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Abstract
Pre-trained language models have been successful in many scenarios. However, their usefulness in task-oriented
dialogues is limited due to the intrinsic linguistic differences between general text and task-oriented dialogues.
Current task-oriented dialogue pre-training methods rely on a contrastive framework, which faces challenges such
as selecting true positives and hard negatives, as well as lacking diversity. In this paper, we propose a novel
dialogue pre-training model called BootTOD. It learns task-oriented dialogue representations via a self-bootstrapping
framework. Unlike contrastive counterparts, BootTOD aligns context and context+response representations and
dismisses the requirements of contrastive pairs. BootTOD also uses multiple appropriate response targets to model
the intrinsic one-to-many diversity of human conversations. Experimental results show that BootTOD outperforms
strong TOD baselines on diverse downstream dialogue tasks.
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Figure 1: The same context may have multiple
appropriate responses in a task-oriented dialogue.

1. Instroduction

Previous unsupervised pre-training models for
Task-Oriented Dialogues have employed con-
trastive learning (CL) framework (Chen et al., 2020;
He et al., 2020), with the goal of bringing seman-
tically similar (positive) pairs closer together while
separating semantically dissimilar (negative) pairs.
TOD-BERT (Wu et al., 2020) employs dialogue his-
tory and corresponding responses as positive pairs,
achieving excellent performance on response se-
lection tasks but only marginal improvements on
other dialogue tasks. This is due to the fact that
TOD-BERT selects responses from other dialogues
as negatives, and these negative responses may
be suitable for the current context, resulting in false
negatives (Huynh et al., 2022; Chen et al., 2022).
Furthermore, DSE (Zhou et al., 2022) learns from
dialogues by using consecutive utterances from
the same dialogue as positive pairs. However, this
assumption that consecutive utterances represent
similar semantics can fail when answers are gen-
eral and ubiquitous.

Weiran Xu is the corresponding author.

Despite the remarkable progress of previous
TOD PLMs, there are still two challenges. First,
these contrastive methods suffer from selecting
noisy positive and negative pairs, such as false
negatives (Huynh et al., 2022; Chen et al., 2022),
unreasonable assumptions (Zhou et al., 2022) and
relying on a large batch size (He et al., 2020).
Limited exploration has been attempted to per-
form dialogue pre-training using a non-contrastive
framework. Second, most work ignores the one-
to-many property in conversation where multiple
responses can be appropriate under the same con-
versation context (as shown in Figure 1). PLATO
(Bao et al., 2019) proposes discrete latent variables
to improve utterance-level diversity in open-domain
dialog generation, but none of the previous TOD
pre-training methods consider such one-to-many
property which is also prevalent in task-oriented
dialogues. Current TOD PLMs tend to capture the
most common dialog policy but ignore rarely oc-
curred yet feasible user behaviors, resulting in du-
plicate and plain responses.

To solve the issues, in this paper, we propose
a novel dialogue pre-training model, BootTOD,
which learns task-oriented dialogue representa-
tions via a self-bootstrapping framework. Instead
of contrastive counterparts, we introduce a self-
bootstrapping framework to align context and con-
text+response representations and dismiss the re-
quirements of contrastive pairs. Besides, Boot-
TOD aligns the context representation with multiple
appropriate response targets to model the intrin-
sic one-to-many diversity of human conversations.
Specifically, we use a BERT model to encode the
dialogue context and align its representation with
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Figure 2: Overall architecture of our proposed BootTOD.

the full sequence containing context and response.
We argue that a good dialogue representation both
learns local context information and predicts future
knowledge. Our alignment objectives contain three
aspects: dialogue representation alignment using
[CLS], [MASK] token representation alignment, and
original MLM loss (Devlin et al., 2019). We eval-
uate BootTOD on various task-oriented dialogue
tasks, including intent classification, dialogue state
tracking, dialogue act prediction, and response se-
lection. Results show that BootTOD achieves con-
sistent improvements over strong TOD baselines
in all the scenarios, which proves its generalization
capability.

