
LREC-COLING 2024, pages 2342–2353
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

2342

Beyond Static Evaluation: A Dynamic Approach to Assessing AI
Assistants’ API Invocation Capabilities

Honglin Mu†, Yang Xu†, Yunlong Feng†

Xiaofeng Han‡, Yitong Li‡, Yutai Hou‡, Wanxiang Che†
�

†Harbin Institute of Technology, China
‡ Huawei Technologies Co., Ltd., China

{hlmu, yxu, ylfeng, car}@ir.hit.edu.cn

Abstract
With the rise of Large Language Models (LLMs), AI assistants’ ability to utilize tools, especially through API calls, has
advanced notably. This progress has necessitated more accurate evaluation methods. Many existing studies adopt
static evaluation, where they assess AI assistants’ API call based on pre-defined dialogue histories. However, such
evaluation method can be misleading, as an AI assistant might fail in generating API calls from preceding human
interaction in real cases. Instead of the resource-intensive method of direct human-machine interactions, we propose
Automated Dynamic Evaluation (AutoDE) to assess an assistant’s API call capability without human involvement. In
our framework, we endeavor to closely mirror genuine human conversation patterns in human-machine interactions,
using a LLM-based user agent, equipped with a user script to ensure human alignment. Experimental results
highlight that AutoDE uncovers errors overlooked by static evaluations, aligning more closely with human assessment.
Testing four AI assistants using our crafted benchmark, our method further mirrored human evaluation compared to
conventional static evaluations.

Keywords: Dynamic Evaluation, User Agent, API Invocation Capabilities

1. Introduction

In the current era of rapid advancements in arti-
ficial intelligence, the emergence of Large Lan-
guage Models (LLMs) (Bommasani et al., 2021)
has marked a transformative leap in the capabil-
ities of AI assistants. These systems are capa-
ble of understanding and addressing numerous
user inquiries and tasks, and can provide solutions
through simple dialogues or, when necessary, in-
voke tools via API calls, adding an extra dimension
to their problem-solving ability (Qin et al., 2023).
While the potential of such systems is vast, there
arises a pressing need to evaluate their efficacy.

Historically, evaluations of human-machine in-
teractions have largely been static, relying on pre-
defined dialogue histories to assess an assistant’s
performance (Henderson et al., 2014; Zang et al.,
2020; Rastogi et al., 2020; Li et al., 2023). Such an
approach, though standardized, might not encap-
sulate the dynamic intricacies of real-time human
interactions. We depict the potential pitfalls of this
approach in Figure 2. In scenario A, the assistant
flawlessly invokes an API based on static dialogue
history. Yet, in scenario B, when engaged in direct
human interaction, the assistant neglects to ask
about the parameter appName and consequently
fabricates an incorrect API call. Such discrepan-
cies highlight the limitations of static evaluations
in capturing an AI’s adaptability during dynamic
human interactions.

� Corresponding Author.

Figure 1: An illustration of our framework, where
the user script encompasses both the dialogue
context (Background) and the API call label.

Previous efforts have sought to address these
evaluation gaps. Mandya et al. (2020) and Siblini
et al. (2021) have made strides by updating assis-
tant’s response in dialogue histories with dynami-
cally generated ones during evaluation, bringing the
conversations a step closer to dynamic evaluation.
However, they left static user inputs unchanged,
which occasionally led to mismatches with dynamic
assistant predictions. Li et al. (2021) ingeniously
utilized entity substitution and context-independent
questions to adjust user queries, ensuring they



2343

Figure 2: An illustrative example for static evaluation, human evaluation and AutoDE, respectively. Sub-
figure A shows the AI assistant correctly invoking an API call from a pre-defined dialogue history. In
sub-figure B, the same assistant misses the “appName” parameter during human interaction, resulting in
an incorrect API call. Sub-figure C demonstrates similar parameter issues when the assistant interacts
with the user agent. We demonstrate that certain API call issues related to interaction, concealed by
static evaluation, can be revealed by dynamic human evaluation and AutoDE.

could align with dynamic assistant replies, regard-
less of prior responses. However, these methods
still demand carefully crafted heuristic rules and are
bound to the Conversational Question Answering
task.

To tackle these challenges, our study introduces
a dynamic evaluation method that eliminates the
need for static dialogue histories, offering a more
flexible and accurate assessment of AI assistants
without demanding significant human involvement
in the conversation loop. We propose Automated
Dynamic Evaluation(AutoDE)1 as shown in Fig-
ure 1. Guided by a custom user script, a user
agent emulates human interactions, prompting the
assistant to generate API calls.

Two main challenges arose in developing the
user agent:

1. Human-like Responses: Ensuring user
agent’s interactions closely mirroring real hu-
man behavior.

2. Stability Across Evaluations: Maintaining
stable interactions across repeated evalua-
tions.

By embedding task-specific information into the
user script, the agent could reliably emulate

1Our code and data will be available at https://
github.com/hlmu/AutoDE.

human users. Our evaluations using different user
agents not only showed a high correlation with
human evaluations but also highlighted discrep-
ancies when compared to static dialogue history
evaluations. Specifically, our method leveraging
Llama 2 7B Chat as the user agent attained
higher consistency with human annotators in eval-
uating four AI assistants, among which Claude In-
stant 1.2 demonstrating the strongest performance.
These findings underscore the need for, and the
validity of, our dynamic evaluation approach.

