
as a parse tree). Graph Neural Networks (GNN)
are typically used for learning the embeddings, al-
though variants of LSTMs have been used as well
(Irving etal., 2016; Loos et al., 2017). More recently,
the possibility of using transformer architectures for
interpreting formal languages has also been con-
sidered (Bhattamishra et al., 2020). While our work
is also partially motivated in terms of premise se-
lection, we focus on knowledge that is expressed
in natural language and we rely on fine-tuned LMs
to learn formula embeddings. Beyond learning for-

mula embeddings, several authors have studied the
use of neural networks for directly solving formal
reasoning tasks, including predicting satisfiability
(Selsam et al., 2019), generating satisfying traces
of temporal logic formulas (Hahn et al., 2021), and
weighted model counting (Abboud et al., 2020).

Logical Reasoning with Language Models.
Within NLP, starting with Clark et al. (2020), several
authors have studied the ability of fine-tuned LMs
to formally reason with natural language encodings
of logical formulas. Clark et al. (2020) found that
LMs can learn to reason with Horn rules with al-
most perfect accuracy, where the rules involved
were presented in a simplified natural language.
However, recent work has suggested that this is
mostly due to a form of shortcut learning (Zhang
etal., 2023). In particular, when test examples were
sampled from a different distribution, performance
was found to drop substantially, suggesting that the
models do not learn to reason in a systematic way.
Richardson and Sabharwal (2022) studied the per-
formance of LMs on hard instances of propositional
satisfiability, where clauses were again presented
in a simplified natural language. They reported gen-
erally strong results but highlighted the need for a
careful selection of training data and found that
models struggled to generalise to larger problem in-
stances. Finally, to enable more robust inferences,
some authors have analysed the use of LMs for
generating step-by-step proofs (Saha et al., 2020;
Tafjord et al., 2021; Creswell et al., 2023). The
underlying idea is that LMs are capable of mak-
ing accurate one-step inferences, which can be
chained by iteratively applying the same model.

3. Representing Formulas as
Embeddings

We first discuss the problem of learning formula em-
beddings from a theoretical point of view, to better
understand under what conditions it is possible to
do formal reasoning by manipulating such embed-
dings. In this section, we will assume that formulas
are encoded in propositional logic.

Basic Notions. Propositional logic formulas are
built from a set of atoms (or atomic propositions) At
using the connectives A, v, = and — in the usual
way. For instance, a A b — —c¢ (with a,b,c € Af)
intuitively means that cis false whenever a and b are
true. Aliteral [is either an atom a or a negated atom
—a (with a € Af). In the former case, we say that [
is a positive literal; otherwise, we call [a negative
literal. A clause is a disjunction of literals. A Horn
clause is a clause that has at most one positive
literal. An interpretation w is a mapping from At to
the set {true, false}, intuitively specifying which of
the atoms in At is true. Interpretations are extended

2767

to arbitrary formulas in the usual way. We write
w [a, for an interpretation w and a propositional
formula «, to denote that w makes the formula «
true. In such a case, we say that w is a model of a.
We say that a set of formulas {«;, ..., a; } entails the
formula g, written {1, ..., ax } = 3 if every model of
aq, ..., i is also amodel of 3, i.e.ifw E ay A...Aay
implies w = §. If « and 8 have the same models,
we say that they are equivalent. For instance, the
Horn clause —a; V ... V —a., V b is equivalent to the
implication a; A ... A a,, — b. Implications of the
latter form are called Horn rules.

Formula embeddings. A formula embedding ¢ is
a mapping from propositional formulas to R™. We
are interested in learning formula embeddings that
support reasoning. Specifically, we want to find
a formula embedding ¢ and a scoring function
such that ¢ (¢(a), ¢(B)) > 0iff « = B. First, we may
wonder if it is actually possible. If the set of atoms
At is finite, this is indeed the case. For instance, let
w1, ..., w, be an enumeration of all interpretations,
with n = 2141 and let us write (a1, ...,a,) for the
embedding of formula «, defined as:

a; = 1 Ifwi):-Oé (1)
0 otherwise

Let (b1, ...,b,) € R™ be the embedding of a formula
B, defined in the same way. Then we have a = 3
iff Vi . a; < b;, which is equivalent to:

—> RelU(a; — b;) >0 (2)

Note that the latter condition holds iff > . ReLU(a; —
b;) = 0. Furthermore note that with this choice of
embedding function, there is a close connection
between logical conjunction and min-pooling, i.e.
we have:

d(ag Ao Aayg) = min(g(aq), ..., d(ag))

where the minimum is applied component-wise.
This is appealing, as it means we can decide
a1 A ... A ag = B by embedding the premises «;
separately. In scenarios where we have a large set
of candidate premises to choose from, this means
that all formula embeddings can be pre-computed.