Our contributions are: (1) We propose a novel
dialogue pre-training model, BootTOD, which uses
a self-bootstrapping framework to align the context
representation with diverse response targets. (2)
Our model outperforms strong TOD baselines on
diverse downstream dialogue tasks

2. Model

2.1. Overall Architecture

Figure 2 displays the overall architecture of Boot-
TOD. Following previous work (Wu et al., 2020;
Zhou et al., 2022; Zeng et al., 2023), we adopt
BERT-base-uncased1 as our backbone. We add
two special role tokens [USR] or [SYS] to the prefix
of each utterance and concatenate all the utter-
ances in the same dialogue into one flat sequence.
Then we split each dialogue at a randomly selected
turn t to get the context and response. We en-
code the dialogue context via a predictor layer and
align its representation with the full sequence con-
taining context and response, including [CLS] align-
ment, [MASK] token alignment, and mask language
model (MLM). We aim to make the model capture
local context information and predict future knowl-
edge.

1https://huggingface.co/bert-base-uncased

2.2. Bootstrap Task-oriented Dialogue
Representations

For each dialogue, we first transform it into a token
sequence D = {U1, S1, . . . , Un, Sn}. Ui and Si de-
note the user utterance and system utterance with
a prefix of two special role tokens [USR] or [SYS],
respectively. n is the turn number of the dialogue.

Compared to existing contrastive methods, we
employ a self-bootstrapping framework to align con-
text and context+response representations to learn
future knowledge. The advantages are two-fold:
(1) Our framework doesn’t require contrastive pairs
thus alleviating the noise of selecting positive and
negative samples. (2) Learning future knowledge
encourages the model to align representations in
the same latent space instead of pulling together
representations of context and response belong-
ing to different distributions. Assuming we split
each dialogue at a randomly selected turn t, the
context is C = {U1, S1, . . . , Ut} and the response
is R = {St, Ut+1, St+1, . . . , Un, Sn}. Note that in
this paper, we denote a response as a multi-turn
collection ending with a system utterance. We con-
catenate all the utterances into sequence and use
a shared BERT encoder f to process the context
and context+response sequences respectively. In-
spired by (Chen and He, 2020; Grill et al., 2020),
we use a shared predictor MLP head h to transform
the representations of the context C. We hope the
context representation can predict future informa-
tion while modeling the local semantics. Therefore,
we design three alignment objectives as follows.

Dialogue Representation Alignment Loss

Lcls =
L∑

l=1

∥∥h(clcls)− rlcls
∥∥
2

(1)

where l is the l-th layer of BERT-base and h is
the predictor. clcls and rlcls are the l-th layer [CLS]
representations of context and context+response,
respectively. We find perform alignment loss on
multiple layers rather than only the top layer gives
consistent improvements (see Section 4.2). We
also try to apply normalization to clcls, r

l
cls and other

forms of objectives but do not observe significant
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change.
Token Representation Alignment Loss Apart

from the dialogue-level alignment, we also propose
a token-level alignment loss to learn fine-grained
token representations.

Lmask =
M∑

m=1

L∑
l=1

∥∥h(clmask,m)− rlm
∥∥
2

(2)

where M is the total number of masked to-
kens. clmask,m is the l-th layer [MASK] token rep-
resentation of context and rlm is the correspond-
ing original token’s l-th layer representation of con-
text+response. Note that we only perform mask
strategy to the context instead of context+response
sequence, which provides more accurate contex-
tual targets to the context representations.

Mask Language Model Loss We also keep the
traditional masked language modeling (MLM) (De-
vlin et al., 2019) loss following Wu et al. (2020).

Lmlm = −
M∑

m=1

logP (xm) (3)

where P (xm) is the predicted probability of the
mask token xm over the vocabulary size.

We simply sum them up and achieve the best per-
formance in our experiments. Inspired by (Chen
and He, 2020), we employ a stop-gradient strat-
egy to the representations of context+response as
shown in Figure 2 to prevent collapsing. To ex-
plore the diversity of different response targets, we
randomly select a ratio of consecutive response
utterances from R = {St, Ut+1, St+1, . . . , Un, Sn},
such as {St} and {St, Ut+1, St+1}. And the last turn
of response must be a system utterance. For the
same context with multiple appropriate responses,
BootTOD aligns the context representation with di-
verse response targets by iterating over the whole
dataset).

3. Experiment

3.1. Training Details
Pre-training Corpus We utilize nine task-oriented
datasets that collected by Wu et al. (2020).

Baselines We compare BootTOD against sev-
eral strong baselines, including BERT (Devlin et al.,
2019), BERT-mlm (continual pre-training on dia-
logues), DialoGPT (Zhang et al., 2020), SimCSE
(Gao et al., 2021), TOD-BERT (Wu et al., 2020),
and DSE (Zhou et al., 2022). We focus on unsuper-
vised TOD pre-training so we exclude comparisons
with supervised methods that utilize labeled NLI
datasets (Williams et al., 2018; Welleck et al., 2019)
or dialogue act labels(He et al., 2022b).

