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Abstract

Manufacturing specifications are documents entailing different techniques, processes, and components involved
in manufacturing. There is a growing demand for named entity recognition (NER) resources and techniques for
manufacturing-specific named entities, with the development of smart manufacturing. In this paper, we introduce a
corpus of Chinese manufacturing specifications, named MS-NERC, including 4,424 sentences and 16,383 entities.
We also propose an entity recognizer named Trainable State Transducer (TST), which is initialized with a finite
state transducer describing the morphological patterns of entities. It can directly recognize entities based on prior
morphological knowledge without training. Experimental results show that TST achieves an overall 82.05% F1
score for morphological-specific entities in zero-shot. TST can be improved through training, the result of which
outperforms neural methods in few-shot and rich-resource. We believe that our corpus and model will be valuable
resources for NER research not only in manufacturing but also in other low-resource domains.
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1. Introduction terns as domain-specific knowledge, which can be

used for modeling an entity recognizer.
The application of natural language processing

(NLP) in manufacturing has propelled the advance-
ment of smart manufacturing, wherein textual data
constitutes a pivotal component. Manufacturing (NAS1398. [NAS1399)% 51w & 4 47
specifications are documents entailing different  The (NAS1398] and [NAS1399) series of
techniques, processes, and components involved

in manufacturing. The accurate recognition of

named entities in the manufacturing specifications Z XA A e ﬁn BT 7 o

lay the foundation for downstream tasks such as follow the installation sequence shown in[Figure 7—2]and{Figure 7—3].
knowledge graph construction (Buchgeher et al.,

2021) and relation extraction (Wang et al., 2020).

However, unsimilar to domains such as financial Figure 1: Examples of the sentence with named
(Wu et al., 2020), medical (Tian et al., 2022), and  gntities and translations in the manufacturing spec-
computer code (Tabassum et al., 2020), thereisa  fications.

lack of resources and techniques for recognizing
manufacturing-specific named entities (e.g., PART
or PART_ID) in manufacturing.

There is no publicly available corpus for Chi-
nese NER in the manufacturing specifications. Cor-
pus annotation demands annotators with a strong
background in domain-specific knowledge. The
high cost of manual annotation leads to limited cor-
pus. To achieve good performance on NER, con-
ventional neural methods normally rely on a large
amount of labeled training data, which is unavail-
able in manufacturing. Our approach to address
the issue is to regard entities’ morphological pat-

In this paper, we introduce MS-NERC, a Chi-
nese Manufacturing Specifications Named Entity
Recognition Corpus. We identify morphological
patterns in manufacturing-specific named entities
(PART_ID and FIGURE_NBOTE) as shown in Fig-
ure 1. To recognize these entities with very limited
training data, we propose TST, a Trainable State
Transducer for modeling morphological patterns
of named entities as a trainable entity recognizer.
We test our TST model on the MS-NERC corpus.
Results show the advantage of TST in zero-shot,
few-shot, and rich-resource. To summarize, our
1 Corresponding author. key contributions are the following:
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» Annotation guidelines for NER corpus in manu-
facturing, including annotation instructions and
definitions for 16 categories such as PART,
PART_ID, FILE, and FIGURE_NOTE. Our
guidelines provide a reference for the anno-
tation work in the future.

+ A Chinese NER corpus named MS-NERC with
4,424 sentences and 16,383 entities. The MS-
NERC is manually annotated by three experts
in manufacturing.

 An entity recognizer named Trainable States
Transducer (TST) incorporating prior morpho-
logical knowledge. The model is initialized
with a finite state transducer describing the
morphological patterns of entities. It is capa-
ble of recognizing related entities based on
prior morphological knowledge without train-
ing. Besides, TST can be improved through
supervised learning.

Owing to prior morphological knowledge, TST
can directly recognize related entities without train-
ing. In zero-shot, TST attains an F1 score of
82.05%. In both few-shot and rich-resource, TST
consistently outperforms neural methods as shown
in §5.3.

2. Related Work

2.1. NER in Specific Domains

With the application of NER in specific domains,
there is a growing interest in both corpus and tech-
niques.