Summarizing our contributions:

• Dynamic Evaluation Framework: We intro-
duced AutoDE, a practical dynamic evaluation
framework demonstrating a high correlation
with human evaluations.

• API Benchmark Creation: We established
an API benchmark and assessed the per-
formance of multiple commercial and open-
source assistants on it.

• Uncovering Issues in API Invocation We
analysed issues in API invocation that are hid-
den under static evaluation but can be exposed
through dynamic evaluation, highlighting the
value of Automated Dynamic Evaluation.

https://github.com/hlmu/AutoDE
https://github.com/hlmu/AutoDE


2344

2. Preliminary

To effectively evaluate the capabilities of AI assis-
tants in invoking APIs, we consider several crucial
entities in the testing environment. Specifically,
these include the AI assistant being evaluated, rep-
resented as A, the API document D containing de-
tailed descriptions of the API’s functionalities and
parameters, and the user U , who presents a spe-
cific need or request.

In a typical evaluation scenario, the user U poses
a requirement H1 that can be addressed through an
API call. The assistant A is tasked with analyzing
this requirement and subsequently generating an
appropriate API call C, referencing the information
in D. This interaction can be formally defined as:

Dialogue = (H1, C)

H1 ∼ U(need)
C ∼ A(D,H1)

The above representation assumes that A can
construct API call according to U ’s query in a sin-
gle turn, with the user supplying all necessary in-
formation as prescribed in D. However, in a more
common setting, A often requires additional clarifi-
cations or information. The assistant A might pose
follow-up questions to U and, based on the user’s
responses, decide to either generate the API call
C or continue with further inquiries. This extended
interaction can be expressed as:

Dialogue = (H1, A1, . . . ,Hi, Ai, C)

Hi ∼ U(need,H1, A1, ...,Hi−1, Ai−1)

Ai ∼ A(D,H1, A1, ...,Hi−1, Ai−1, Hi)

An example of an API call C would resemble:
{

"funcName": "RegMedAppt",
"time": "Monday",
"departmentName": "Orthopedic"

}

To assess the accuracy and relevance of A’s API
invocations, we compare the generated API call C
with its golden label and calculate the Precision,
Recall, and F1-Score metrics:

P,R, F1 = eval(C,Cg)

where eval is the evaluation function for Preci-
sion, Recall, and F1, Cg is the golden label of
API call.

3. Method

In this section, we initially provide a concise
overview of manual (refer to section 3.1.1) and
static (see section 3.1.2) evaluation methodologies.

Subsequently, we delve into our proposed evalua-
tion framework AutoDE (section 3.1.3). To validate
the aforementioned evaluation methods, we’ve es-
tablished a benchmark. The construction details
of the dataset for this benchmark can be found in
section 3.2.

3.1. Evaluation Framework

3.1.1. Manual Evaluation

Evaluation Procedure Manual evaluation serves
as the most direct and authentic method to assess
the performance of an AI assistant within a human-
machine dialogue context. When evaluating an AI
assistant’s capability to invoke APIs, the human
annotator, represented as U , engage in multiple
rounds of interaction with the AI assistant A. U
presents requirements, respond to queries from A,
and guide it towards the API invocation process. To
ensure reproducibility and facilitate comparisons
with other evaluation methodologies, we set the
dialogue topics S.

The topic S provides a textual outline capturing
the character, background, and purpose of the dia-
logue. An example of S is as follows:
Character: Lisa, a busy mother
Background: Lisa needs to take her son,

who recently fell and sprained his
ankle, to the orthopedic department.

Purpose: Using a tablet, Lisa books an
appointment at the hospital using a
medical appointment registration app.

While S paints a broad picture of the dialogue,
we supplement it by appending the API call label
Cg to provide precise details for U . We refer to this
combination, S ⊕ Cg, as the user script. It’s
presented to the human annotator and utilized in
the context of user agent for both automatic dy-
namic evaluation (refer to section 3.1.3) and static
dialogue history creation (see section 3.2.3).

The human annotator, acting as U , interacts with
A, simulating scenarios described in S and pro-
viding details based on the parameters from Cg.
To guarantee reproducibility without compromising
the accuracy of the evaluation, we’ve pre-collected
the initial queries from U . During manual evalua-
tion, the first query remains fixed, while subsequent
responses are annotated by the human annotator.

The manual evaluation process can be formally
described as:

Dialogue = (H∗
1 , A1, . . . ,Hi, Ai, C)

P,R, F1 = eval(C,Cg)

Hi ∼ U(S ⊕ Cg, H
∗
1 , A1, . . . ,Hi−1, Ai−1)

Ai ∼ A(D,H∗
1 , A1, . . . ,Hi−1, Ai−1, Hi)

where H∗
1 represents the pre-defined initial query.