Limitations of formula embeddings. One ques-
tion is whether it would be possible to check entail-
ment using a linear scoring function, i.e. whether
there can be a linear function ¢ such that for any
formulas o and 5 we have ¥ (¢p(a) ® ¢(B)) > 0 iff
a | B, where we write @ for vector concatena-
tion. Unfortunately, this is not possible. In partic-
ular, it is easy to verify that the following inequal-
ities cannot be simultaneously satisfied if) is lin-
ear: P(¢(a) @ ¢(a)) > 0, P(¢(B) @ 6(B)) > 0,
Y(d(a) & ¢(B)) < 0, Y(¢(B) & p(a)) < 0. We

may also wonder whether it is possible to use for-
mula embeddings with fewer than 2/4*! dimensions.
Without further constraints, this is clearly the case.
However, as discussed above, it is highly desirable
that (g A ... Aag) = f(@(aq), ..., d(ay)) holds, for
some standard pooling function f. In that case,
unfortunately, it is not possible to use fewer than
214t dimensions (Schockaert, 2023).

Approximate formula embeddings. Clearly, us-
ing embeddings with 2/t dimensions is not usually
feasible. Moreover, in practice, the set of atoms is
not even fixed a priori, which means that we cannot
design an embedding function that will always cap-
ture propositional entailment faithfully. However,
we can still design embeddings that capture the
meaning of logical formulas in an approximate way.
In particular, let A be a hashing function, which
maps each atom to a value between 1 and ¢, for
some ¢ € N. For each formula «, we can consider
a reduced formula «* in which each occurrence
of an atom a € At is replaced by the atom z;,(,).
Every reduced formula is thus a propositional for-
mula over the set of atoms At" = {zy,...,z,}. We
can then model entailment of these formulas as
in (2), using embeddings with 2¢ dimensions. As-
suming the hashing function assigns each value
with the same probability, the chance of two distinct
atoms being assigned the same hash is given by
%. If & and g together mention m distinct atoms,
the probability that these atoms are mapped to dis-
tinct hashes is given by m_(fim)!. If ¢ is sufficiently
large, relative to m, the probability that all atoms
are mapped to distinct hashes is thus close to 1. In
such a case, o* = * is equivalent to o = 5. We
thus expect reasoning with formula embeddings to
be accurate as long as the total number of atoms
that appear in the formulas involved is sufficiently
small, regardless of the overall size of At.

4. Encoding Strategies

We now describe the models we rely on for learning
formula embeddings. The input to these models
consists of a set of premises {p1, ..., pi.} together
with a hypothesis £, all of which are encoded as
natural language assertions.

Order Embeddings. Our main model is inspired
by the embedding defined in (1), and in particular,
by its relationship to the Order Embeddings model
from Vendrov et al. (2016). First, each natural lan-
guage assertion p is encoded as follows:

Enc(p) = ¢(LM(p))

where LM is a fine-tuned LM. Specifically, we use
BERT to encode the assertion p and then aver-
age the output tokens to get a fixed-dimensional
embedding. This embedding is then passed to a

2768

feedforward network ¢. We check whether o en-
tails g by checking whether each coordinate in the
embedding of « is smaller than the corresponding
coordinate in the embedding of 5. We represent
a set of premises P as Enc(P) = min’_, Enc(p;),
where the minimum is applied component-wise.
We write Enc;(P) and Enc;(h) for the i" coordinate
of Enc(P) and Enc(h) respectively. We consider
the following scoring function:

score(P,h) = Y~ max (0, Enc;(P) — Enc;(h))”
=1

If the set of premises P entails the hypothesis
h, then we should have Enc;(P) < Enc;(h) for
every coordinate ¢ € {1,...,n}. In other words,
score(P, k) should be 0'if {p1, ..., p } entails h, and
should be strictly positive otherwise. This leads to
the following margin loss (Vendrov et al., 2016):

L= Y score(Enc(P),Enc(h))
(P,h)eT+

+) max(0,A — score(Enc(P),Enc(h)))
(P,h)ET—

Here T represents a set of positive examples
(P,h), where P logically entails h, whereas T~
represents a set of negative examples. At test
time, an instance (P, h) is classified as positive
if score(Enc(P),Enc(h)) < A. In our experiments,
we tune X € [0, A] on the validation set.

Joint Premise Order Embeddings. One key de-
sign choice in the Order Embeddings model is the
fact that a set of premises P is encoded by min-
pooling the embeddings of the individual premises.
This has several advantages, but as we pointed out
in Section 3, encoding formulas in this way requires
high-dimensional embeddings. For this reason, we
also experiment with a variant in which the set of
premises is jointly encoded. Specifically, we now
assume that we have two separate encoders: one
for encoding sets of premises and one for encoding
the hypothesis:

Encprem(P) = ¢1(|—Mprem(P))
Enchyp(h) = ¢2(LMhyp(h))

The encoder Encpy, is used to encode an individual
hypothesis, as before. However, to encode the set
of premises P we now simply concatenate them,
separated by the [SEP] token, and feed the result to
another fine-tuned language model LMpren. We will
consider two variants of this model: one where the
parameters of the two encoders are tied, i.e. ¢; =
¢2 and LMpem = LMy, and one where the two
encoders use different parameters. The scoring
function and loss are then defined as before, i.e.
we only change how sets of premises are encoded.