Corpus Annotation The construction of corpus
is gradually attracting attention such as news (Mbu-
vha et al., 2023), social media (Jiang et al., 2022),
and computer code (Tabassum et al., 2020). Mean-
while, little attention is paid to manufacturing docu-
ments (Chen et al., 2021; Zhang et al., 2019; Jia
et al., 2022). For example, Chen et al. (2021) de-
fine 7 categories of entities and annotate 1,139
sentences for assembly manufacturing documents.
However, there is no corpus for manufacturing spec-
ifications. In our study, we annotate manufacturing
specifications offering broader coverage than the
existing corpus in manufacturing. We define 16 fine-
grained categories and annotate a total of 4,424
sentences, significantly surpassing other corpus.
Models Enhanced by Domain Knowledge
Adding domain knowledge to neural networks can
be effective with insufficient data. One useful way
is to apply dictionaries and rules to refine the re-
sults obtained from neural networks in chemistry
(Ma et al., 2018), military (Feng et al., 2015) and
Uyghur language (Zhu, 2019). However, it is invalid
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when the entities cannot be described by dictionar-
ies and rules. Jia et al. (2022) use domain dictionar-
ies and entity rules for pre-recognizing entities and
use pre-recognization features to guide the model
training.

2.2. Finite State Transducer in NLP

The majority of previous work combines a finite
state transducer (FST) with neural networks. For
morphological generation tasks, Rastogi et al.
(2016) present a hybrid FST-LSTM architecture.
It combines FST and long short-term memory
(LSTM), while weights of FST depend on different
contexts and LSTM is used to extract the features
that determine these weights. Lin et al. (2019) intro-
duce an architecture named NFSTs, which is condi-
tional probability distributions over pairs of strings.
In this architecture, FST is used to constrain text
generation. Other methods model regular expres-
sions for downstream tasks. FARNN (Jiang et al.,
2020) and FSTRNN (Jiang et al., 2021) are de-
signed for intent detection and slot filling. The
models above can be converted from sentence-
level regular expressions and are interpretable af-
ter training. In this way, the advantage of symbolic
rules and the neural network can be a combination.
Our method is different from these works. In con-
trast to existing studies, our TST model operates
at the character level and elucidates the mapping
between Chinese characters and entity labels. Es-
pecially, we are the first to model FST as a trainable
entity recognizer.

3. The MS-NERC Corpus
3.1.

We collect technical specification documents of an
aircraft for annotating. The specifications span four
subdomains: assembly manufacturing, composite
material processing, mechanical processing, and
computer numerical control processing. Each docu-
ment comprises several chapters, such as material
control, equipment control, technical control, pro-
cedure control, maintenance control, and quality
requirements. From these documents, we extract
statements containing manufacturing parameters
and manufacturing conditions. We filter out infor-
mation related to specific products and enterprises
due to privacy and legal issues. Ultimately, we
obtain a raw dataset of 4,424 sentences.

Text Collection

3.2. Annotation Guidelines

To define the category set in the manufacturing
specifications, we refer to the Fundamental Termi-
nology of Mechanical Manufacturing (Hongyu et al.,
2008). We define a set consisting of 16 categories



after consulting two experts in manufacturing. We
present entity labels, entity definitions, and exam-
ples as follows.

e ACCESSORY marks substances that play an
auxiliary role in the production (e.g., X & & /
polystyrene foam).

e ACCESSORY_ID marks an identification num-
ber assigned to the accessory (e.g., RIX-ZC-
106).

e ATTRIBUTE marks a physical characteristic in
manufacturing (e.g., 7% i& % / heating rate).

e ATTRIBUTE_VA marks the specific value of a
physical characteristic in manufacturing (e.g.,
1.5mm).

e FIGURE_NOTE marks an identification num-
ber of the referenced figure (e.g., B 6-20 / Fig-
ure 6-20).

e FILE marks an identification number of cited
documents in the manufacturing specifications
(e.g., CAR3001).

e HOLE marks a hole for part machining, as-
sembly, inspection, and mounting (e.g., P47
3L / rivet hole).

e MATERIAL marks a substance used to manu-
facture parts or components, including metallic
and non-metallic materials (e.g., 4344 / Alu-
minum alloy).

e OPERATION marks an activity such as assem-
bly, inspection, and handover, following certain
procedures and technical requirements (e.g.,
iz # / bonding).

e PART marks a basic component unit in man-
ufacturing, including the combination of parts
(e.g., #P4T / rivet).

o PART_AR marks the location of a part for ma-
chining or assembly operations (e.g., ¥ & #%&
& @ / the surface of honeycomb panel).

e PART _ID marks an identification number as-
signed to the part (e.g., NAS1252).

e PART_NU marks the number of parts and
tools (e.g., A4~/ two).

e REDUNDANT marks trimmings and scraps
generated in manufacturing (e.g., &#! / burr).

e TABLE_NOTE marks an identification number
of the referenced table (e.g., £7-1/ Table 7-1).

e TOOL marks a machining tool used in manu-
facturing (e.g., #|#& / drawing strickle).