2345

Human Annotators The annotators, two individ-
uals with academic backgrounds in computer sci-
ence, were trained to ensure a comprehensive un-
derstanding and execution of human-machine dia-
logue evaluation. Each system was annotated by
one individual and reviewed for format and guide-
line consistency by a second. Prior to annotation,
all personnel were required to read and understand
a manual detailing the annotation tasks and proce-
dures for handling anomalies, such as terminating
dialogues in instances of multiple ineffective system
responses.

Nonetheless, this approach is not without chal-
lenges. Manual evaluation is resource-intensive
due to real human participation, and consistency
can vary among individuals. Different users might
interpret and rate the assistant’s responses based
on their personal experiences and expectations.

3.1.2. Static Evaluation

While manual evaluations offer insights into the per-
formance of AI assistants, they tend to be costly.
Historically, many studies have opted for static eval-
uation as an automated alternative approach in
human-machine dialogue assessment. Static eval-
uation eliminates the need for real-time interactions
between the user U and the AI assistant A. Instead,
it operates based on pre-defined dialogue histories.
The primary appeal of this methodology stems from
its straightforwardness and rapidity.

In this evaluation method, the assessment com-
prises only a single round. The AI assistant A
produces the API call C directly based on the pre-
defined history, without posing questions to or re-
ceiving feedback from the user U . Formally, this
method can be represented as:

Dialogue = (H∗
1 , A

∗
1, . . . ,H

∗
i , A

∗
i , C)

P,R, F1 = eval(C,Cg)

where H∗
. and A∗

. denote pre-defined dialogue his-
tories. Notably, H∗

1 is the same with the initial query
used in the manual evaluation in section 3.1.1.

Despite its efficiency and simplicity, static evalua-
tion has its shortcomings. It overlooks the dynamic
output generated by the AI assistant during actual
interactions. Consequently, this approach might
obscure issues that typically surface only during
dynamic interaction between the AI assistant and
the user.

3.1.3. Automated Dynamic Evaluation

We now delve into the proposed AutoDE frame-
work. The main objective behind AutoDE is to de-
vise an automated dynamic evaluation mechanism
that closely mimics the manual evaluation process.

We introduce an extra Language Model as user
agent, denoted as Us, designed to emulate the
behavior of human annotators. This model inter-
acts over multiple rounds with the AI assistant A,
posing queries and responding to A’s questions,
ultimately guiding A in invoking the API call C.

To guarantee that the user agent aligns with
human annotators’ behavior, we offer detailed
guidelines for simulating user actions. This con-
sistency is maintained by having the user agent
follow the same user script as provided to hu-
man annotators, as discussed in section 3.1.1. The
user agent replicates scenarios based on the di-
alogue context S and references details from the
API call labels Cg. The format for the user agent
prompt is designed as follows:

You are an experienced data annotator.
You need to act as a user in a set of
conversations between a user and a voice
assistant Bob ...

Please construct user queries or res-
ponses according to the following
settings:
{{USER_SCRIPT}}

Within this framework, {{USER_SCRIPT}} is re-
placed with the specific user script tailored for
each test instance. As explained in the manual eval-
uation in section 3.1.1, the initial query H∗

1 posed
by U remains static for reproducibility.

The evaluation conducted by user agent can
be formally expressed as:

Dialogue = (H∗
1 , A1, . . . , H̃i, Ai, C)

P,R, F1 = eval(C,Cg)

H̃i ∼ Us(S ⊕ Cg, H
∗
1 , A1, . . . , H̃i−1, Ai−1)

Ai ∼ A(D,H∗
1 , A1, . . . , H̃i−1, Ai−1, H̃i)

where Us represents a user agent, H̃∗
. corre-

sponds to the simulated user utterances by user
agent, and S ⊕ Cg signifies the user script.

3.2. Dataset Construction

As discussed in section 2, our evaluation frame-
work necessitates the presence of an API docu-
ment D. As described in both the manual eval-
uation (refer section 3.1.1) and the AutoDE(see
section 3.1.3), there’s a requirement for the user
script and an initial human dialogue round H∗

1 .
Meanwhile, the static evaluation method (outlined
in section 3.1.2) demands a pre-defined dialogue
history (H∗

1 , A
∗
1, . . . ,H

∗
i , A

∗
i ). This section details

the processes used to assemble these vital data
components.



2346

3.2.1. API Document Construction

In this section, we outline the process of building the
API document, which serves both as the foundation
for dialogue context creation and as the guide for
the assistant’s invocation. Numerous prior works
have contributed to the construction of multi-turn
human-machine dialogue datasets (Zang et al.,
2020; Rastogi et al., 2020; Li et al., 2023; Tang
et al., 2023). These meticulously crafted datasets
have primarily been tailored for evaluating earlier
dialogue models or for emphasizing multi-turn inter-
actions between machines and interpreters. Draw-
ing inspiration from the schema from Rastogi et al.
(2020), we have devised 66 APIs grounded in sce-
narios that resonate with the daily utilization of
voice assistants. They are defined with names,
usage descriptions, parameter lists and parameter
explanations. Specifically, the functions of APIs
mainly contain: (1) The system settings of mobile
phones. For example, adjusting volume or bright-
ness, switching on Wi-Fi or Bluetooth, and so on;
(2) Entertainment systems, such as playing music
or videos. (3) Personal assistance, such as pro-
cessing emails, navigation, setting alarms, making
appointments with hospitals, ticketing, booking ho-
tels; (4) Searching for news, weather, stock price,
and other information. (5) Multi-modal functions,
such as object recognition and image captioning.
A simplified example of API document is shown as:
{

"domain": "Device Manipulation",
"subdomain": "Setting Item",
"function": "Luminance",
"api": "SetLuminance",
"desp": "Set the brightness ...",
"parameters": {

"deviceType": "Supported
device types ...",

"targetValue": "Target
brightness size"

}
}

3.2.2. User Script Generation

With the API document in place, we proceed to
construct user script for the user U to adhere
to. A user script includes a dialogue context S
and a API call label Cg.

