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Abstract

We present Component ALignment for Abstract Meaning Representation (CALAMR), a novel method for graph
alignment that can support summarization and its evaluation. First, our method produces graphs that explain what is
summarized through their alignments, which can be used to train graph-based summarization learners. Second,
although numerous scoring methods have been proposed for abstract meaning representation (AMR) that evaluate
semantic similarity, no AMR based summarization metrics exist despite years of work using AMR for this task.
CaLamR provides alignments on which new scores can be based. The contributions of this work include a) a novel
approach to aligning AMR graphs, b) a new summarization based scoring methods for similarity of AMR subgraphs
composed of one or more sentences, and c) the entire reusable source code to reproduce our results.
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1. Introduction

Sentence A: I saw Joe’s dog, which was running in the garden.

Abstract meaning representation (AMR) is a se-
mantic representation language that captures “who
is doing what to whom” in a sentence (Banarescu
etal., 2013). AMR graphs represent semantic struc-
ture in a syntactic independent way (see Fig 1).
For this reason they are balanced in their level of
abstraction making their representation conducive
to tasks such as summarization (Liu et al., 2015;
Liao et al., 2018; Dohare et al., 2018), Question
Answering (Kapanipathi et al., 2021), headline gen-
eration (Gu et al., 2020), and automatic machine
translation (MT) (Blloshmi et al., 2020). In most
tasks, text-to-graph models are used to create AMR
graphs as an upstream task, which are evaluated by
comparing their output to human annotated graphs
by similarity (Cai and Knight, 2013; Bonial et al.,
2020). Summarization applications often include
language generation (Hardy and Vlachos, 2018).

While large language models (LLMs) have seen
great promise in recent years, they continue to
suffer from hallucination, which precludes faithful
and traceable summaries (Maynez et al., 2020)
needed by domains such as the clinical medical
field. Because our method aligns summaries to
every source AMR subgraph, we are able to trace
text from the summary via aligned tokens (depicted
as arrows in Fig 1) to text of the source text. For
this reason, we propose this method for training
summarization models, which has the potential of
ameliorating these issues.

(b)

Figure 1: AMR Graph Components. Top (a) the source
graph. Bottom (b) the summary graph. The aligned
tokens shown as arrows. Example from Liu et al. (2015).

A measure of overlap between the source and
summary is a byproduct of our alignment method,
which can be used as a summarization metric for
AMR summarization. Despite recent interest in
AMR scoring methods (Cai and Lam, 2019; Opitz
et al., 2020) to accurately evaluate text-to-graph

and graph-to-text models, there still exist no AMR
summarization scoring methods.

To accomplish our goal of alignment and scoring,
we propose a model that takes advantage of flow
networks (see Sec 3.3), which as far as we know,
have rarely been used in NLP, and never on AMR
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graphs. Our methodology takes sentences anno-
tated with human annotated AMR graphs’ as input;
we then tie them with a root node as components,
and then connect them as a bipartite graph. Bipar-
tite alignments’ capacities are computed by their
respective component node neighborhoods and
computed as the cosine similarity of node, edge,
and local neighborhood embeddings (see Sec 3).

We use several human annotated corpora to
compare with existing similarity AMR scoring meth-
ods and our own summarization scores (see Sec 5).
In this work, we provide a) a novel method and
source code?® of creating summarization align-
ments, b) a new AMR summarization metric, which
is the first to our knowledge, and c) a freely avail-
able® PropBank database with precomputed em-
beddings. The flow network construction and its
methods are explained in Sec 3 and Sec 4 de-
scribes our scoring method and how the metrics
are calculated. Our experimental design is given
in Sec 5.2 and results in Sec 6.

2. Related Work

The earliest AMR summarization work of Liu et al.
(2015) reduces source AMR graphs into a sum-
mary graph using integer linear programming. This
was then extended by Liao et al. (2018) to gen-
erate text using a rule based method. While this
work is most similar to ours, we uses a bipartite
flow network (see Sec 3.3) for alignment of the
source and summary graphs. Furthermore, their
work builds on the graph reduction methods of
Thadani and McKeown (2013) for sentence compre-
hension and re-frames commodity flow (Magnanti
and Wolsey, 1995) for edge inclusion to induce a
summary graph.

Compared to AMR summarization and language
generation efforts (Dohare et al., 2017, 2018; Hardy
and Vlachos, 2018), scoring has received as much
or more attention. SmatcH (Cai and Knight, 2013)
was the first AMR semantic graph similarity score,
which measures overlap of graphs and designed for
inter-annotator agreement. Several recent replace-
ments of SMATCH have been proposed such as SEm-
BLeu (Song and Gildea, 2019). Later, Weisfeiler-
Leman graph kernel (Shervashidze et al., 2011)
using an interesting method of leveraging distrib-
uted probability in local network neighborhood for
matching. While this work is similar, ours uses a
flow network to measure the information transmis-
sion across the graph globally while their method
employs the word mover algorithm (Kusner et al.,
2015) for local subgraphs. To our knowledge, this

'Automatically parsed graphs are available in our
source code, but experimentation is left for future work.

2https://github.com/uic-nlp-lab/calamr

3https://github.com/plandes/propbankdb

is the first work that uses the max flow algorithm
with AMR graphs.

The study and optimization of a graph as a flow
network has been evolving for more than eight
decades since the publication of a 1930 article by
A. N. Tolstol on Soviet railroad planning (Schrijver,
2002). Several decades later, the max flow problem
was formalized in a declassified military report (Har-
ris and Ross, 1955), which became the foundation
of the seminal Ford Fulkerson max-cut min-flow al-
gorithm (Ford and Fulkerson, 1962). This resulted
in a decades-long track record of the application
of flow networks in Computer Science, maximum
cardinality matching (Hopcroft and Karp, 1973),
baseball elimination (Schwartz, 1966), and airline
scheduling (Cormen et al., 2001).