In addition, our annotation adheres to three spe-
cific instructions. First, the entities must be specific
rather than generalized (e.g., "#P 47’ /rivet instead of
"K' /part). Second, the entities should not be ac-
companied by conjunctions and punctuation marks
indicating juxtaposition, except in the case of notes
in parentheses (e.g., '1.02mm(0.040in.)’). Lastly,
when these specific instructions are met, entities
are annotated based on their maximum span with-
out nesting.
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3.3. Annotation Process

Our corpus is annotated by three experts in manu-
facturing. Given the initial inconsistencies in the ex-
perts’ interpretations of the annotation guidelines, a
series of iterative discussions take place during the
pre-annotation phase to refine the guidelines. For-
mal annotation commences once a Cohen’s Kappa
(Cohen, 1960) score exceeding 0.6 is achieved.
During the formal annotation stage, the texts are
divided into three groups. Each group is assigned
to a different annotator, with a 15% overlap for dupli-
cate assessment. The inter-annotator agreement is
subsequently calculated based on this 15% overlap,
resulting in a Cohen’s Kappa score of 0.68.

3.4. MS-NERC Statistics

The corpus comprises a total of 4,424 sentences
and 16,383 entities. Table 1 shows the statistics of
entity numbers, character-based max lengths, min
lengths, and mean lengths. Notably, entity lengths
have considerable variation due to the annotation
based on maximum span. For example, there are
instances of multi-unit attribute values, such as the
ATTRIBUTE_VA of 50 max length. Additionally,
partially abbreviated entities with lengths ranging
from 1 to 3 characters are observed (e.g., 4T’ is
the abbreviation for 47 47’).

Category Number Max Min Mean
ACCESSORY 1,861 12 1 3.31
ACCESSORY_ID 876 17 3 7.87
ATTRIBUTE 2479 19 1 3.54
ATTRIBUTE_VA 1,357 50 1 10.85
FIGURE_NOTE 396 6 3 4.21
FILE 556 12 3 6.82
HOLE 418 12 1 214
MATERIAL 481 13 1 3.27
OPERATION 1,933 9 1 263
PART 2,407 13 1 3.27
PART_AR 1,396 14 1 3.85
PART_ID 202 15 2 8.75
PART_NU 131 4 1 1.89
REDUNDANT 164 6 1 227
TABLE_NOTE 296 6 3 4.05
TOOL 1,430 18 1 3.65

Table 1: Entity statistics in MS-NERC.

There are named entities for describing the identi-
fication numbers of manufacturing elements (FILE,
ACCESSORY_ID, TABLE_NOTE, FIGURE_NOTE,
PART_ID) and manufacturing condition parameters
(ATTRIBUTE_VA). These named entities conform
to morphological patterns, which can be regarded
as prior morphological knowledge to inform NER
tasks and inspire our model in §4.



Category Example REs
ACCESSORY_ID RQI5275 RQI(\d){4}
ATTRIBUTE_VA -28.6m  -(\d+).(\d+)m
FIGURE_NOTE H6-20 A (\d+)-(\d+)
FILE RQX3001 RQX(\d){4}
PART_ID NAS1252 NAS(\d+)
TABLE_NOTE A7-1 &(\d+)-(\d+)

Table 2: Examples of entities and regular expres-
sions.

4. Trainable States Transducer

4.1. Regular Expressions and Finite
State Transducer

We employ regular expressions (REs) to sum-
marise the morphological patterns of entities, with
examples of entities and their corresponding REs
provided in Table 2. However, regular expressions
can not define the mapping from characters to entity
labels, whereas a FST can.