Pre-trainging Details BootTOD’s training uses
a batch size of 48, a maximum input length of 512,

Model Acc
(all)

Acc
(in)

Acc
(out)

Recall
(out)

1-Shot

BERT 29.3% 35.7% 81.3% 0.4%
BERT-mlm 38.9% 47.4% 81.6% 0.5%
SimCSE 29.9% 36.4% 81.7% 0.6%
TOD-BERT 42.5% 52.0% 81.7% 0.1%
DSE 42.3% 51.7% 81.8% 0.4%
BootTOD 44.0%* 53.5%* 81.7% 1.0%

10-Shot

BERT 75.5% 88.6% 84.7% 16.5%
BERT-mlm 76.6% 90.5% 84.3% 14.0%
SimCSE 74.5% 88.9% 83.5% 9.6%
TOD-BERT 77.3% 91.0% 84.5% 15.3%
DSE 77.8% 90.8% 85.2% 19.1%
BootTOD 78.4%* 91.1% 85.6%* 21.2%*

Full
(100-shot)

BERT 84.9% 95.8% 88.1% 35.6%
DialoGPT 83.9% 95.5% 87.6% 32.1%
BERT-mlm 85.9% 96.1% 89.5% 46.3%
SimCSE 82.3% 94.7% 86.6% 26.6%
TOD-BERT 86.6% 96.2% 89.9% 43.6%
DSE 84.3% 95.8% 87.7% 32.5%
BootTOD 88.2%* 96.1% 91.1%* 52.7%*

Table 1: Intent recognition results on the OOS
dataset. Acc(all), Acc(in), Acc(out) denotes the
overall accuracy, in-domain intent accuracy and
out-of-domain intent accuracy. The numbers with *
are significant using t-test with p < 0.01.

5 % Data 10 % Data Full DataModel Joint Acc Slot Acc Joint Acc Slot Acc Joint Acc Slot Acc
BERT 19.6% 92.0% 32.9% 94.7% 45.6% 96.6%
BERT-mlm 28.1% 93.9% 39.5% 95.6% 47.7% 96.8%
SimCSE 21.1% 91.6% 35.6% 95.0% 48.0% 96.8%
TOD-BERT 28.6% 93.8% 37.0% 95.2% 48.0% 96.9%
DSE 23.8% 93.0% 37.8% 95.5% 49.9% 97.0%
BootTOD 30.3%* 94.2%* 40.8%* 96.0%* 50.7%* 97.2%

Table 2: Dialogue state tracking results on MWOZ
2.1. Joint Acc and Slot Acc denote the joint goal
accuracy and slot accuracy. The numbers with *
are significant using t-test with p < 0.01.

and initiates with BERT-base-uncased. It’s opti-
mized with Adam, a learning rate of 5e-5, and 0.2
dropout. The mask ratio is 15%, and the predictor
head has two layers plus ReLU, with dimensions of
768 and 512. After pre-training, we retain the Bert
encoder parameters and remove the MLP head
for subsequent fine-tuning. The 3-day pre-training
involves an early-stop strategy based on perplexity,
using eight NVIDIA Tesla A100 GPUs.

Finetuning Details For BERT-mlm and TOD-
BERT, we directly use the results reported by TOD-
BERT (Wu et al., 2020). We adopt the same hyper-
parameters for all downstream tasks.

3.2. Main Results
We evaluated various pre-trained language models
on four core task-oriented dialogue tasks (We detail
the evaluation tasks and evaluation metrics in the
Appendix A.). We conducted experiments using the
whole dataset, as well as a few-shot setting. The
few-shot setting here aligns with TOD-BERT (Wu
et al., 2020) and FutureTOD (Zeng et al., 2023).
Specifically, this involves fine-tuning using just 1%
or 10% of the entire dataset, as opposed to using
the full dataset for fine-tuning. The few-shot experi-
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Model MWOZ DSTC2
micro-F1 macro-F1 micro-F1 macro-F1

1% Data

BERT 84.0% 66.7% 77.1% 25.8%
BERT-mlm 87.5% 73.3% 79.6% 26.4%
SimCSE 81.0% 62.1% 78.9% 27.3%
TOD-BERT 86.9% 72.4% 82.9% 28.0%
DSE 82.9% 65.1% 72.4% 21.4%
BootTOD 87.7% 73.8%* 85.8%* 33.9%*