Flow networks have been used in NLP for the
task of MT framed as a bipartite flow match-
ing task (Gaussier, 1998), and for information re-
trieval (IR) to semantically match documents to
queries (Guo et al., 2016). However, they have not
been used with any language based graph-based,
such as AMR, to our knowledge.

3. Methods

An AMR graph represents the abstract meaning
of a sentence as a directed acyclic graph (DAG).
Each node of an AMR graph represents a concept
as an idea grounded by natural language in the
form of a verb, noun, or abstract placeholder (i.e.
person for names). Attribute nodes contain sur-
face text such as cardinals, date tokens, and other
named entities, and verbs are modeled as rolesets
in PropBank (Kingsbury and Palmer, 2002).

The children of concept verb nodes are other
concept or attribute nodes as they “play a role” in
a specific way relative to the “sense” of the roleset.
Each role is a member of a roleset, semantically la-
beled with a function tag and an enumerated index
used as the edge label that connects it with its par-
ent concept verb node. Some edges have labeled
relationships rather than roleset concepts such as
possessive, conjunction, and location.

Our method uses AMR sentence graphs as build-
ing blocks that are are iteratively constructed into
larger graphs that represent any arbitrary language
structure such as paragraphs or documents. Each
iteration of this process connects one or more
graphs from the previous step; the input are AMR
graphs that represent a sentence from human an-
notations (Fig 2a):

1. Source and summary components (see Fig 1)
are each one or more sentence AMR graph
combined with a root node to form the docu-
ment’s source or summary. Fig 2b

2. Alignment graph is a bipartite graph of the
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Figure 2: Graph Construction. The graph construction
process starting with AMR graphs.

source and summary components. Fig 2¢

3. Flow network models the flow of information
through a graph using two weighted edge val-
ues: capacities and flow. Fig 2d

In this work, the flow material is information
through the connected flow network constructed
in Step 3. The direction of the flow goes from the
source flow network node* to the leaf nodes of
the summary component, over the bipartite align-
ment edges to the source component, and then to
the source root. The amount of information flow
through each alignment edge provides local scores
of the strength of each source to summary node
alignment pair and globally for the document.

Two kinds of alignments are described are a)
text-to-graph aligned tokens (TATs) associate AMR
nodes to tokens, and b) graph alignment edges
connect nodes across the flow network. Embed-
dings generated from the source text of the TATs
are attached to AMR graph nodes at inference time.
However, static PropBank roleset embeddings (see
Sec 3.1) are computed before the method begins.
The end-to-end pipeline includes:

1. Preprocessing PropBank embeddings (3.1).

2. Constructing the flow network (3.3).

*The terminology difference between the source node
s (flow network) and the source component (AMR graph)
is explicitly differentiated since the source node can be
connected to the source component.

3. Attaching graph embeddings from TATs and
PropBank to concept verb nodes (3.3).

4. Computing alignment edge capacities (3.3.1).
5. Reducing the alignment (3.4).

a) Run max flow algorithm (3.4.1).

b) Normalize flow-per-node.

¢) Remove low flow alignment edges (3.4).
d) Go to step 5a until convergence.

(
(
(
(

3.1. AMR Graph Embeddings

When the alignment graph (Fig 2c) is created (see
Sec 3.3), we compute and attach embeddings to
nodes and edges. These embeddings are taken
from the text of PropBank (Kingsbury and Palmer,
2002) entries related to concept nodes, and then
combined to compose local network neighborhood
embeddings (see Sec 3.2).

PropBank is a lexicon consisting of verb senses
as “frames” defined in frame files (Loper et al.,
2007), which we use to generate graph embed-
dings. The embeddings, for PropBank and all
graph nodes and edges, are generated from
Sentence-BERT (SBERT)®, a siamese network
model that captures sentinel semantic similar-
ity (Reimers and Gurevych, 2019). The model em-
beddings were taken from the public checkpoint
of the pretrained model and used without further
fine-tuning.

Fig 3 shows an example of PropBank labels used
as the model input on the top left for concept node
chase-01. This concept node n has embedding
emb, (n) calculated from SBERT model S using
the PropBank roleset label “follow, pursue”. The
TAT embeddings of single tokens are aggregated
with concept node embeddings for text-to-graph
aligned tokens as depicted with the garden node
on the bottom of the same figure. The concept
node embeddings are then added by surrounding
nodes’ embeddings to represent the local context
of the graph, such as with the dog node.

The AMR graph root nodes are attached to non-
AMR sentence nodes with their own embedding
emb,(n). The example shows sentence s “Joe’s
dog was chasing a cat in the garden.” in sentence
node n on the top right of Fig 3.

The edge embeddings are computed from addi-
tional PropBank labels, including role descriptions
(i.e. “follower”), function tags semantic tags of the
role(i.e. “PAG” for “prototypical agent”), and role
edge AMR role descriptions (i.e. “argument frame”
for : ARGO) or “possessive” for :poss).

The large model (all-mpnet-base-v2) was used for
all experiments.
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emb,(chase-01) = S(follow, ...)

Joe's dog was chasing a cat in the garden.
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name I follow, pursue

description | follower
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Figure 3: Graph Embeddings. An AMR graph of the sentence, “Joe’s dog was chasing a cat in the garden.”. The
embedding node definitions with the model output are given for TAT garden at index 9, the roleset (chase-01), the
role (ARGO with description “follower” and the function tag “prototypical agent”). Each token is represented as one

word piece for simplicity.

See Appendix A for detailed formulation and Ap-
pendix C for additional example figures.

3.2. Network Neighborhood Embeddings

The nodes adjacent to an alignment target node are
traversed to create a local network neighborhood
embedding. This local embedding better contextu-
alizes node alignments. Fig 4 shows the network
neighborhood around the target node run-02.