The dialogue context S provides some level of
background for the conversation, guiding the in-
teractions between the user U and the assistant
A. Each user script corresponds to one usage
scenario for the API. We directed GPT 4 (OpenAI,
2023) to brain-storm 5 user script entries ac-
cording to each API document to ensure diversity
of the evaluation, resulting in a total of 330 profiles.
Each user script contains a dialogue context
S and an initial API call label C ′

g which is later mod-
ified to a final version in section 3.2.3. The prompt
used to generate user script is shown as:

[system prompt]
You are an experienced prompt engineer.

[first round prompt]
Please construct 5 different use case
scenarios based on the following API
documentation:
{{API_DOC}}
Please follow the following format:
1.
Character: Lisa, a busy mother
Background: Lisa needs to take ...
Purpose: Using a tablet, Lisa books ...
API Call: {

"funcName": "RegMedAppt",
"time": "Monday",
"departmentName": "Orthopedic"

}
InitialQuery: I want to book an medical
appoiment for next Monday at 1:30PM.

2.
...

Note that the generated scenarios have
exactly five attributes...

where Character, Background, Purpose
and API Call makes user script defined in
(section 3.1.1). InitialQuery results in the ini-
tial query H∗

1 defined in section 3.1.1. The same
set of examples is used across the construction.

3.2.3. Static Dialogue History Generation

In this section, we introduce the method for gen-
erating static dialogue history (H∗

1 , A
∗
1, . . . ,H

∗
i , A

∗
i )

for static evaluation, its H∗
1 also used by the human

evaluation and AutoDE.
To construct this static history, we recorded the

interactions between a user operated by GPT 4,
denoted by U , and its corresponding GPT 4 assis-
tant, denoted by A. The guidelines governing these
interactions echo those elaborated in section 3.1.3,
with 330 user scripts generated in section 3.2.2.
However, a noteworthy variation exists: the user
agent is armed with the dialogue context S and is
initialized with an API call label termed C ′

g. When
the conversation is completed, the API call C gener-
ated by the user agent replaces C ′

g as the final
API call gold label Cg.

We addressed errors related to bad API under-
standing during static dialogue history generation.
To mitigate them, we repeatedly invoked the model
for correction, filtering out persistent inaccuracies
to ensure test case accuracy.

After filtering the inconsistent dialogues manually,
our dataset comprises 275 dialogue pairs, covering
4 use cases for each API on average.



2347

4. Experimental Setup

Following our dataset construction, this section dive
into the technical details and choices we made for
our evaluation process. For a fair comparison, all
models involved in the evaluation were deployed
using their default hyper-parameters.

4.1. User Agent Model

The user agent model must embody the user
role based on the user script we generated in
the section 3.2.2, simulate user-system dialogues,
and accurately respond to the system according
to annotations contained in the background. A
model acting as the user agent must possess
role-playing capabilities and should not be prone to
excessive hallucinations. After a preliminary case
study on existing commercial and open-source
models, we selected GPT 3.5 and Llama 2 7B Chat
models to serve as user agents. In addition to
their satisfactory performance, these two models
also offer efficiency and cost-effectiveness.

GPT 3.5 GPT 3.5 (OpenAI, 2022) is a powerful
language model from OpenAI based on the Trans-
former architecture (Vaswani et al., 2017). Through
pre-training and self-supervised learning, it excels
in natural language processing tasks. Known for
its role-playing abilities, we employ the gpt-3.5-
turbo-16k-0613 variant as a user agent for
evaluation.

Llama 2 7B Chat Llama 2 (Touvron et al., 2023)
represents a series of advanced open-domain
LLMs released by Meta. Llama 2 chat has been
trained on additional human annotations, making
it directly usable for human-computer interactions.
We opted for its 7B version to serve as a user
agent for evaluation.

4.2. Assistant Model

The assistant model is required to invoke API call
based on user directives or to ask the user for fur-
ther information. Apart from fundamental dialogue
capabilities, the assistant model should also pos-
sess API call invocation abilities. Upon conducting
a preliminary case study to test models for their
API-calling capabilities, we observed that while
certain commercial models demonstrated decent
API-calling capabilities, many open-source models
still lacked this ability. In the subsequent experi-
ments, we specifically evaluated the performance
of GPT 3.5, Claude Instant 1.2, Llama 2 70B Chat,
and Code Llama 13B OASST.