10% Data

BERT 89.7% 78.4% 88.2% 34.8%
BERT-mlm 90.1% 78.9% 91.8% 39.4%
SimCSE 89.6% 77.8% 92.3% 40.5%
TOD-BERT 90.2% 79.6% 90.6% 38.8%
DSE 89.9% 79.4% 91.1% 39.0%
BootTOD 90.9%* 80.7%* 93.9%* 42.8%

Full Data

BERT 91.4% 79.7% 92.3% 40.1%
DialoGPT 91.2% 79.7% 93.8% 42.1%
BERT-mlm 91.7% 79.9% 90.9% 39.9%
SimCSE 91.6% 80.3% 91.5% 39.6%
TOD-BERT 91.7% 80.6% 93.8% 41.3%
DSE 91.7% 81.3% 92.6% 40.2%
BootTOD 91.8% 82.3%* 95.9%* 46.5%*

Table 3: Dialogue act prediction results on MWOZ
and DSTC2. The numbers with * are significant
using t-test with p < 0.01.

ments were randomly sampled at least three times
with different seeds.

Intent Recognition Table 1 displays the results
of intent recognition on the OOS dataset (Larson
et al., 2019). We observe that BootTOD outper-
forms all the baselines on 10 of 12 metrics, par-
ticularly with significant improvements in overall
accuracy and OOD metrics. These results demon-
strate the generalization ability of BootTOD across
both in-domain and out-of-domain metrics.

Dialogue State Tracking Table 2 shows the re-
sults of dialogue state tracking on MWOZ 2.1. Our
BootTOD achieves state-of-the-art results on all
the metrics. We find SimCSE performs poorly in
the 5% data setting because it ignores the intrin-
sic properties of dialogue data and can not model
overall dialogue well with few data. Our method
achieves a greater improvement on joint accuracy
than on slot accuracy, indicating the strength of un-
derstanding the overall dialogue context. We also
find that these baselines overfit to the easy slot
values, but can’t predict the hard ones, resulting in
comparable slot accuracy but poor joint accuracy.
For example, BootTOD outperforms TOD-BERT
by 0.3% on Slot Acc but 2.7% on Joint Acc in the
full data setting, which indicates the superiority of
dialogue modeling.

Dialogue Act Prediction Table 3 shows the
results of dialogue act prediction on MWOZ and
DSTC2. Our BootTOD achieves state-of-the-art re-
sults on all the metrics. We find our method obtains
comparable performance only using 10% data than
the baselines using 100% data, which verifies the
superior few-shot learning capability.

Response Selection Table 4 displays the results
of response selection on MWOZ and DSTC2.2 Our

2TOD-BERT uses the response contrastive loss as
the pre-training objective on full MWOZ training data so

MWOZ DSTC2Model 1-to-100 3-to-100 1-to-100 3-to-100
BERT 7.8% 20.5% 3.7% 9.6%
BERT-mlm 13.0% 34.6% 12.5% 24.9%
SimCSE 17.2% 32.6% 27.6% 46.4%
TOD-BERT - - 37.5% 55.9%
DSE 7.9% 21.2% 2.4% 6.1%

1% Data

BootTOD 37.0%* 60.5%* 38.1%* 61.3%*
BERT 20.9% 45.4% 8.9% 21.4%
BERT-mlm 22.3% 48.7% 19.0% 33.8%
SimCSE 37.2% 60.6% 42.0% 63.5%
TOD-BERT - - 49.7% 66.6%
DSE 24.8% 49.4% 42.0% 59.7%

10% Data

BootTOD 50.0%* 72.0%* 52.3%* 69.6%*
BERT 47.5% 75.5% 46.6% 62.1%
DialoGPT 35.7% 64.1% 39.8% 57.1%
BERT-mlm 48.1% 74.3% 50.0% 65.1%
SimCSE 64.2% 85.4% 55.6% 70.5%
TOD-BERT 65.8% 87.0% 56.8% 70.6%
DSE 63.3% 85.3% 58.3% 72.0%

Full Data

BootTOD 68.8%* 87.6%* 59.1%* 72.3%

Table 4: Response selection results on MWOZ and
DSTC2. 1-to-100 and 3-to-100 denote the ratio of
the ground-truth response being ranked at the top-1
or top-3 given 100 candidates. The numbers with *
are significant using t-test with p < 0.01.