2nd order neighbors (A2 =0.5)

Ist order neighbors (A1 =1)

Figure 4: Network Neighborhood Weights. The AMR
graph for the sentence, “/ saw Joe’s dog, which was run-
ning fast in the small garden.”, with the network neighbor-
hoods of verb concept node run-02 and their weights.
The A weights are shown with default hyperparameters.

Embeddings are aggregated by adding and/or av-
eraging similar to previous work (Opitz et al., 2021).
The dark blue nodes are the k™ order neighbor
set that are at exactly k£ hops away from the target
node. They are colored according to how much
they influence the embeddings have scaled by the
hyperparameter A, which is an array of real values
for each concentric k" order neighbor set. The
higher the & the lower the weight, and influence
their embeddings have on the target node. See
Appendix A.5 for the network neighborhood formu-
lation.

3.3. Flow Network Construction

A flow network is a graph with two values asso-
ciated with each edge: a capacity and a flow. It
can be conceptualized as a network of pipes where
the capacity is the maximum amount of material
allowed to flow, and the flow is the amount of ma-
terial traversing a pipe. Every flow network has a
source s that produces an infinite flow, and a sink ¢
that accepts an infinite flow.

More formally, a flow network is a graph of ver-
tices and edges G = (V, &):

Yo, eV Z fle) =

eintov

> fley (1)

e leaving v

Ve,e £,0 < f(e) < ce, v(f) = f(s) (2

where V is the set of vertexes; £ the set of edges;
f(e) is the amount of material flowing through edge
e; ce is a capacity for edge e, and v(f) the value
of flow. Conceptually, the edge weights of the flow
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The dog was
chasing a cat.

I saw Joe’s dog, which
was running in the garden.

Joe’s dog was chasing a
cat in the garden.

(a)

(b)

Figure 5: Flow Network Construction. The terminal flow nodes and alignment edges added to the bipartite source
and summary components with the changes shown in red. The width of the edge represents the value of its capacity
as a function of its similarity. Some nodes and edges are omitted for simplicity; see Appendix C for example figures.

network are capacities, which represent the limit of
water pumped through a pipe before it breaks from
the pressure. The amount of flow, like the amount
of water in a pipe, is the information gain between
the source and summary.

Equation 1 states that all material (i.e. water)
going into a node must have the same amount of
material leaving that node. The flow into the graph
is the sum leaving the source s constrained by the
capacities (c.) of edges connected to it. The flow
capable of flowing through the graph G from source
s to sink ¢ is defined in Equation 2. Finding the
maximum possible flow on all edges is solved by
the max flow algorithm (Gao et al., 2022). See
Appendix B for the capacity formulation.

3.3.1. Graph Component Connection

The first step to creating the source and summary
components is to add sentence nodes for each
AMR graph, which are then tied together with a root
node. During construction, parsed sentences are
attached to sentence nodes, and TATs are attached
to concept and attribute nodes (see Fig 1). Concept
nodes are coupled with PropBank rolesets, and
outgoing role edges are coupled with connected
concepts.

The source and summary components are then
connected with the alignment edges to create the
bipartite alignment graph. They are created as
the Cartesian product of the concept nodes across
the components with their capacity values set to

the semantic similarity for each bipartite node pair.

Capacities for all alignment edges are assigned
(as described in Appendix B) and edges discarded
for those that fall under the similarity threshold (75)
hyperparameter. The edges are then reversed to
allow the flow network configuration necessary for
alignment assignments as described in Sec 3.4.

3.3.2. Attach Terminal Nodes

Finally, the source node s is connected to the sum-
mary’s AMR graph leaf nodes and the sink ¢ is con-
nected to the source component root node. The
role edges of the AMR graph that relate the roles
of concept nodes also become capacitated edges
with values set to infinity. The resulting flow network
graph, shown in Fig 5, is described and constrained
by Equation 1 and used with the max flow algorithm
to compute the flow through all edges.

3.4. Alignment Graph Algorithm

After the flow network is created, the alignment ca-
pacities between the concept nodes of source and
summary components are modified. A byproduct of
the algorithm is a score assigned to each role edge
of how well the respective branch of the component
is aligned across the alignment graph. The initial
capacities that are set on the constructed alignment
edges (see Sec 3.3.1) provide an initial estimate of
concept node pair alignments. However, these ca-
pacity values only take into account the local node
neighborhood at the sentence, or document level.
Instead, the flow values assigned by the max flow
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Figure 6: Network Flow. Left (a): the edge node parent of edge poss is dog and its edge node child is person.
Right (b): example flow from the summary to the source component with flows (left of arrow) and normalized flow per
node values (right of arrow) with constricted edges as dotted lines.

algorithm provide a global representation with a
better estimate of the alignment strength. The al-
gorithm goes a step further and iteratively updates
capacities informed by flow changes by re-running
the max flow algorithm until convergence.

3.4.1. Max Flow

The algorithm (Goldberg and Tarjan, 1988) com-
putes the max flow by pushing flow from the flow
network’s source s node to the AMR summary com-
ponent. It then flows through the alignment edges
from the summary to the source component, up
toward the root of the source component, and out
to the flow network’s sink node ¢. Since all role
edges are set to infinity, flow goes through to every
node and edges of the graph® as shown in Fig 5.

3.4.2. Flow Normalization

The flow network at this point has flow values on
each edge, which are then normalized for each
node based on its descendants. After the maxflow
algorithm has run, flow values are normalized for
each subgraph. First, graph terminology is to be
defined. Let:

. The edge node parent ?(¢) be the node at the
source end of a directed edge e in the alignment
graph (the edge node parent of poss is dog in
Fig 6a).

. The edge node child c(e) be the node at the
target end of a directed edge e.

. The node descendants D(v) of v be all
paths to the terminal leaf node grandchildren
(D(dog) = {person, name, Joe} in Fig 6a).

®Reentrancies are exceptions to this rule (see Sec 7).