GPT 3.5 OpenAI introduced the function calling2

feature to GPT 3.5 in their update on July 20. The
function calling capability enables users to cus-
tomize function documentation, allowing GPT 3.5
to invoke functions based on the documentation
and user requirements. We deployed gpt-3.5-
turbo-16k-0613 as the assistant, utilizing its
function calling feature to execute function invo-
cations.

Claude Instant 1.2 Claude (Anthropic, 2023) is
a large language model (LLM) developed by An-
thropic, designed to serve as a helpful assistant in
dialogues. Claude Instant represents a low-latency,
high-throughput variant within the Claude family.
We found that, by crafting prompts appropriately,
Claude Instant 1.2 possesses the capability for API
invocation.

Llama 2 70B Chat Llama 2 70B Chat is the 70B
version of Llama chat. We observed its challenges
in initiating API calls following prompts, even af-
ter multiple prompt modifications. We introduced
Llama 2 70B Chat in our experiments for compara-
tive analysis.

Code Llama 13B OASST Code Llama (Roziere
et al., 2023), derived from the Llama 2 model
by Meta and introduced with code training, is de-
signed for tasks like code completion and code
generation. We hypothesized that code training
could enhance the model’s API invocation ca-
pabilities. During experiments, we find that the
model codellama-13b-oasst-sft-v10 (Ope-
nAssistant, 2023), fine-tuned by the OpenAssistant
team based on Code Llama 13B on the OASST
dataset (Köpf et al., 2023), can successfully exe-
cute function calls. We provide a showcase of this
model’s performance on our benchmark.

Zephyr 7B Alpha Zephyr is a series of language
models that are trained to act as helpful assis-
tants. Zephyr 7B Alpha is the first model in the
series, and is a fine-tuned version of Mistral-
7B-v0.1 (Jiang et al., 2023). The model was fine-
tuned on a variant of the UltraChat (Ding et al.,
2023) dataset and further aligned with Direct
Preference Optimization (DPO) (Rafailov
et al., 2023) on the UltraFeedback (Cui et al.,
2023) dataset.

4.3. Metrics
As discussed in section 2, we obtained the API call
C from the assistant through single or multi-turn di-
alogues and assessed their Precision, Recall,

2https://platform.openai.com/docs/
guides/gpt/function-calling

https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/guides/gpt/function-calling


2348

and F1-Score for slot values. The primary results
of our experiments can be found in Table 1.

5. Experimental Results

AutoDE Demonstrates Consistency with Hu-
man Evaluators We present our evaluation re-
sults in Table 1. Of the four systems assessed, all
except Claude Instant 1.2 have F1 scores closer
with human evaluations using AutoDE than those
using static evaluations.

Figure 3: Consistency between human evaluation
results (F1 score) and those from various auto-
mated evaluation methods on four AI assistants.

For a clearer visual representation, Figure 3
depicts a scatter plot comparing the F1 scores
from each evaluation approach with human eval-
uations. This graph reveals that scores using
Llama 2 7B Chat and GPT 3.5 as user agent
within AutoDE have a linear relationship with hu-
man evaluations, while the scores from static eval-
uations diverge noticeably.

Going into more detail, Table 2 presents corre-
lation metrics, specifically the Pearson Correlation
Coefficient (ICC3) and the Pearson Correlation
Coefficient R, for the different evaluation strate-
gies. It’s noteworthy that the evaluation using
Llama 2 7B Chat have a Pearson R value that is
11% higher than the static evaluation. This under-
lines that AutoDE offers a level of consistency with
the human evaluation surpassing that of the static
evaluation.

AutoDE Accurately Captures Model’s API Invo-
cation Behavior Delving deeper, the results from
Table 1 suggest that assistants who perform excep-
tionally well in static evaluations might not neces-
sarily maintain the same ranking in human evalu-
ations. The outcomes of AutoDE resonate more
with human evaluations, whereas static evaluations
provide a somewhat skewed interpretation. To il-
lustrate, during the static evaluation, the Claude In-

stant 1.2 assistant achieved an F1 score of 90.78,
which was slightly behind the GPT 3.5 assistant’s
score of 93.86. However, in human evaluations and
in AutoDE using both Llama 2 7B Chat and GPT 3.5
as the user agent, the F1 score of the Claude In-
stant 1.2 assistant consistently surpassed that of
the GPT 3.5 assistant.

We attribute this discrepancy to the GPT 3.5 as-
sistant’s tendency to prematurely make function
calls even when the user hasn’t provided all essen-
tial information. In contrast, Claude Instant 1.2 as-
sistant usually seeks additional confirmations from
the user. A deeper exploration of this particular
behavior will be discussed in Section 5.1.

In conclusion, while static evaluations offer some
valuable insights, they don’t capture the intricacies
of genuine human interactions fully. AutoDE, on
the other hand, produces results that closely resem-
ble human evaluations, positioning it as a potential
alternative to the resource-intensive human evalu-
ation.

5.1. Case Study
AutoDE has uncovered certain issues in AI assis-
tants that remain undetected under static evalua-
tion. In this section, we delve into some interesting
scenarios that have been identified.