Model DSTC2 MWOZ
micro-F1 macro-F1 1-to-100 3-to-100

BootTOD 95.85% 46.53% 68.79% 87.61%
w/o Mask Align 95.58% 46.17% 68.74% 87.70%
w/o CLS Align 95.06% 45.37% 67.11% 87.38%
w/o Stop Gradient 95.50% 46.13% 68.86% 88.16%
w/o MLP Head 95.03% 45.65% 68.34% 87.67%

Table 5: Ablation study Results. Removing the
MLM will make BootTOD fail to converge, so we do
not report this result.

BootTOD achieves state-of-the-art results on all
the metrics. We find DSE performs poorly in the
1% data setting and even worse than BERT on
DSTC2. It shows the assumption that consecutive
utterances represent similar semantics fails in prac-
tical dialogue scenarios. Although TOD-BERT is
pre-trained with a response contrastive objective,
our method still outperforms it on DSTC2 signifi-
cantly both in full data and few data settings. It
indicates that BootTOD can achieve better gener-
alization capability.

4. Qualitative Analysis

4.1. Ablation Study
Table 5 presents the ablation results of dialogue
act prediction on DSTC2 and response selection
on MWOZ. BootTOD without CLS Align performs
the worst among all the variations. This indicates
that CLS alignment loss is crucial for capturing the
dialogue-level information, allowing the dialogue
model to have better representation capabilities.
Removing MLP Head also damages the perfor-
mance. We find that removing MLP head makes

we don’t report its results on few-shot setting.



2462

the training unstable and adding a predictor serves
as a decoder to learn future representation. Mask
Align also contributes to performance, illustrating
the importance of learning fine-grained token rep-
resentations. Besides, the Stop gradient has a
positive impact on dialogue act prediction but a
negative impact on response selection. We believe
it is due to the mismatch between the stop-gradient
and the dual-encoder used in the response selec-
tion task.

4.2. Hyper-parameter Analysis
Effect of Alignment Layers BootTOD uses the
top-K Layer Representation for alignment loss Lcls

and Lmask. Figure 3 shows the effect of varying the
value of K. We find BootTOD gets improvements as
the value of K increases. It indicates that different
layers of the model can capture features of different
granularities, thereby improving the performance
of the downstream tasks.

Effect of Max Response Length The response
consists of consecutive utterances, and we set the
number of selectable utterances from 1 to max re-
sponse length P . To explore the effect of vary-
ing the value of P , we set the P to 0, 3, All, and
Fix respectively. P = All denotes that we can
randomly select any length of utterances from the
whole utterances, while P = Fix denotes that we
must use the whole consecutive future utterances
together. For example, if we have 5 future utter-
ances F = {St, Ut+1, St+1, Ut+2, St+2}. P = 3 al-
lows us to select any length no longer than 3, such
as {St} or {St, Ut+1, St+1}; P = All allows us to
select any length of future from the 5 utterances,
that is {St} or {St, Ut+1, St+1} or F; P = Fix can
only select F . Figure 4 shows BootTOD generally
gets improvements with increasing the P , indicat-
ing that more response targets are beneficial to
learn more diverse dialogue representations. We
also find that P = Fix degrades performance com-
pared to P = All. We argue that fixed response
information will narrow down dialogue context rep-
resentation space.

5. Non-Contrastive Methods
Comparison

As supervised methods rely on labeled NLI
datasets (Williams et al., 2018; Welleck et al., 2019)
or dialogue act labels (He et al., 2022b), we didn’t
include them in a fairness comparison. Instead, we
compared BootTOD with a recent non-contrastive
method, FutureTOD (Zeng et al., 2023). Future-
TOD proposes a non-contrastive framework that
distills future knowledge into the representation of
the previous dialogue. The results are displayed
in Table 6, Table 7, Table 8, and Table 9 in the Ap-
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Figure 3: Ablation study of Alignment Layers. We
report the results of dialogue act prediction on
DSTC2. The X-asix and Y-asix denotes the number
of layers used for alignment and performance.
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Figure 4: Ablation study of max future length P .
We report the results of dialogue act prediction on
DSTC2. The X-asix and Y-asix denotes the max
future length P and performance.

pendix. Our method has demonstrated excellent
performance on most metrics across all tasks com-
pared to FutureTOD. This underscores the improve-
ment of our BootTOD’s performance in comparison
to other non-contrastive methods.