For example, in Fig 6a, the D(dog) are the
nodes person, name, and attribute Joe.

. The flow per node f(¢) be the flow at an edge
divided by all its source node’s descendants:

I
7 = o) @

where f(e) is the flow value through edge e.
Fig 6b shows the values from a run of the algo-
rithm with flows (left of arrow) and flow per node
values (right of arrow). For example, a query
of the flow that leaves person, which is one of
the role edges labeled :poss, starts with tra-
versing node P(poss) = dog with D(2(dog)) =
{dog,name, Joe}. The flow on :poss is 2.41 so

2.

our flow per node = 231 = 0.8.

3.4.3. Capacity Constriction

After flow normalization, we “squeeze” capacities of
the alignment edges, which affects the next iteration
(see Sec 3.4.4). The edge capacities are set to zero
if the edge’s flow falls under the alignment edge
minimum capacity cutoff (7). The same applies
for the parent’s descendant’s role edge for flows
less than role edge minimum capacity cutoff (7,):

{Vee&:e<T,} D(P(e)) — O

where e is the component role edge; #(e) is the
edge node parent, and D(2(e)) are the descendant
nodes of the edge node parent.

If the 7, is set to 0.4, the role edge that connects
run—-02 and dog in Fig 6b would meet the crite-
ria for its edge node parent and descendants to
be set to zero. The path of role edges affected in
the figure are represented with dotted lines. Since
P(e) = dog, and D(dog) = {run-02,garden}
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then the capacities of the alignment edges between
the summary component and run-02 (already set
to 0) and garden (from 0.8) will be set to 0 (rep-
resented with dotted lines). Note that even though
there are capacity edges well over the value of the
7,, we still set them to zero since each edge takes
into account the flow per node value of all flows of
descendants at that level.

3.4.4. Summary Max Flow

The non-zero alignment edges remaining after the
steps described in Sec 3.4.1 to Sec 3.4.3 explain
how much, and what part of the source is included
in the summary. Similarly, these steps are repeated
on a second flow network with its output explaining
the extent of the summarized source. This sec-
ond flow network shares capacities, and alignment
edges are reversed so it flows from the source to
the summary. The source flow node s is connected
to the leaf nodes of the source component and the
sink ¢ node is moved to the summary root.

Before the max flow algorithm is run on the sec-
ond reversed flow graph, the flow values on all role
edges are tracked, and if any changes, the steps
described in Sec 3.4.1 through Sec 3.4.3 are run
again. The method’s execution is alternated across
the first and second flow network until convergence
indicative of static flow values is reached.

3.5. Final Alignment Graph

In summary, the alignment graph is made up of the
source and summary components composed of
AMR graphs, which are then connected to create
the flow network. Alignment edges are then deleted
by clamping shared capacities across two flow net-
work instances (each with a reversed flow). Low
flow edges result in minimized or deleted alignment
edges for iteration of the algorithm.

The final alignment graph looks similar to Fig 5
before the alignment edges are deleted. For exam-
ple, chase-01 to run—02 nodes for 75 = 0.3.

4. Scoring Method

Our methods measure the semantic similarity simi-
lar to SMATCH, but includes metrics for summariza-
tion overlap. We define the value of flow exiting
the source node to the sink as the source root flow
using Equation 2 with Cs. = f*"(ssource)-

This metric applies for every subgraph or globally
as the source component’s root node connected
edge. For example, this value is 0.46 in Fig 6b
for the subgraph from the see—01 node to the
leaf nodes. Likewise, the value of flow exiting the
summary node to the sink is defined as the sum-
mary root flow with C¢y, = fo"(sgymmary). Addi-
tional CaLAamMR scoring methods include the portion

of nodes in the source component that have at
least one alignment with the summary, defined as
the source aligned portion (C.) and the portion
of nodes in the summary component that have at
least one alignment with the source defined as the
summary aligned portion (Cy).

Given the symmetry of the algorithm as detailed
in Sec 3.4.4, we can treat the source as any sen-
tence (and the likewise the summary) if we wish
to score them in like fashion to previous baseline
scoring methods (Cai and Knight, 2013; Opitz et al.,
2021); meaning we can score the similarity of two
AMRs.

Unlike previous methods, we can also score AMR
graphs as multi-sentence graphs by the summa-
rization overlap as a non-negative real value called
the aggregate flow:

Cye-Cyy
C,=2-2-A% ¥ 4
f Cfc+ny ( )

which results in higher values for graphs with multi-
ple node alignments. This score is useful for sub-
graphs but not globally, so we define the aggregate
alignment portion score as the harmonic mean of
the aligned node portion across components:

29'(}

C-2""-2,
Ce.+Cy

(5)
which is also a real value but has range [0, 1], and

is advantageous as it has the same range as es-
tablished AMR scores such as SMATCH.

5. Experiment Design and Setup

We report two kinds of experiments with the first
concerning summarization (see Sec 5.1) and the
second similarity scoring (see Sec 5.2) between
human annotated AMRs and the output of three
popular parsers. We run these evaluations to as-
sess how CALAMR compares to other methods of
finding summarized content and judging alignment
as a similarity measure. Given the results reported
in Sec 6, we believe CALAMR is a more perspicuous
score as it judges semantic similarity both locally
and globally. The second set of experiments use
the overlap of two multi-sentence AMR graphs as
a measure of summarization.

5.1.

The Proxy Report AMR corpus contains news arti-
cles with sentences tagged as a date, country, topic,
summary and body. Only sentences tagged with
summary or body are used in our experiments. The
corpus development set has 35 articles and 826
sentences, and its test set has 33 articles and 823
sentences. The alignment method was first used

Summarization
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to find summarized text through text-to-graph align-
ments. It was then used to score summarizations
in development and test sets.