Sakuma et al. (2012) demonstrate rigorously that
a regular expression with capturing groups is equiv-
alent to a FST. We represent each FST textually,
utilizing the 'BIOE’ tag scheme for the output. In
this scheme, each ’<:>’ separates the character
(left) and the output label (right). We employ '$’
as a wildcard, and 'OQO’ denotes a temporary label.
The use of '$’ and 'OQ’ serves to provide conditions
that the unmatched portion of a sentence can be
allowed to match with other FSTs. We show the
symbols used in Table 3, which contribute to a
concise and precise textual representation of FSTs.
Each symbol operates solely on its preceding sym-
bol or sub-expression. To illustrate this process,
we depict the regular expression and textual FST
of an ATTRIBUTE_VA entity in Tabel 4.

Meaning
number (0-9)
* Zero or more occurrence
| or operator
? Zero or one occurrence
- capital letter (A-Z)
+ one or more occurrence

Symbol
A

Table 3: Symbols for FST.

4.2. Parameter Tensors for TST

We illustrate the parameter initialization of TST in
Figure 2. The parameters of TST are initialized
with a FST, which can be formally defined as a
6-tuple: F = (5,Z,0,6,B,&). S is a finite set of
states, 7 is a finite set of input characters, O is a
finite set of output labels,and ¢ is a function describ-

ing all transitions. B is a finite set of start states
and £ is a finite set of final states.

B and £ in FST can be converted to the start
states vector s and final states vector m by one-hot
encoding. Specifically, § describes the transition
in the FST: 6 (v,2:) = v,l;. It means that F ac-
cepts a character z; of input, then transmits from
state ~ to state v, and outputs label /;. To address
the high time complexity and space complexity of
the 4-order tensor, we decompose it into W; and
W,, following the work of Jiang et al. (2021). The
decomposition can be computed by Eq.(1):

5 [Z‘t,lt,’y,’l}] = Wi ['rt7r7vv] X WO [lt7’)/,1}] (1)

To sum up, TST can be formally defined as a
7-tuple: N = (8,Z,0,W;,W,,s,m).

Algorithm 1 Inference in TST
Input: = = (21,29, ..., z,),
N =(857T,0,W;, W, s,m).
Output: the label scores f; of x;.
Step 1: Let ® denote hadamard product,&) denote
outer product.
Letag =sT,8, =m".
Step 2: calculate forward score o
fori=1—ndo
\ ap = Wz[iﬂt} Q1
end
Step 3: calculate backward score 5,
fort=n—1do
‘ Br = WT:T[l’t} “Br+1
end
Step 4: calculate bidirectional score bi_scores
fort=1—ndo
| bi_scores =a; @ Bt

end

F, = % (bi_scores © Wjlz]) © W, [l;]
1,€0

fo =Y il k)

return f;

4.3. TST Inference

Given a sentence © = (z1, 22, ..., z,,), the TST algo-
rithm aims to find the output labels I = (11,12, ..., 1,,).
The score of the label I, is the sum of the weights
of all acceptance paths in TST that match z; and
l;. Casacuberta and de la Higuera (2000) demon-
strate that finding the highest scoring output for a
given sentence is NP-hard. Our method uses an
approximate inference to independently determine
the highest-scoring output label at the current posi-
tion while ignoring the labels at other positions. We
show the algorithm of computing label scores si-
multaneously in Algorithm 1. TST modifies its own
parameters through supervised learning. However,
the entities described by prior morphological knowl-
edge in TST may be missing from the training set
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I-FIGURE_NOTE..
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Parameter of TST NA||||||||I|III|I|II B.P,El-;rAT[;L:D |II|II|II|II|II|II|II|III
nmi0 000|000 |0 |0 [ I-PART_IDOOOOOOOOO_:—
0]0]0|0|0]O0 [0 0|0 ojlo|1f/ofoofofo]|0oH L
of(o|ofofofo|o|0|0 ololol1lololololoH L
[1]oJofofoJofoJo[o] olofof[1]1]ofofo]oH oflofofa[1]ofofo]oH L
s o[ofofofo[1]o]o]oH olofofofofofofofoH 1
0/0|0|0f0|0 0|00 ofofofofofofofoloH I
olofofofofofo[1]oH olofofofofofolo]o}H
of(o|ofofo|1]00|0H ololololololololoH 1L
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m w; W,