Reluctance to Invoke API In the static evalua-
tion setting, AI assistants are prompted to output
an API call in the current turn, guaranteeing an API
invocation for assessment. However, in dynamic
evaluation, the decision to invoke an API rests
with the AI assistant, which must decide from
the context whether to make such a call. This
presents a substantial challenge. For instance,
the Llama 2 70B Chat model often hesitates
to invoke the API even when presented with
sufficient information. Instead, it leans towards
guiding users on their tasks, such as stating
On your phone, go to the "Settings"
app, then select "Bluetooth.", rather
than making an API call. In some instances, it
merely states I’ve turned off the Wi-Fi
without making an actual API invocation. Despite
our efforts to modify the prompt, urging the system
to autonomously generate the API in certain
situations and experimenting with various prompt
structures, the issue persisted.

Upon analysis, we found that under dynamic
evaluation with Llama 2 7B Chat serving as the
user agent, Llama 2 70B Chat exhibited a dete-
rioration of approximately 66% compared to static
evaluation in terms of its reluctance to invoke the
API. Meanwhile, Code Llama 13B OASST’s perfor-
mance degraded by around 9%. This suggests that
Llama 2 70B Chat struggles to generate API calls



2349

Assistant GPT 3.5 Llama 2 7B Chat Static Human
P R F1 P R F1 P R F1 P R F1

GPT 3.5 78.14 73.84 75.43±0.56 78.25 73.91 75.47±0.46 94.05 93.80 93.86±0.97 79.62 75.07 76.77
Claude 91.20 88.49 89.33±1.72 86.32 83.69 84.38±0.64 93.28 89.53 90.78±0.96 92.60 88.74 90.05
Code Llama 64.00 64.41 63.21±3.28 56.70 59.30 57.10±2.25 91.18 89.74 89.90±0.55 59.46 59.99 58.97
Llama Chat 10.61 11.06 10.71±2.32 11.48 12.92 11.86±1.41 29.30 29.78 29.40±1.61 18.80 20.63 19.40
Zephyr 48.08 50.16 48.69±1.68 49.76 51.21 50.05±2.39 80.69 79.77 80.01±1.92 48.70 50.26 49.14

Table 1: The experimental results conducted on GPT 3.5, Claude Instant 1.2, Code Llama 13B OASST,
and Llama 2 70B Chat using AutoDE, static evaluation, and manual evaluation. For AutoDE, we employed
GPT 3.5 and Llama 2 7B Chat as user agent.

Eval Method ICC3 R
GPT 3.5 0.9869 0.9923
Llama 2 7B Chat 0.9923 0.9930
Static 0.8813 0.8813

Table 2: Comparison of consistency with hu-
man evaluations across various evaluation meth-
ods. “GPT 3.5” and “Llama 2 7B Chat” serve as
user agents in AutoDE, whereas “static” refers
to the static evaluation method. ICC3 and R refer
to Intraclass Correlation Coefficient and Pearson
Correlation Coefficient, respectively. Note that this
table is calculated with five data points and serves
only as a reference.

through dynamic interactions.

Illusory Parameter Queries In static evaluation,
the AI assistant relies on a pre-defined dialogue his-
tory to summarize API call parameters. Conversely,
in dynamic settings, it must identify missing param-
eters and query the user. Some systems improp-
erly ask about non-existent parameters, even when
we’ve explicitly instructed the them in the prompt to
only use the provided parameters. For instance:

Avail params: deviceType, time, area
U: What was the movie’s box office ranking

this week?
A: Can you please provide the name of the

movie?
U: Of course! The movie I’m thinking of

is "The Lost City"
API call: {

"deviceType": "mobile phone",
"time": "this week",
"area": "current location",
"movieName": "The Lost City"

}

In the example above, the movieName param-
eter isn’t in the list of available parameters, thus
the AI assistant shouldn’t be querying it. This illu-
sory parameter querying issue led to a degradation
of 9% in Code Llama 13B OASST’s performance
when compared to static evaluation under dynamic
assessment with Llama 2 7B Chat.

Redundant Queries We also observed that
some systems tend to repeatedly ask users for in-
formation they have already been provided during
dynamic evaluation. While this may help in improv-
ing accuracy in certain scenarios, it can also make
the conversation unnecessarily verbose. Consider
the following:
U: Please turn up the luminance on my TV.
A: What type of device would you like me

to adjust?
U: It’s a TV.

This issue was notably prevalent with the Claude In-
stant 1.2. Under dynamic assessment with
Llama 2 7B Chat, its average conversation length
was 1.88 turns longer than static dialogue histories
of 3.2. In contrast, GPT 3.5’s average conversation
length was 1.61 turns shorter compared to static
histories. This indicates that Claude Instant 1.2
tends to repeatedly question users, while GPT 3.5
seems more inclined to gather more information
in a single turn. Our future work aims to evaluate
dialogue quality, including a verbosity metric.

6. Related Work

Tool Use Nakano et al. (2021) enables LLM to
browse the web to support answers, Schick et al.
(2023) advanced the concept by allowing LLMs
to invoke tools like calculators, python interpreter,
databases, etc.