After scoring, sentences of the source and sum-
mary for 33 articles of the two data sets were
swapped and scored a second time (we call this
the “Mismatch set”). This was accomplished by
switching the source sentences from the test set
with the summary sentences in the development
set. Source sentences in the Proxy Report corpus
resulted iniin 14,108 role edges, 660 concept nodes
and the summary totaled 1,153 role edges and 802
concept nodes.

5.2. Similarity Scoring

Three popular and peer-reviewed parsers were
used to generate AMR graphs from natural lan-
guage sentences scored with SmatcH (Cai and
Knight, 2013), Wik (Opitz et al., 2021)” and our
scoring method. The JAMR (Flanigan et al., 2014)
parser is also included for a baseline comparison.

The parsers’ output was scored against the
first 20 sentences of the human annotated “Proxy
Report” LDC2020T02 AMR Annotation Release
3.0 (Knight et al., 2021) corpus and two Informa-
tion Science Institute® corpora, which include Little
Prince (1,562 sentences) and Biomedical (6,952
sentences). The amrlib® library was used with the
SPRING (Bevilacqua et al., 2021) and Gsii (Cai
and Lam, 2020) parsers as it has been shown to
produce good results on text-to-graph tasks (Hei-
necke and Shimorina, 2022; Opitz and Frank, 2022;
Opitz et al., 2021).

5.3. Baselines

Our primary baseline uses the Liu et al. (2015)
method of comparing the text-to-graph aligned
words from the source to the summary as a bag of
words. RougGe (Lin, 2004) is used on the unigrams
to evaluate the aligned overlap to gauge how well
CaLAMR “finds” summarized content.

We also compare the resulting CALAMR edge cov-
erage of alignment outputs with the document-level
AMR graph heuristic method that links based on ex-
act match of Liu et al. (2015) on the LDC2014T12
AMR Annotation Release 1.0 corpus as a base-
line™. We cannot directly compare coverage as
their method is a graph reduction into the summary
and ours is an alignment method. Instead, we com-
pare CALAMR positive value flow role edges to their

7 All experiments used WLk settings of K = 2 itera-
tions with “all directional communication”.

8https://amr.isi.edu/download.html

®https://github.com/bjascob/amrlib

9The AMR 3.0 corpus was used for other experiments.

sentence level graph expansion since both meth-
ods’ goal is to identify AMR subgraphs used for
alignment. Both of our metrics are taken as a quo-
tient of the total number of summary component
role edges.

6. Results

Sec 6.1 pertains to CALAMR as a summarization
method with respect to scoring, Sec 6.2 explains
the measure of summarization between two AMR
graphs, and our results are given in Sec 6.3.

6.1.

The stark contrast of the alignment portion across
the corpora is a strong indicator of the ability of the
method. The scoring method captures the rate of
summarization as evidenced with 86.6% average
aligned AMR nodes in the unaltered document set
(Proxy Report) compared to the 35.1% in the devel-
opment and test switched set (Mismatch) shown
in Table 1. The source component aligned por-
tion also reveals the difference between the unal-
tered and Mismatch document set as the portion of
the summary is represented in the source (43.2%
vs. 14.6%). The high summary root flow (C,,) of
7.21 (see Table 1) in the unaltered set indicates the
source graph is strongly aligned compared to the
low summary root flow in the Mismatch set of 2.61
(Cye). These flow metrics represent the degree to
which each graph is aligned with the other.

Summarization

Corpus Cy C. Cyy Cye
Proxy report | 86.6% | 43.2% | 721.4% | 67.1%
Mismatch 35.1% | 14.6% | 261.1% | 19.6%

Table 1: Document Summarization Scores. Scoring
matched vs. mismatch corpus. See Sec 4 for CALAMR
scoring notation.

6.2. Alignment

As explained in Sec 4, the particularity of the source
and summary becomes moot given the symmetry
of the algorithm across the components, which mo-
tivates the semantic similarity scoring method. We
hypothesize that the aggregate alignment portion
CaLaMR C score reflects the similarity between any
two AMR graphs, and thus, is an indicator of the
effectiveness of the score for summarization.

To estimate this effectiveness we compared the
text-to-graph parser output of AMR sentence met-
rics with previous methods as a reference point.
This was done by comparing the scoring methods
with the aggregate alignment portion (C from Equa-
tion 5) using Pearson (p) correlations. Table 2 lists
the scores between the human annotated AMR
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sentences and parser output. We find highly cor-
related scores between WLk (69.2) and SMATCH
(67.7) using JAMR on the Little Prince corpus.

To that end, JAMR produces the highest corre-
lations for the other corpora as well. In fact, this
trend extends to SPRING (second most correlated)
and Gsii (least correlated). Because the parser
is a consistent indicator of highly positively corre-
lated results, regardless of corpus, we conclude
that CALAMR is an effective scoring method.

Corpus Parser | Sent | pC,S | pC,W
Biomedical Gsii 6,644 41.2 31.8
Biomedical Jamr 5,612 66.2 65.2
Biomedical Spring | 6,617 50.1 41.3
Little prince Gsii 1,464 38.8 35.7
Little prince | Jamr 1,501 67.7 69.2
Little prince | Spring | 1,497 41.3 47 1
Proxy report | Gsii 8,042 22.9 30.8
Proxy report | Jamr 7,781 53.2 56.2
Proxy report | Spring | 8,120 37.3 48.2

Table 2: Parser Alignment Scoring. AMR Sentence
Pearson correlations (p) between aggregate alignment
portion (é)ALAMR (see Equation 5) and previous scoring
methods (S)maTcH and (W)Lk. Metrics are reported only

for successfully parsed (Sent)ences.

6.3. Previous Methods

Even though our method is not a summarization
model, we compare to other methods (summa-
rization and non-summarization) as a reference
point. Table 3 shows the alignment results on the
LDC2014T12 corpus using the same methodology
as Liu et al. (2015). The high Rouce1 score (F1
of 17.5 over the baseline), shows that CALAMR is
effective at finding summarized content.