6. Conclusion

In this paper, we propose a novel dialogue
pre-training model, BootTOD, which learns task-
oriented dialogue representations via a self-
bootstrapping framework. Instead of contrastive
counterparts, BootTOD aligns context and con-
text+response representations and dismisses the
requirements of contrastive pairs. Besides, Boot-
TOD aligns the context representation with diverse
targets to model the intrinsic one-to-many diver-
sity of human conversations. We perform com-
prehensive experiments on various task-oriented
dialogue tasks. BootTOD significantly outperforms
TOD-BERT, DSE, and other strong baselines in all
the scenarios.
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A. Evaluation Details

We evaluated various pre-trained language models
on four core task-oriented dialogue tasks, including
intent recognition, dialogue state tracking, dialogue
act prediction, and response selection. Here, we
provide more details about these evaluation tasks
and metrics.

Intent Recognition is a multi-class classification
task that takes a dialogue utterance as input and
predicts an intent label (Zeng et al., 2022). We
use the [CLS] embeddings from the model as the
dialogue representation. The model is trained with
cross-entropy loss. We report classification accu-
racy and recall.
Dialogue State Tracking is a multi-class classifica-
tion task, which involves identifying the slot values
for each (domain, slot) pair at each dialogue turn,
based on a pre-defined ontology. The model takes
dialogue history as input and is trained with cross-
entropy loss summed over all the pairs. We use a
widely-used TOD dataset MWOZ 2.1(Budzianowski
et al., 2018) across seven different domains. We
report the Joint acc and Slot acc. The Joint acc
considers true if and only if the predicted values
exactly match its ground truth values at each di-
alogue turn. The slot acc individually compares
each (domain, slot, value) triplet to its ground truth
label.
Dialogue Act Prediction is a multi-label classifi-
cation task that takes dialogue history as input and
predicts multiple dialogue acts corresponding to
system response. The model is trained with binary
cross-entropy loss over all possible actions. Dur-
ing inference, the threshold for triggering the dia-
logue act is set to 0.5. We use two datasets MWOZ
(Budzianowski et al., 2018) and DSTC2 (Hender-
son et al., 2014). Following TODBERT (Wu et al.,
2020), we use the same data preprocessing to uni-
form the original dialogue acts to a general format.
We report the micro-F1 and macro-F1.
Response Selection is a ranking task that aims to
retrieve the most relative system response from a
candidate pool based on dialogue history. We also
use MWOZ and DSTC2 as our evaluation datasets.
We use a dual-encoder strategy, which calculates
similarity scores between dialogue history and can-
didate responses. We train this model with random
system responses from the corpus as negative sam-
ples. We report k-to-100 accuracy. This metric
represents the ratio of the ground-truth response
being ranked in the top-k positions when compared
to 99 randomly sampled responses, as determined
by the scores computed by the dual-encoder.

B. Non-Contrastive Methods
Comparison

We present the performance of non-contrastive
methods in intent recognition, dialogue state track-
ing, dialogue act prediction, and response selection
in the Table 6, Table 7, Table 8 and Table 9 respec-
tively.
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Acc(all) Acc(in) Acc(out) Recall(out)
FutureTOD 87.2% 96.0% 90.0% 47.6%
BootTOD 88.2% 96.1% 91.1% 52.7%

Table 6: The performance of non-contrastive meth-
ods on the OOS dataset for Intent recognition.
Acc(all), Acc(in), Acc(out) denotes the overall accu-
racy, in-domain intent accuracy, and out-of-domain
intent accuracy.

Joint Acc Slot Acc
FutureTOD 50.4% 97.1%
BootTOD 50.7% 97.2%

Table 7: The performance of non-contrastive meth-
ods on the MWOZ 2.1 for Dialogue State Tracking.
Joint Acc and Slot Acc denote the joint goal accu-
racy and slot accuracy.

MWOZ DSTC2
micro-F1 macro-F1 micro-F1 macro-F1

FutureTOD 92.0% 81.9% 94.6% 44.6%
BootTOD 91.8% 82.3% 95.9% 46.5%

Table 8: The performance of non-contrastive meth-
ods on the MWOZ and DSTC2 for Dialogue Act
Prediction.

MWOZ DSTC2
1-to-100 3-to-100 1-to-100 3-to-100

FutureTOD 68.5% 87.9% 58.4% 72.6%
BootTOD 68.8% 87.6% 59.1% 72.3%

Table 9: The performance of non-contrastive meth-
ods on the MWOZ and DSTC2 for Response Selec-
tion. 1-to-100 and 3-to-100 denote the ratio of the
ground-truth response being ranked at the top-1 or
top-3 given 100 candidates.
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