Benchmarks and datasets play a crucial role in
this domain. Patil et al. (2023); Li et al. (2023),
either focus on one-shot dialogues or require pre-
defined dialogue histories for testing. On the other
hand, Xu et al. (2023); Yang et al. (2023); Tang
et al. (2023); Qin et al. (2023) moved towards dy-
namic evaluations, allowing more back-and-forth
between LLMs and API interpreters. While these
look at machine-to-machine talks, our interest lies
in finding an efficient way to substitute humans in
the expensive human-machine evaluation.

The work most related to ours is Wang et al.
(2023), which employs an agent to simulate hu-
man feedback, aiding model inference. Distinct
from Wang et al. (2023), our study quantitatively
analyzes the disparities between static evaluations



2350

and dynamic evaluations involving humans, with
an emphasis on bridging this gap.

Human-machine Dialogue Evaluation Accu-
rate evaluation of human-machine dialogue sys-
tems traditionally demands human interaction, ren-
dering it costly. Conventional automated evalua-
tions mostly rely on fixed human-machine dialogue
histories (Choi et al., 2018; Saeidi et al., 2018;
Reddy et al., 2019; Campos et al., 2020), which
often diverge from human assessments. Some ad-
vancements, like Mandya et al. (2020); Siblini et al.
(2021); Li et al. (2021), have attempted to address
this by dynamically altering part of the pre-defined
histories. However, these methods often entail rule-
based adjustments and are tailored primarily for
specific tasks. Our approach, distinctively, avoids
manual heuristic rules and static dialogue histories,
focusing on a fully dynamic dialogue generation.

With the growth of Large Language Models, there
is an emerging trend in direct dialogue evalua-
tions targeting attributes like fluency and relevance
(Zheng et al., 2023; Lin and Chen, 2023; Fu et al.,
2023; Liu et al., 2023; Kong et al., 2023a). While
these studies emphasize assessing existing dia-
logues, we also emphasize generating them, aim-
ing for a closer alignment with human evaluations.
Future work may merge LLM-based scoring for a
more holistic evaluation approach.

LLM as Agents Previous research has explored
the use of LLMs to simulate human behavior. These
studies have employed LLMs for dataset construc-
tion, as seen in works such as (Wang et al., 2022;
Xu et al., 2023; Ding et al., 2023; Li et al., 2023b;
Kong et al., 2023b) and to investigate interactions
between agents (Park et al., 2023; Li et al., 2023a).
Drawing inspiration from these endeavors, we ex-
plored the use of LLM agents in the dynamic eval-
uation of the human-machine conversation.

7. Conclusion

We have presented Automated Dynamic Evaluation
(AutoDE), a novel framework to evaluate AI assis-
tants’ API invocation capabilities through dynamic
interactions. AutoDE utilizes a user agent to em-
ulate human patterns based on the provided user
script.

Experiments on multiple assistants using our as-
sembled benchmark showed AutoDE can reveal
deficiencies overlooked by static evaluations. The
user agent aligned more closely with manual
evaluation, uncovering issues like reluctance to in-
voke APIs and illusory parameter querying.

Overall, AutoDE serves as an effective auto-
mated substitute for expensive human assessment

of assistants’ API mastery. By mirroring human in-
teractions, the user agent can dynamically prompt
systems, identifying strengths and weaknesses in-
visible in static analyses.

8. Ethics Statement

The research presented in this paper focuses on
developing a novel methodology for evaluating AI
systems through simulated interactions. We have
taken care to ensure our work is conducted ethi-
cally.

We have selected API domains that avoid po-
tentially harmful or unethical use cases. The as-
sembled benchmark comprises common assistant
functionalities like device controls, media playback,
scheduling, and information search. No APIs for
surveillance, manipulation, or deception are in-
cluded.

While this work aims to advance the state-of-
the-art in AI evaluation, we recognize the poten-
tial for misuse. We advocate for development of
robust benchmarks focused on beneficial applica-
tions, and for human oversight when deploying ca-
pable AI systems. With thoughtful implementation,
improved evaluation techniques can guide progress
towards trustworthy and helpful AI assistants.

9. Limitations

While promising, AutoDE has limitations to address.
The benchmark dataset’s small scale warrants ex-
pansion for generalizability. Incorporating qualita-
tive metrics beyond accuracy, like coherence and
naturalness, could provide a more holistic evalua-
tion. Evaluating comprehension of API documenta-
tion itself could reveal insights into reasoning abili-
ties. Lastly, results on closed-source commercial
models hinders reproducibility.

10. Acknowledgements

We gratefully acknowledge the support of the Na-
tional Natural Science Foundation of China (NSFC)
via grant 62236004 and 62206078.

11. Bibliographical References

Anthropic. 2023. Claude 2.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine
Bosselut, Emma Brunskill, et al. 2021. On the op-
portunities and risks of foundation models. arXiv
preprint arXiv:2108.07258.

https://www.anthropic.com/index/claude-2


2351

Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan
Deriu, Mark Cieliebak, and Eneko Agirre. 2020.
Doqa–accessing domain-specific faqs via con-
versational qa. arXiv preprint arXiv:2005.01328.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar,
Wen-tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. 2018. Quac: Question answering
in context. arXiv preprint arXiv:1808.07036.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. 2023. Enhancing
chat language models by scaling high-quality
instructional conversations. arXiv preprint
arXiv:2305.14233.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and
Pengfei Liu. 2023. Gptscore: Evaluate as you
desire. arXiv preprint arXiv:2302.04166.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne
Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. 2023. Mistral 7b.