Method Precision | Recall | F1

Liu et al. (2015) 51.9% 39.0% | 44.3%
Dohare et al. (2017) | 52.4% 55.7% | 51.3%
Fu et al. (2021) - - 49.1%
CALAMR 69.0% 68.6% | 68.8%

Table 3: Aligned Node Text Comparison. Unigram
(bag of words) aligned source to summary overlap of
text-to-graph tokens.

The Liu et al. (2015) method is compared with
role and alignment edge coverage in Table 4 as
explained in Sec 5.3. The results show a signifi-
cantly higher coverage of edges from the expanded
sentence-level edges to CALAMR component role
edges. CALAMR also has a much higher coverage
of summary component alignment with the source
compared to the previous method’s document-level
expanded edges. This shows our method is a bet-
ter method comparatively.

Split | Sent Doc C Role | C Alignment
Train | 75.5% | 84.6% || 84.3% 94.8%
Dev. | 85.4% | 91.8% || 83.1% 92.5%
Test | 75.0% | 83.3% || 84.3% 96.3%

Table 4: Summary Alignment Coverage. Edge
coverage as a portion within (Sent)ences and
(Doc)uments (Liu et al., 2015), which are analogous to
the portion of non-zero flow Role and Alignment edges

using the (C)aLaAMR method.

7. Reentrancies

AMR nodes with multiple parents (reentrancies)
lead to catastrophic alignment failure. Because the
role edge’s capacities are set to infinity, the max
flow algorithm redirects all flow through only one
of the parent’s incoming edges starving the other
paths from the reentrancy to the root. We observed
2.6% of the source graphs nodes and 2.18% of
the summary graphs nodes to be reentrancies. To
address this issue we clamped the capacities of all
incoming edges of reentrancy nodes to the normal-
ized sum of the incoming flow so that:

1

Ve e ®(n), c. « =0l ue;n) f(u) (6)
where ¢, is the capacity value; ?(n) are incoming
edges to n, and f(u) is the flow through e into n.
This resulted in all of the summary graphs being
repaired (all reentrancy positive edge flows) and
80.3% repaired in the source graphs. This method
fixed three catastrophic alignment failures of the
366 Proxy Report documents, but one (0.27%) re-
mained unchanged.

8. Conclusions and Future Work

We have presented CALAMR, an alignment method
that supports scoring metrics that provide a seman-
tic similarity metric for multi-sentence AMR graphs
and subgraph level summarization metrics. The
method is suitable as both a scoring method capa-
ble of determining the portion of overlapping con-
tent through both alignment and flow metrics. More
importantly, we believe it has the potential to a solu-
tion toward traceable summaries (an area needed
for assisting in ground truth), which we leave as a
future work.
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A. AMR Graph Embedding
Calculation

This appendix explains the graph and TAT embed-
dings formulation.

A1,

In future work, the embeddings for document nodes
will be computed as the mean of their constituent
subgraph children node embeddings:

Document Nodes

embal(n) * o] 2 emb

For paragraph nodes will be the mean of the
sentence nodes (children nodes ¢(n) are defined
in Sec 3.4.2) that compose that paragraph. The
emb(u) notation is used to get the node embed-
dings of node u. Each node has their own em-
bedding definition including sentence node embed-
dings defined in Sec A.2

A.2. Sentence Nodes

Sentence nodes use SBERT’s [CLS] output:
emby(n) = S(s,) e R?

where n is a sentence node in the graph, and
S(sn) is the SBERT sentinel embedding for sen-
tence s,,. The emb,(n) notation denotes a sentinel
embedding with the s subscript. The other nodal
embeddings include concept nodes (emb.(n)), and
attribute nodes (emb,(n)).

A.3. Concept Nodes

Concept nodes have a rich set of information, such
as PropBank entries and graph aligned text. The
PropBank rolesets are preprocessed with embed-
dings as described in Sec 3.1 and the TAT embed-
dings are generated at graph create time.

Instead of the sentence [cLs] SBERT token,
the SBERT last output layer is used for tokens:

sn (W]

Z Z S(S ) ) if n has
emby(n) = {4 - "/t alignments  (7)
1, otherwise

where n is the concept node, and d is the SBERT
embedding dimension (768). This output has a
separate embedding for each aligned token w,
which maps to one or more wordpieces (Wu et al.,
2016). The aligned token w embedding is the sum
of each ith wordpiece S(s,,); from the sentence
text s,. A single model embedding space across
the sentence node’s [CLS] and wordpiece vectors
provides continuity when aggregating embeddings.
Fig 3 illustrates an AMR graph with TAT garden at
index 9 in the sentence, which gives the 9" index
in to the SBERT embedding output. This embed-
ding has d € R'°*768 for the model’s output layer
(assuming each word token is mapped to a single
wordpiece).
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Role A roleset is a grouping of PropBank roles
and is attached to a concept node defined as:

h = [S(s,) + S(s7)] - pr
emb,(e) = emb(C(e)) - pec +h (8)

where e is the role edge; p. and p, are role and
role child node hyperparameters, and emb(c(e))
is the embedding of role edge node child. S(s,)
and S(sg) are the role name and role semantic tag
embeddings. The ARGO role embedding of chase-
01 is shown in Fig 3 as the sum of the components,
the edge, and the child node dog.