FST
00
B-FIGURE_NOTE ~{(S6 E-FIGURE_NOTE
I-FIGURE_NOTE I-FIGURE_NOTE
Figure 2: A parameter initialization example of TST.
Entity 3.2m~4.9m
RE (\d+).(\d+)m~(\d+).(\d+)m
$<:>00 * A<:>B-ATTRIBUTE_VA A<:>I-ATTRIBUTE_VA * .<:>I-ATTRIBUTE_VA

EST A< >I-ATTRIBUTE_VA + m<:>I-ATTRIBUTE_VA ~<:>I-ATTRIBUTE_VA

A<SI-ATTRIBUTE_VA + .<:>I-ATTRIBUTE_VA A<:>I-ATTRIBUTE_VA

+ m<:>E-ATTRIBUTE_VA $<:>00 *

Table 4: RE and FST of an ATTRIBUTE_VA entity.

in the few-shot scenario. To make the prior mor-
phological knowledge in TST stable during training,
we use the combined outcome of trained f; and f/
without training. Since a subset of the TST cap-
tured group may also be captured, we use a priority
layer to resolve conflicts with the aim of prioritizing
‘[ over 'B-" and ’E-’. The probability vector P; is
calculated to the Eq.(2), where W, is the weight
and b, is the bias in the priority layer.

P, = priovity W, (fi + f) +b,)  (2)

Before decoding from P, OO is still retained in
the pending output label, which corresponds to a
probability p;. of undeterminedness. In Eq.(3), if the
probability of all labels is less than pj,, we assign
the corresponding label as O. Otherwise, we output
the label with the highest probability.

/

Py

(max (p},p}) , Phs Pys e Do)

o (©)
ly = argmax P, (j)
1<j<k-1

We use Eq.(4) as a loss function to measure the
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discrepancy between the prediction and actual la-
bels, where y*) is one-hot embedding of the target

label at time ¢, while p;(t) is the probability of label
j for xy.

n O]

loss = Z Z y(t)log (p;-(t))

t=1 j=1

(4)

5. Experiments

5.1.

We train and evaluate TST on the MS-NERC an-
notated in §3. We first adopt a standard setting
by randomly splitting 70% sentences as the train-
ing set, 10% as the development set, and 20% as
the testing set. To demonstrate that the prior mor-
phological knowledge equips the initial TST with a
higher start point in few-shot, we further sample the
training data. Atthe entity level, n-shot means there
are n entities of each entity category. At the sen-
tence level, n%-sen means there are n% sentences
extracted from the training set. Table 5 shows the

Dataset and Regular Expressions



statistics of the training sets.

Training Set Sentence Entity
20-shot 92 320
50-shot 246 800
3%-sen 92 322
6%-sen 186 667

10%-sen 309 1,129
30%-sen 928 3,342
100%-sen 3,094 11,195

Table 5: Statistics of the training sets.

We ask annotators to write regular expressions
and evaluate the efficiency with 100%-sen training
set in Figure 3. We only retain the regular expres-
sions describing more than three entities, resulting
in a total of 22 regular expressions.

Coverage(%)
REs

Figure 3: The coverage rate and statistics of regular
expressions with 100%-sen training set.

5.2. Baslines

We train TST with supervised training sets sepa-
rated from MS-NERC and compare TST with the
following baselines. We employ the same decoder
for all models.

e Prompt-Slot-Tagging (Hou et al., 2022) re-
versely predict slot values based on provided
slot types. This approach incorporates train-
ing by considering the relationships between
different slot types.

e Template-based BART (Cui et al., 2021) is
a template-based method for exploiting the
few-shot learning potential of generative pre-
trained language models to sequence labeling.

e NNShot (Yang and Katiyar, 2020) is a method
based on nearest neighbor learning and struc-
tured inference. This approach uses a super-
vised NER model trained on the source do-
main, as a feature extractor.
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e PER (Jia et al., 2022) is a specialized NER
method in manufacturing. This method utilizes
rules and dictionaries for pre-recognition and
employs the pre-recognition results to guide
the training of the neural network.

e BILSTM (Siami-Namini et al., 2019) is one of
the prominent deep learning models employed
for addressing sequence-related tasks.

e TENER (Yan et al., 2019) utilizes the Trans-
former architecture to model information for
NER tasks.