Joint Premise Bi-Encoder. We will also experi-
ment with a variant that uses a standard bi-encoder
model. In this case, we train the model using binary
cross-entropy, as follows:

L= Z log o(Encprem(P) - Enchyp(h))
(P,h)eT+
+ Y log(1 - o(Encpem(P) - Encpyp(h)))
(P,h)ET—

where Encprem(P) again corresponds to a joint en-
coding of the set of premises. Note that for this bi-
encoder model, we cannot use the same encoder
for premises and hypothesis, since this would make
the model symmetric, i.e. whenever « entails 5 we
would also have that 5 entails «.

Joint Encoder. Finally, we will experiment with a
model that jointly encodes the premises and hypoth-
esis, which is the approach that has been taken in
previous work (Clark et al., 2020; Richardson and
Sabharwal, 2022; Zhang et al., 2023). An input
with premises p, ..., pr and hypothesis # is then
encoded as [CLS] p1. ps2. ... pr [SEP] h [SEP].
To predict the entailment label, we feed the output
embedding of the [CLS] token to a linear classifier.
The model is trained using binary cross-entropy.

5. Datasets

Following previous work (Clark et al., 2020; Richard-
son and Sabharwal, 2022; Zhang et al., 2023), we
will rely on randomly generated training and test
sets. Examples are generated by first sampling
propositional formulas and then converting these
formulas into natural language assertions. As ar-
gued by Zhang et al. (2023), when learning to rea-
son from data, it is important that training and test
examples are sampled from a different distribution,
since models may otherwise perform well by learn-
ing statistical artefacts rather than actually solving
the intended task. We will thus consider a num-
ber of different sampling strategies, as explained
in Section 5.1. In Section 5.2, we subsequently de-
scribe how we obtain natural language assertions.

5.1. Sampling Propositional Formulas

We consider a number of different sampling strate-
gies. First, following Richardson and Sabharwal
(2022), we consider a strategy which is based on
sampling random clauses, which we will refer to
as SAT. We assume that the required number of
premises m is specified and that a vocabulary of
atoms At is also given. We furthermore specify the
number ¢ of different atoms from At that may occur
in the problem instance. Note that this number is
known to greatly affect the difficulty of randomly

2769

generated problem instances for traditional reason-
ing strategies (Mitchell et al., 1992), and might thus
also affect how easily LM-based strategies are able
to classify the generated problem instances. More-
over, for the embedding-based strategies, the num-
ber /¢ is also important because it affects whether
learning perfectly faithful embeddings is possible
in theory, which is the case when ¢ < |log, d|, with
d the dimension of the embeddings. Each problem
instance consists of m premises and one hypothe-
sis. The premises and hypotheses correspond to
clauses of up to 3 literals. To sample a problem
instance, we proceed as follows:

» We first sample a subset X of ¢ atoms from At.
» We then sample m clauses as follows:

— We sample the number of literals & in the
clause from {1, 2, 3}.

— We then randomly choose k atoms from
X (with replacement).

— Finally, each atom is negated with 50%
probability.

» We sample the hypothesis in the same way.

To generate a dataset, we also need to determine
which problem instances are positive (i.e. in which
cases the hypothesis is entailed by the premises).
We rely on a standard SAT Solver' for this pur-
pose. Depending on the chosen parameters (e.g.
the number of clauses and the number of different
atoms /), the majority of the generated instances
may be positive or negative. To address this, we
oversample the minority class, so we always end
up with the same number of positive and negative
examples in our generated datasets.

Next, we also consider the Label Priority (LP) and
Rule Priority (RP) strategies that were introduced
by Zhang et al. (2023). An important difference with
the SAT strategy is that LP and RP only sample
Horn rules, which makes reasoning typically easier.
In the case of RP, we first sample a number of facts
(i.e. atoms which are said to be true), a number
of Horn rules (in the form of clauses of up to 4
literals), and a hypothesis (also in the form of an
atom). We then check whether the hypothesis is
entailed from the facts and rules to decide the label
of the problem instance. In the case of LP, we
first randomly assign truth values to atoms and
then randomly sample facts and Horn rules that are
consistent with these truth assignments. Note that
due to the use of Horn rules, the datasets sampled
using RP and LP do not include any negations. For
more details about these strategies, we refer to
(Zhang et al., 2023).

1https ://www.sat4dj.org/

Finally, to help us better understand the limita-
tions of the models, we will also experiment with
problem instances that correspond to the following
standard inference patterns:

Weakening We randomly sample a clause « of
m € {2,3} literals. We obtain the clause g
by randomly removing one of the literals in «.
We use § as the only premise and « as the
hypothesis.

Resolution We randomly sample a clause « of
m € {1, 2} literal and a clause g of m’ € {1,2}
literals. We also sample an atom z € At. We
use aVz and 8V —z as the two premises and
a V (3 as the hypothesis.

Contradiction We randomly sample a clause « of
m € {1,2,3} literals and an atom z € At. We
use z and —z as the two premises and « as
the hypothesis.

Tautology We randomly sample a clause « of
m € {1,2,3} literals and an atom z € At. We
use « as the only premise and z vV -z as the
hypothesis.

Modus ponens We sample atoms a;, as from At.
We use —a; V as and a; as the premises and
as as the hypothesis.