Node In addition to aligned tokens and roles, con-
cept node embeddings are aggregated with Prop-
Bank roleset embeddings. The roleset can be
thought of as metadata attached to verb concept
nodes and static across all nodes of the same verb
roleset. For example, the chase-01 found in two
sentences in Fig 5 have the same roleset and em-
bedding. Most concept nodes have TATs that are
also aggregated into the node’s embedding. The
embedding for a concept verb node n is defined
as the weighted mean of the TATs, the roleset, and
the role edges:

hys = 1,[n] S(srs) + (1 — 1,[n]) S(sn)

Z emb,.(e) wr]

eeN(n)

h, = 1,[n] [
emb.(n) = emb;(n)wt + hys wys + hy (9)

where emb;(n) is the token alignment embedding
produced; S(s,.s) is the SBERT roleset embedding;
S(sn) is the non-verb node text embedding; N (n)
are the outgoing role edges of node n that connect
to its children; wy, wys and w, are hyperparameters,
and h, is the role embedding defined by Equation 8.
The indicator function 1,[n] yields 1 when n is a
verb node and 0 for noun and other abstract mean-
ing nodes (see Fig 3). This “toggles” the use of the
roleset embedding for verb nodes. Otherwise, the
text of the node itself is used as the input.

Fig 3 shows the constituent parts of the emb..(n)
embeddings and how PropBank and TAT embed-
dings are aggregated.

A.4. Attribute Nodes

If models that assigned TATs were completely ac-
curate, attribute nodes would always have at least
one token alignment. Instead, they leave some at-
tributes with only the surface text given to the node
by the text-to-graph model without the alignment.
Similar to Equation 9, we use the attribute node’s
text when TATs are not available. Alignments are

“toggled” by defining the attribute embedding as:

hy =min(1, |T|) emb:(n)
embgy(n) = hg+(1 — min(1,|7])) S(sn)  (10)
where T is the set of TATs; emb;(n) is the TAT

embedding (see Equation 7), and S(s,,) is the at-
tribute’s text embedding.

A.5. Network Neighborhood

Sec 3.2 describes network neighborhood embed-
dings. Let 7(n, k) be the k" order neighbor set
nodes, concentric “rings” around a target node at
exactly k£ hops distance from node n, then the net-
work neighborhood embedding is defined as:

k
emb,(n) = Z Z emb(u) - A;

i ueU(n,i)

VreA:z2>0

(11)

where k is the maximum order k™ order neighbor
set.; uU(n,1) is the k™ order neighbor set i hops
from n; emb(u) node n’s embedding, and A; is
the i"’s weight hyperparameter that dampens the
node n’s embedding. The hyperparameter weights
are set so that the farther a node is from the target
node, the less influence it has on the neighborhood
embedding with the exception of Ay = 0 so that the
target node’s embedding is dropped.

B. Capacity Calculation

The alignment edge capacities using the node pair-
ings (see Sec 3.1) are defined as:

emb(ny) - emb(ng)
|lemb (r21)[|[lemb (n2)]|

cossim(ny, ng) =

(12)

where emby, (n) and emby, (n) are the embeddings
of the node pair, and p is the hyperparameter that
non-linearly adjusts the similarity to penalize for
over-zealous similarities with settings for each node
type. Some nodes or local network neighborhoods
might be semantically similar, but for the wrong rea-
sons. This is addressed globally by the max flow
algorithm (see Sec 3.4) and locally with combined
network neighborhood embeddings (see Sec 3.2).
The p hyperparameter is used to penalize certain
node pairs for over-zealous similarities with a set-
tings for each node type.

The capacity value C(nq,n2) assigned to align-
ment edges is tuned by a translated sigmoid and
clamped to [0, 1]:

sim(nq, ng, u) = cossim(ng, n2)", u >0

o(x) = (1 +exp(0.5—z)) " — 0.5
¢ = sim(ny, na, ty,)

Cpn(n1,n2) = min(l, max(0,c+ o(c)))

(13)
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I saw Joe’s dog, which
was running in the garden.

The dog was
chasing a cat.

yY 0.9— 045

Joe’s dog was chasing a
cat in the garden.

0.7—0.63

Figure 7: Sentence Scaled Capacities. The scaled capacities with alignment edges colored by related sentence
with bold red capacities. The concept and attribute node capacity updates are in red with the initial capacity on the

left and the sentence skew updated on the right.

B.1.

The capacities of the document node alignment
edges are computed using the document node em-
beddings (see Sec A.1) as C4(n1,n2)d defined in
Equation 13.

Document Node Capacities

B.2. Sentence Node Capacities

Sentence edge alignment capacities computed
from sentence node pairs (see Equation 13).
A sentence skew is also computed to linearly
dampen concept and attribute capacities per sen-
tence cosine similarity, which is scaled by the
hyperparameter v € [0,1]:

ssk(s1,82) = Ci(ni,nz)y +(1—7v) (14)

B.3. Concept Node Capacities

Concepts alignment capacities are computed like
sentences, but are scaled by their alignment capac-
ity sentence skew:

{(nl,n2) € &, (81, 32) €&, \
ny1 € D(s1) A na € D(s2)},
Ce(ni,ne) = C(nq,na) - ssk(s, s2)

(15)

where &, is the set of alignment edges, and

(n1,ns) is a bipartite aligned node descendant
pair of their respective sentence nodes. The ca-
pacity in Equation 15 is set to a capacity maximum
value of 1 when the variable name is the same

for the node pair, which happens for reentrancies
or co-referenced AMR nodes between the source
component and summary component.

The capacity in Equation 15 is set to the max
value 1 when the variable name is the same for
both concept nodes (i.e. “c”in “c / chase-01").
This is an example of an AMR reference between
the source component and summary component.

Otherwise, it is scaled as a function of the sen-
tence embedding to which it belongs using the sen-
tence skew defined in Equation 13. Fig 7 shows a
strongly semantic similarity with capacity 0.9, and
weakly semantically similar sentence with capac-
ity 0.5, between the bipartite components. The
strongly similar sentence uses blue to denote the
sentence alignment and that sentence alignment’s
affect on the concept and attribute alignment edges.
For example, the strongly similar sentence’s per-
son only loses a flow value of 0.02 after applying
the sentence skew, while the weakly similar sen-
tence’s cat loses half its capacity (0.4).