Our baselines are specifically designed for differ-
ent data conditions: three (Template-based BART,
Prompt Slot Tagging and NNShot) for few-shot and
two (BILSTM and TENER) for rich-resources. PER
is a specialized NER method in manufacturing, so
we conducted comparisons in both few-shot and
rich-resources.

5.3. Experimental Results

Zero-shot We compare the performance of the
initial TST and REs in Table 6. Table 6 presents
F1 and micro-average F1 scores calculated for six
entity categories, assessing the recognizing ability
of morphological-specific entities without training.
Our method outperforms the regular expressions
by +3.29% in micro-average F1. This can be at-
tributed to the priority layer of TST, which effectively
resolves conflicts in output labels and selects the
optimal choice.

Type TST REs

ACCESSORY_ID 96.81 97.08
ATTRIBUTE_VA  63.41 56.63
FIGURE_NOTE 96.97 98.20
FILE 92.98 88.98
PART_ID 58.06 75.51
TABLE_NOTE 97.67 97.67
micro-average 82.05 78.76

Table 6: F1 scores (%) for the initial TST and REs
in zero-shot.

Rich-resource We show the results of 100%-
sen training set in Table 7. The micro-average F1
scores listed are calculated based on all 16 en-
tity categories.TST are obviously competitive with

P R F1
TST 65.96 61.27 63.53
PER 58.07 67.2 623
BILSTM 55.28 64.67 59.61
TENER 53.37 63.98 58.19

Table 7: Micro-average F1 scores (%) for TST and
baselines in rich-resource.



20-shot 50-shot 3%-sen 6%-sen
init-TST 29.51
TST 26.7 31.24 25.77 36.7
PER 0.61 4.8 0.87 6.81
Template-based BART  12.52 15.68 13.87 17.54
Prompt Slot Tagging 16.38 17.08 17.44 23.2
NNShot 27.2 30.5 25.25 29.37

Table 8: Micro-average F1 scores (%) for TST and baselines in few-shot.

the baselines, which shows the equivalent learn-
ing ability. TST outperforms PER by +1.23% in
F1, demonstrating its effectiveness with full train-
ing data. TST achieves a higher precision and a
lower recall, adopting a conservative approach in
comparison to neural networks. This characteristic
renders TST well-suited for NER tasks in manufac-
turing that prioritize high precision and low error
rates.

Few-shot Table 8 presents the micro-average F1
scores in few-shot, with init-TST indicating the ini-
tial TST’s F1 score across all 16 entity categories in
zero-shot. The results demonstrate that our model
maintains a lead over the baselines in few-shot
and outperforms the init-TST after training. Our
model’s strength lies in its utilization of prior mor-
phological knowledge, distinguishing it from the
neural baselines. PER performs poorly in few-shot
because this method relies on domain knowledge
to guide the neural network training. When there
is insufficient training data, domain knowledge can
not be effectively leveraged. TST underperforms
the init-TST and NNshot in 20-shot. This discrep-
ancy may be due to the differences between the
development and testing sets. Through training, we
select and evaluate the best performance model
based on the development set. The 6%-sen has
fewer entities than the 50-shot but gets a better
result. This is because that the 6%-sen training set
and the testing set are extracted based on the pro-
portions of the sentences and entities. In 6%-sen,
some entities have counts exceeding 50, and these
entities also constitute a significant portion of the
testing set. TST demonstrates more comprehen-
sive learning for such entities, contributing to more
accurate recognition during testing and yielding a
higher micro-average F1 score.

6. Conclusion

In this paper, we investigate the task of named entity
recognition in manufacturing. We define 16 cate-
gories and develop a Chinese NER corpus named
MS-NERC with 4,424 sentences and 16,383 enti-
ties in manufacturing. We demonstrate that some
entities in MS-NERC conform to morphological pat-
terns. We propose an entity recognizer named
TST, which can be initialized with a FST describing
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the morphological patterns of entities. Our method
efficiently exploits prior morphological knowledge,
enabling TST to directly recognize related entities,
free from the constraints of the training set. Ex-
periments show that TST demonstrates competi-
tive performance in zero-shot, few-shot, and rich-
resource. To the best of our knowledge, we are the
first to model prior morphological knowledge of the
entities as a trainable entity recognizer.
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