Note that these problem instances correspond to
positive examples. We will also consider three ba-
sic types of negative examples:

Strengthening We randomly sample a clause «
of m € {2, 3} literals. We obtain the clause g
by randomly removing one of the literals in a.
We use «a as the only premise and g as the
hypothesis.

Abduction We sample atoms a4, a; from At. We
use —a; V ap and as as the premises and a;
as the hypothesis.

Random We randomly sample a clause o of m €
{1,2, 3} literals. We also sample a clause 3 in
the same way. We use « as the only premise
and S as the hypothesis. Examples where «
entails 3 are discarded since this is aimed to be
a strategy for generating negative examples.

5.2. Describing Propositional Formulas

We need a strategy to convert the sampled clauses
into natural language. In line with recent work, we
use a fixed set of patterns to construct these sen-
tences. This limits the variability in how the formu-
las are described and thus simplifies the overall
problem. We take this approach because our focus
is primarily on analysing the reasoning abilities of

2770

https://www.sat4j.org/

Encoding Strategies SAT RP LP
Joint Encoder 95.6 97.2 8838
Order Emb. (0L) 91,5 935 853
Order Emb. (1L, d=768) 92.2 93.1 86.4
Order Emb. (1L, d=1000) 92.8 94.8 89.0
Order Emb. (2L, d=1000) 90.5 93.6 84.2
Joint Prem. Order Emb. (tied) 73.0 76.6 53.9
Joint Premise Order Emb. 69.2 69.3 50.0
Joint Premise Bi-encoder 66.7 60.4 50.1

Table 1: Accuracy (%) of different model architec-
tures on the SAT, RP, and LP test sets.

LMs rather than their ability to understand individual
assertions.

First, we associate every atom from At with a
corresponding phrase, such as “Alice is great”. We
only consider phrases of the form [person] is [prop-
erty]. For negated atoms, we use a phrase of the
form [person] is not [property] (e.g. “Alice is not
great”). To describe a given clause [; Vv I5 V I3, we
proceed in two steps. First, we rewrite some of the
clauses, converting them into logically equivalent
formulas involving implications. Specifically, for a
clause of the form I, VI \V I3 we consider two possi-
ble alternatives: —l; — I3 Vi3 and (=l A —ly) — 5.
For a clause of the form I; Vs, we consider —l; — [
as a possible alternative. We then use fixed tem-
plates to describe the resulting formula. For in-
stance, a formula of the form (—i; A—l3) — I3 might
be described as “If Alice is not lovable and Alice is
not compassionate then Alice is timid”.

6. Experimental Analysis

We now experimentally analyse the performance
of the proposed strategies®. We particularly focus
on the following research questions:

» How closely can the performance of the or-
der embeddings model approach that of the
common joint encoder?

» Which of the proposed variants performs best?
For instance, is there any benefit in jointly
embedding all premises, or can we embed
premises individually?

Unless specified otherwise, we use the pre-trained
BERTpase model® to initialise the encoders for all
experiments. We use early stop regularization with
alearning rate of 2 x 10~°, a warm-up ratio of 0.067,
and a batch size range of [8, 32].

20ur code is available at https://github.com/
ariyaninf/formula_embeddings.

Shttps://huggingface.co/
bert-base-uncased

100 | L EEEE R ey S SR A S BA SRR RN A Y

90re *

60

R T S SN I SO S SO SN NS ST S |
0 50 100 150 200 250
Number of Atoms
) — 7
e~ T ®-----cTTTTTT]
95 ‘,’(i\]
“\1:.":\.‘7\:7‘-“::: """""" A]
:.'IP"— ‘3&\\ ———————— @l]
MR T L TR o
‘BN .
BB b N 4
[A T]
i I %
80 T .
[A 1
75: I I 1 \1 ---- \slw‘i
0 100 200 300 400 500

Vocabulary Size

-—o-—- Order Emb. SAT --e-
-%- Order Emb. RP --%-
--4-—- Order Emb.LP --&-

Joint Enc. SAT
Joint Enc. RP
Joint Enc. LP

Figure 1: Accuracy (%) for Order Embeddings (1L,
d=1000) and Joint Encoder when varying the num-
ber of atoms per instance ¢ and the overall vocabu-
lary size |At|.

Comparison of Encoding Strategies. First, we
compare the effectiveness of the different encod-
ing strategies from Section 4. For this analysis,
the models are trained on a set of 100K examples
which were sampled using the SAT strategy, with
the number of atoms ¢ varying from 5 to 9 and the
number of premises m varying from 1 to 10. We
use a further 20K SAT examples for validation. Our
test sets consist of 10K examples, sampled using
SAT, RP or LP. The training, validation and test sets
are balanced, meaning that the accuracy of random
guessing is 50%. For the order embeddings model,
we report results for different variants of the feedfor-
ward network ¢: a variant which omits this network
altogether (OL), a variant which uses one layer of
d dimensions (1L) and a variant which uses two
layers of d dimensions (2L). For the feedforward
layers, we use the RelLU activation function. For
the other models, no feedforward layers are used.