B.4. Attribute Node Capacities

Attribute node capacities are calculated in the same
way as concept nodes defined in Equation 15. How-
ever, they have no variable, so the capacity defini-
tion given in Equation 13 is used directly with the
attribute’s sentence skew scaled embeddings:

(16)

Cu(ni,n2) = C(ny,na) - ssk(sy, s2)
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C. Alignment Graph Examples

This appendix contains graphs were generated by our source for several steps of the alignment method.

B

sent[0] sent[1] sent[2] sent[0] sent[1]
1 saw Joe's [...] ‘ ‘ The dog was [...] ‘ ‘ A boy threw a ball. Joe's dog was [...] A plane flew over.
sent-root[0] sent-root[1] sent-root[2] sent-root[0] sent-root[1]
:ARGO :ARGI :ARGO :ARGI1 :ARGO :ARG1 :location :ARGO :ARG1 :path :ARG1
‘poss :ARGO-of :poss
‘name :location ‘name
2 :opl

:opl

foe

Figure 8: Disconnected Source and Summary AMR Graphs. Left: the source component (purple nodes) including
the sentences: a) “I saw Joe’s dog, which was running in the garden.”, b) “The dog was chasing a cat.”, c) “A boy
threw a ball.”, and d) “A plane flew over.”. Right: the summary component (green nodes) including the sentence
“Joe’s dog was chasing a cat in the garden.” Each AMR is tied with sentence, then root notes (see Sec 3.3).

j00/0.43)
source
. 4

Sent[0] sent[1] sent[2]
(2/0) (0/0) (0/0)

The dog was [...]

A boy threw a ball.

sent[0] sent-root[2]
(20/0.98) (0/0)

summary

Tsaw Joe's [...]

Sent-root[0]
(o/061) \(0-61/06D)

SO/see-01 @@
:ARGI1 :ARGO IARG1 :ARGO ARG :ARGO
(0.62/0.62) (00/0) 00/1.27) (00/0) (0/0)

(00/0.61) ' (o0/0)

sent[1]
on0) bO/ball bl/boy

d0/dog

r\()is‘ﬂj)m 0.48/0.48)

slocation
(0/0)

20/garden

A plane flew over.

sent-root[1]
(0.63/0.63) 5. ool
20/garden oo /1.21) fD/ﬂyD
path  :ARGI
(0/0) | (o0/0)
@ pO/plane

(00/0) (20/0)

Figure 9: Source Component Alignment. The flow from the summary component (green nodes) to the source
component (purple nodes) after capacity constriction (see Sec 3.4.3). The role edges are in blue and the alignment
edges are in red with all edges’ width representing the capacity. The flow is represented by the darkness of the edges’

color. The capacity and flow is shown in parenthesis.
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00/0.6)
summary
sent[0] sent[1]
(00/0.98) (o0/0)

sent[0] gfent-root[0] S sent[1] sent-root[1]
(00/0) f (0/0.94) (0:65/0-65) (a0 /0) (0/0)
cO/chase-01 The dog was [...] £0/f1y-01
< "ARGO ent-root( 1] sent[2] :path :ARG1
(/0.61) (/1.02) 0:62/062) N (os/0.65) (o0/0) (c0/0) (00/0)
s0/see-01 @ cO/chase-01 pO/plane

:ARG1 Flocation :ARGO :ARG1
20/0.61) (0.62/0.62) ©0/0.63) (0.7/0.7) &0.48/0.48) (o0/1.27) (0.36/0.36) (0.74/0.74) (00/0) A boy threw a ball.

do/dog d0/dog @
:poss :ARGO-of
(00/1.23) (e0/0)
sent-root[2]
pO/person @ (o0/0)

name ‘location
0/2.03) (0/0) (0.63/0.63)

Joe @ 2O/garden 00/2.45) 00/1.00) @
PP sopl :ARGO :ARGI1
Qz./) ©s0.8) BV, (00/0) | (00/0)
(20/0.63) bl/boy bO/ball

(0/0) 00/3.64) (0/0) (0/0)

poss.
(22/0.8)

pO/person

(0.81/0.81)

(0.81/0.81)

Figure 10: Source Component Alignment. The alternated graph with flow from the summary to the source. Like
Fig 11, this is taken after the capacity constriction step in Sec 3.4.3.

summary

source

Sent(0]  fsent(1] sent([2] sent[1]
(00/0.47) ffoo/0.89) (010) (o0/0)
I saw Joe's [...] The dog was [...] Fbcy threw a ball. Joe's dog was [...] A plane flew over.
ent-root[0] ent-root( 1] sent-root[2] ent-root[0] sent-root( 1]
(00/0.46) (0/0.96) (20/0) (0/0.94) (20/0)
s0/see-01 cO/chase-01 [ m/:hm;—ob fo/f1 @
:arGo [ :ARG1 :ARGO :ARG1 f :ARG1 :path :ARG1
(o0/0) 00 /0.61) 0 /1.09) (20/0) (o0/0) (20/0.63) §o=/1.02) 00/1.21) (o0/0) (o0/0)

@ d0/dog. d0/dog bl/boy bO/ball 20/garden d0/dog @ pO/plane

:ARGO-of :poss
(00/0.32) 00/0.8)

pO/person pO/person
location :name
00 /0.63) 00/0.8)

:opl
00/0.8)

Joe

Figure 11: Final Flow. The final flow of both components rendered without the capacity edges in the same format as
the disconnected components in Fig 8. The sentence “A boy threw a ball.” has zero flow, and thus indicates this
entire sentence is not summarized. Similarly, the 10/1i node has no flow so it will also not be summarized. The light
blue role edge incoming to r0/run-02 node has less flow, so its partial summarization follows from the “garden”
mention in the summary, but “running” is missing. The solid blue in all edges of the summary component indicates
the entire summarization is represented in the source. The fact that the c1/cat has a higher flow value than one
means it has higher presentation in the source and has more than one alignment.
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