The results are summarised in Table 1, where
we use accuracy as our evaluation metric. As ex-

2771

https://github.com/ariyaninf/formula_embeddings
https://github.com/ariyaninf/formula_embeddings
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

Order Embeddings

Joint Encoder

SAT RP LP SAT RP LP
SAT 928 948 88.9 956 97.2 88.8
SAT (200K) 93.3 96.5 90.1 96.4 984 947
SAT + Easy Examples 91,5 939 84.2 96.0 964 944
SAT + Inference Patterns 84.8 87.3 70.2 95,5 96.1 86.8
Inference Patterns < SAT 88.0 87.0 75.3 95.2 947 86.7
RP 55,5 98.4 92.5 546 98.6 96.1
LP 55.7 95.0 97.4 53.3 89.3 994

Table 2: Accuracy (%) for Order Embeddings (1L, d=1000) and Joint Encoder, for different training sets.

Standard Training Augmented Fixed A\ =1
3 T & 8 K =
= _ = s =0 c n — »
3 . LS LS L 3% v & v .Z .v

o Q Q Q o) o 00 O 20 <@ Q Q
S & €= FE FE 58 SE 28 EE EQ E= E
G 4 W) g8 gU 58 5T Gf 47 WF M) u§
E 8- 8% 28 28 & £x £5 3y 83 8 8
S 6 6z 806 806 Sm 8¢ SE£E S6¢ 6£ 62 O£
Weakening 964 0.0 90.1 427 66 117 996 987 881 895 959 932
» Resolution 932 254 358 372 173 0.1 99.0 531 495 395 524 571
& Contradiction 6.1 13.0 897 31.0 358 643 505 52 830 755 972 904
Tautology 0.9 0.0 12 113 04 39 995 1.0 821 27 4.7 4.5
Modus Ponens 100 157 210 89 576 33 100 992 255 146 622 537
o Strengthening 100 100 100 915 979 100 99.3 991 995 100 100 100
4 Abduction 100 100 999 963 655 959 100 100 96.2 993 995 99.0
Random 985 99.8 982 870 993 968 978 984 945 966 974 96.6

Table 3: Accuracy (%) for test examples based on different inference patterns.

pected, we can see that the order embeddings gen-
erally underperform the joint encoder. However,
order embeddings achieve the best result on LP.
Among the order embedding variants, the best re-
sults are obtained with one hidden layer of 1000
dimensions, which is in accordance with the idea
that higher-dimensional embeddings should per-
form better (cf. Section 3). Based on the validation
set, for the order embedding models, the hyper-
parameter A was set to 1 while A was set to 0.5.
Finally, the different variants of the joint premise
encoder consistently underperform the order em-
beddings model. This can most clearly be seen
on LP, where these models fail completely. The
inductive bias that comes from min-pooling the em-
beddings of the individual premises thus clearly
helps to learn better embeddings.

Impact of the Vocabulary Size. We now explore
the effect of two factors: the number of atoms ¢ in
a problem instance and the total number of atoms
|At| in the vocabulary. Figure 1 compares the order
embeddings model with the joint encoder when the
number of atoms ¢ is varied while the size of the
vocabulary is fixed at At = 500 (top), and when
the size of the vocabulary |Af| is varied while the
number of atoms is fixed at £ = 5 (bottom). In all

cases, we vary the number of premises between 1
and 10, as before. The models are trained on 100K
SAT instances and tuned on 20K SAT instances,
as before. For each choice of ¢ and |At| we create
corresponding training, validation and test sets.

Let us first consider the top graph of Figure
1. Somewhat surprisingly, when tested on out-of-
distribution examples (i.e. LP and RP), the joint
encoder is more sensitive to the number of atoms ¢
than the order embeddings. As a result, for ¢ = 250
we can see that the order embeddings outperform
the joint encoder on the LP and RP test sets. For
the SAT test set, the joint encoder performs much
better, which is in accordance with the finding from
Zhang et al. (2023) that this model heavily relies on
shortcuts that are dependent on the data genera-
tion process. However, when looking at the bottom
graph in Figure 1, we can see that the order embed-
dings model struggles with increases in the overall
size of the vocabulary, while the joint encoder is
less affected by such changes. This is in accor-
dance with the fact that a minimum of n = 241
dimensions are needed to learn perfectly faithful
embeddings (cf. Section 3).

Impact of Training Data. We now analyse whether
the performance of the order embeddings model

2772

Language Model SAT RP LP

BERT-base 91.5 935 853
BERT-large 83.7 831 719
RoBERTa-base 90.7 923 82.2
RoBERTa-large 85.6 857 729

ALBERT-base 91.1 88.4 782
ALBERT-large 87.4 842 747
ALBERT-xlarge 747 815 712
DistiBERT-base 92.2 94.2 88.7

Table 4: Accuracy (%) Order Embeddings (OL)
across different pre-trained language models.

may be improved by making changes to the training
data. Our default configuration is the same as for
the results in Table 1. As a first alternative, we sim-
ply increase the number of training examples from
100K to 200K. Next, we consider a setting where
100K standard training examples are augmented
with 30K “easy” examples, which are problem in-
stances with at most m = 2 premises. The intuition
is that including such examples could make it easier
for the model to learn meaningful embeddings. Fur-
thermore, we consider a setting where the 100K
standard training examples are augmented with
examples corresponding to the inference pattern
based strategies that were introduced in Section
5.1: weakening, resolution, contradiction, tautology
and modus ponens for the positive examples, and
strengthening, abduction and random for the nega-
tive examples. The main reason for introducing the
augmented strategies was to gain a better under-
standing of the reasons for the underperformance
of order embeddings. In total, we add 15K posi-
tive examples (i.e. 3K for each positive inference
pattern) and 15K negative examples (i.e. 5K for
each negative inference pattern). We also evalu-
ate a variant where we first train the model on the
inference pattern based examples (for 5 epochs)
and then continue training on the 100K standard
training examples (as normal, with early stopping
based on validation loss). Finally, we also evaluate
what happens when we train on 100K RP examples
or 100K LP examples.

Unsurprisingly, the results in Table 2 show that
training on 200K examples leads to better results,
although the differences are relatively small. How-
ever, for all of the other training sets, the perfor-
mance of the order embeddings model actually
decreases, especially for the training set based on
the inference patterns. For the joint encoder, the
impact of the augmentation strategies is generally
small. Finally, when training on RP or LP, the per-
formance on SAT is poor. This is expected given
that SAT examples contain negative literals, which
is not the case for RP and LP examples.

Evaluation on Standard Inference Patterns. One

of the most surprising results in Table 2 was the fact
that adding training examples based on the infer-
ence patterns led to a deterioration in performance.
We now explore this issue in more detail. Specif-
ically, we randomly generated 10K examples for
each inference pattern and tested the performance
of different models on each of these cases sepa-
rately. The models were trained on the same 100K
SAT examples that were used for the experiments
in Table 1. Table 3 shows the results. Surprisingly,
we can see that all models struggle with at least one
of the positive inference patterns. For instance, the
order embeddings model recognises almost none
of the instances of tautology and only 21% of the
instances of modus ponens. The joint encoder sim-
ilarly struggles with contradiction and tautology. In
the table, we also show two configurations where
the training data for the joint encoder and order
embedding models was augmented with training
examples based on the inference patterns (as in
Table 2). Surprisingly, simply adding such exam-
ples to the training data has little effect on order
embeddings but helps the joint encoder in recog-
nizing tautology. The iterative training approach
(i.e. training on inference patterns followed by train-
ing on SAT) performs better in order embeddings,
however, although the resulting model still misses
half of the resolution instances and around 75% of
the modus ponens instances.

The order embeddings model uses min-pooling
to aggregate the premises. Consequently, the
larger the number of premises, the easier it is to
end up in a situation where the model predicts
entailment, even for randomly chosen premises.
We, therefore, conjecture that a model trained on
examples with, on average, a large number of
premises may be too cautious when evaluated on
examples with fewer premises. In other words,
the main reason why the model performs poorly
in Table 3 may be because these test instances
have fewer premises rather than the fact that the
model has failed to capture fundamental inference
patterns such as modus ponens. Indeed, our pri-
mary model is trained using a larger number of
premises, while modus ponens and resolution in-
stances have only two premises. To test this hy-
pothesis, Table 3 shows two configurations where
we have increased the threshold A from 0.5 to 1,
which makes the model less cautious. As can be
seen, this indeed leads to a larger number of posi-
tive inference patterns being recognised, while the
performance on the negative inference patterns is
largely unaffected.

Comparison of Language Models. We are partic-
ularly interested in using encoder-only transformer
models such as BERT to implement our proposed
encoding strategies. Thus far, we have exclusively
relied on BERT,se for our experiments. Table 4

2773

compares this language model with a number of
popular alternatives. For this analysis, we use the
order embeddings without any feedforward layers,
allowing us to evaluate the different LMs most di-
rectly. Surprisingly, we can see that larger mod-
els typically perform worse than the corresponding
base models. In fact, the best overall performance
was obtained by DistillBERT,,se. This suggests
that the increased capacity of the larger models
makes them prone to overfitting. For joint encod-
ing strategies, newer models are likely to perform
better, but this goes beyond the scope of our focus
on learning formula embeddings.

7. Conclusions and Future Work

The main focus of this paper was to analyse the
potential of order embeddings for modelling nat-
ural language descriptions of propositional logic
formulas. We found that this approach indeed has
several advantages over the more common strat-
egy of using joint encoders for reasoning with LMs.
The approach based on order embeddings appears
to be more robust to out-of-distribution examples
and tends to perform better on inputs involving a
large number of atoms. Moreover, the joint en-
coder is limited in practice by the maximum token
length of the LM. In contrast, the order embeddings
approach is not affected by this issue since each
premise is encoded separately. Our results clearly
show that min-pooling the embeddings of individual
premises is beneficial.

However, the order embeddings also have limita-
tions, the most important one being that the perfor-
mance quickly goes down as the vocabulary size
increases. A natural solution would be to increase
the intrinsic dimensionality of the embeddings, but
simply using larger LMs did not seem to be effec-
tive. One possibility could be to use ensembling
techniques such as boosting, which has already
proven useful for boosting bi-encoder models in
information retrieval (Lewis et al., 2022). However,
our initial experiments with this strategy were not
successful. As another avenue for future work, the
embedding model itself could also be improved, as
highlighted by the disappointing performance on
examples associated with the inference patterns.

8. Acknowledgements

This research was conducted using the supercom-
puting facilities at Cardiff University, managed by
Advanced Research Computing at Cardiff (ARCCA)
on behalf of the Cardiff Supercomputing Facility,
HPC Wales, and Supercomputing Wales (SCW)
projects. Nurul Ariyani was supported by the Cen-
ter for Higher Education Funding, Ministry of Educa-
tion, Culture, Research, and Technology of Repub-

lic Indonesia. Steven Schockaert was supported
by the Leverhulme Trust (project RPG-2021-140).
Zied Bouraoui was supported by the ANR-22-CE23-
0002 ERIANA.

9. Bibliographical References

Ralph Abboud, ismail ilkan Ceylan, and Thomas
Lukasiewicz. 2020. Learning to reason: Leverag-
ing neural networks for approximate DNF count-
ing. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intel-
ligence Conference, IAAl 2020, The Tenth AAAI
Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 3097-3104. AAAI
Press.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. 2019. MathQA: Towards interpretable
math word problem solving with operation-based
formalisms. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 2357—-2367, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal.
2020. On the Ability and Limitations of Trans-
formers to Recognize Formal Languages. In
Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP), pages 7096-7116, Online. Associa-
tion for Computational Linguistics.

Piero A Bonatti, Sabrina Kirrane, lliana M Petrova,
and Luigi Sauro. 2020. Machine understand-
able policies and gdpr compliance checking. KI-
Ktinstliche Intelligenz, 34:303-315.

Johan Bos and Katja Markert. 2005. Recognising
textual entailment with logical inference. In Pro-
ceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in
Natural Language Processing, pages 628—-635,
Vancouver, British Columbia, Canada. Associa-
tion for Computational Linguistics.

Samuel R. Bowman, Gabor Angeli, Christopher
Potts, and Christopher D. Manning. 2015. A large
annotated corpus for learning natural language
inference. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language

2774

https://ojs.aaai.org/index.php/AAAI/article/view/5705
https://ojs.aaai.org/index.php/AAAI/article/view/5705
https://ojs.aaai.org/index.php/AAAI/article/view/5705
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://aclanthology.org/H05-1079
https://aclanthology.org/H05-1079
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075

Processing, pages 632—642, Lisbon, Portugal.
Association for Computational Linguistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over lan-
guage. In Proceedings of the Twenty-Ninth In-
ternational Joint Conference on Atrtificial Intelli-
gence, IJCAI 2020, pages 3882—-3890. ijcai.org.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton,
Reiichiro Nakano, Christopher Hesse, and John
Schulman. 2021. Training verifiers to solve math
word problems. CoRR, abs/2110.14168.

Antonia Creswell, Murray Shanahan, and Irina Hig-
gins. 2023. Selection-inference: Exploiting large
language models for interpretable logical reason-
ing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Maxwell Crouse, Ibrahim Abdelaziz, Cristina Cor-
nelio, Veronika Thost, Lingfei Wu, Kenneth D.
Forbus, and Achille Fokoue. 2019. Improving
graph neural network representations of logi-
cal formulae with subgraph pooling. CoRR,
abs/1911.06904.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and
Short Papers), pages 4171-4186, Minneapolis,
Minnesota. Association for Computational Lin-
guistics.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar
Khot, Dan Roth, and Jonathan Berant. 2021.
Did aristotle use a laptop? a question answer-
ing benchmark with implicit reasoning strategies.
Transactions of the Association for Computa-
tional Linguistics, 9:346-361.

Christopher Hahn, Frederik Schmitt, Jens U. Kre-
ber, Markus Norman Rabe, and Bernd Finkbeiner.
2021. Teaching temporal logics to neural net-
works. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Geoffrey Irving, Christian Szegedy, Alexander A.
Alemi, Niklas Eén, Francois Chollet, and Josef
Urban. 2016. Deepmath - deep sequence mod-
els for premise selection. In Advances in Neural

Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Sys-
tems 2016, December 5-10, 2016, Barcelona,
Spain, pages 2235-2243.

Patrick Lewis, Barlas Oguz, Wenhan Xiong, Fabio
Petroni, Scott Yih, and Sebastian Riedel. 2022.
Boosted dense retriever. In Proceedings of the
2022 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 3102—
3117, Seattle, United States. Association for
Computational Linguistics.

Sarah M. Loos, Geoffrey Irving, Christian Szegedy,
and Cezary Kaliszyk. 2017. Deep network
guided proof search. In LPAR-21, 21st In-
ternational Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, Maun,
Botswana, May 7-12, 2017, volume 46 of EPIC
Series in Computing, pages 85—105. EasyChair.

Todor Mihaylov, Peter Clark, Tushar Khot, and
Ashish Sabharwal. 2018. Can a suit of armor
conduct electricity? a new dataset for open book
question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2381-2391, Brussels,
Belgium. Association for Computational Linguis-
tics.

David G. Mitchell, Bart Selman, and Hector J.
Levesque. 1992. Hard and easy distributions
of SAT problems. In Proceedings of the 10th Na-
tional Conference on Atrtificial Intelligence, San
Jose, CA, USA, July 12-16, 1992, pages 459—
465. AAAI Press / The MIT Press.

Aditya Paliwal, Sarah M. Loos, Markus N. Rabe,
Kshitij Bansal, and Christian Szegedy. 2020.
Graph representations for higher-order logic and
theorem proving. In The Thirty-Fourth AAAI Con-
ference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in
Atrtificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 2967-2974.
AAAI Press.

Kyle Richardson and Ashish Sabharwal. 2022.
Pushing the limits of rule reasoning in transform-
ers through natural language satisfiability. In
Thirty-Sixth AAAI Conference on Atrtificial Intelli-
gence, AAAI 2022, Thirty-Fourth Conference on
Innovative Applications of Artificial Intelligence,
IAAl 2022, The Twelveth Symposium on Edu-
cational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022,
pages 11209-11219. AAAI Press.

2775

https://doi.org/10.24963/ijcai.2020/537
https://doi.org/10.24963/ijcai.2020/537
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://openreview.net/pdf?id=3Pf3Wg6o-A4
https://openreview.net/pdf?id=3Pf3Wg6o-A4
https://openreview.net/pdf?id=3Pf3Wg6o-A4
http://arxiv.org/abs/1911.06904
http://arxiv.org/abs/1911.06904
http://arxiv.org/abs/1911.06904
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00370
https://doi.org/10.1162/tacl_a_00370
https://openreview.net/forum?id=dOcQK-f4byz
https://openreview.net/forum?id=dOcQK-f4byz
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/f197002b9a0853eca5e046d9ca4663d5-Abstract.html
https://doi.org/10.18653/v1/2022.naacl-main.226
https://doi.org/10.29007/8mwc
https://doi.org/10.29007/8mwc
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
http://www.aaai.org/Library/AAAI/1992/aaai92-071.php
https://ojs.aaai.org/index.php/AAAI/article/view/5689
https://ojs.aaai.org/index.php/AAAI/article/view/5689
https://doi.org/10.1609/aaai.v36i10.21371
https://doi.org/10.1609/aaai.v36i10.21371

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proceedings of the
2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1743-1752,
Lisbon, Portugal. Association for Computational
Linguistics.

Swarnadeep Saha, Sayan Ghosh, Shashank Sri-
vastava, and Mohit Bansal. 2020. PRover: Proof
generation for interpretable reasoning over rules.
In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP), pages 122—-136, Online. Association
for Computational Linguistics.

Steven Schockaert. 2023. Embeddings as epis-
temic states: Limitations on the use of pooling
operators for accumulating knowledge. Interna-
tional Journal of Approximate Reasoning, page
108981.

Daniel Selsam, Matthew Lamm, Benedikt Biinz,
Percy Liang, Leonardo de Moura, and David L.
Dill. 2019. Learning a SAT solver from single-bit
supervision. In 7th International Conference on
Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark.
2021. ProofWriter: Generating implications,
proofs, and abductive statements over natural
language. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3621-3634, Online. Association for Computa-
tional Linguistics.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2016. Order-embeddings of images
and language. In 4th International Conference
on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings.

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia
Deng. 2017. Premise selection for theorem prov-
ing by deep graph embedding. In Advances in
Neural Information Processing Systems 30: An-
nual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 2786—2796.

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. 2022. Chain-of-
thought prompting elicits reasoning in large lan-
guage models. In NeurlPS.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2018. Constructing datasets for multi-
hop reading comprehension across documents.
Transactions of the Association for Computa-
tional Linguistics, 6:287-302.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua
Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop ques-
tion answering. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 2369-2380, Brussels,
Belgium. Association for Computational Linguis-
tics.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-
Wei Chang, and Guy Van den Broeck. 2023. On
the paradox of learning to reason from data. In
Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJ-
CAl 2023, 19th-25th August 2023, Macao, SAR,
China, pages 3365—-3373. ijcai.org.

Botao Zhong, Chen Gan, Hanbin Luo, and Xuejiao
Xing. 2018. Ontology-based framework for build-
ing environmental monitoring and compliance
checking under bim environment. Building and
Environment, 141:127-142.

2776

https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/D15-1202
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=HJMC_iA5tm
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
http://arxiv.org/abs/1511.06361
http://arxiv.org/abs/1511.06361
https://proceedings.neurips.cc/paper/2017/hash/18d10dc6e666eab6de9215ae5b3d54df-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/18d10dc6e666eab6de9215ae5b3d54df-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.1162/tacl_a_00021
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.24963/ijcai.2023/375
https://doi.org/10.24963/ijcai.2023/375

	Introduction
	Related Work
	Representing Formulas as Embeddings
	Encoding Strategies
	Datasets
	Sampling Propositional Formulas
	Describing Propositional Formulas

	Experimental Analysis
	Conclusions and Future Work
	Acknowledgements
	Bibliographical References