Chuyi Kong, Yaxin Fan, Xiang Wan, Feng Jiang,
and Benyou Wang. 2023a. Large language
model as a user simulator. arXiv preprint
arXiv:2308.11534.

Chuyi Kong, Yaxin Fan, Xiang Wan, Feng Jiang,
and Benyou Wang. 2023b. Platolm: Teaching
llms via a socratic questioning user simulator.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver
Stanley, Richárd Nagyfi, et al. 2023. Ope-
nassistant conversations–democratizing large
language model alignment. arXiv preprint
arXiv:2304.07327.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for" mind"
exploration of large scale language model society.
arXiv preprint arXiv:2303.17760.

Huihan Li, Tianyu Gao, Manan Goenka, and Danqi
Chen. 2021. Ditch the gold standard: Re-
evaluating conversational question answering.
arXiv preprint arXiv:2112.08812.

Siheng Li, Cheng Yang, Yichun Yin, Xinyu Zhu, Ze-
sen Cheng, Lifeng Shang, Xin Jiang, Qun Liu,

and Yujiu Yang. 2023b. Autoconv: Automati-
cally generating information-seeking conversa-
tions with large language models. arXiv preprint
arXiv:2308.06507.

Yen-Ting Lin and Yun-Nung Chen. 2023. Llm-eval:
Unified multi-dimensional automatic evaluation
for open-domain conversations with large lan-
guage models. arXiv preprint arXiv:2305.13711.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. Gpte-
val: Nlg evaluation using gpt-4 with better human
alignment. arXiv preprint arXiv:2303.16634.

Angrosh Mandya, James O’Neill, Danushka Bolle-
gala, and Frans Coenen. 2020. Do not let the
history haunt you–mitigating compounding er-
rors in conversational question answering. arXiv
preprint arXiv:2005.05754.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, et al. 2021. Webgpt: Browser-assisted
question-answering with human feedback. arXiv
preprint arXiv:2112.09332.

OpenAI. 2022. OpenAI: Introducing ChatGPT.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

OpenAssistant. 2023. Open-Assistant CodeLlama
13B SFT v10.

Joon Sung Park, Joseph C O’Brien, Carrie J
Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. 2023. Generative agents:
Interactive simulacra of human behavior. arXiv
preprint arXiv:2304.03442.

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,
Chaojun Xiao, Chi Han, et al. 2023. Tool
learning with foundation models. arXiv preprint
arXiv:2304.08354.

Rafael Rafailov, Archit Sharma, Eric Mitchell,
Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. 2023. Direct preference optimiza-
tion: Your language model is secretly a reward
model.

Siva Reddy, Danqi Chen, and Christopher D Man-
ning. 2019. Coqa: A conversational question
answering challenge. Transactions of the Asso-
ciation for Computational Linguistics, 7:249–266.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al.
2023. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950.

http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2308.11534
http://arxiv.org/abs/2308.11534
https://openai.com/blog/chatgpt
https://api.semanticscholar.org/CorpusID:257532815
https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290


2352

Marzieh Saeidi, Max Bartolo, Patrick Lewis,
Sameer Singh, Tim Rocktäschel, Mike Shel-
don, Guillaume Bouchard, and Sebastian Riedel.
2018. Interpretation of natural language rules in
conversational machine reading. arXiv preprint
arXiv:1809.01494.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì,
Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom.
2023. Toolformer: Language models can
teach themselves to use tools. arXiv preprint
arXiv:2302.04761.

Wissam Siblini, Baris Sayil, and Yacine Kessaci.
2021. Towards a more robust evaluation for con-
versational question answering. In Proceedings
of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages
1028–1034.

Hugo Touvron, Louis Martin, Kevin Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023. Llama 2: Open foun-
dation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra,
Alisa Liu, Noah A Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. 2022. Self-instruct: Align-
ing language model with self generated instruc-
tions. arXiv preprint arXiv:2212.10560.

Canwen Xu, Daya Guo, Nan Duan, and Julian
McAuley. 2023. Baize: An open-source chat
model with parameter-efficient tuning on self-chat
data. arXiv preprint arXiv:2304.01196.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng,
Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric
Xing, et al. 2023. Judging llm-as-a-judge with
mt-bench and chatbot arena. arXiv preprint
arXiv:2306.05685.

12. Language Resource References

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and

Maosong Sun. 2023. Ultrafeedback: Boosting
language models with high-quality feedback.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. 2023. Enhancing
chat language models by scaling high-quality
instructional conversations. arXiv preprint
arXiv:2305.14233.

Henderson, Matthew and Thomson, Blaise and
Williams, Jason D. 2014. The Second
Dialog State Tracking Challenge. Associ-
ation for Computational Linguistics. PID
https://github.com/matthen/dstc.

Li, Minghao and Song, Feifan and Yu, Bowen
and Yu, Haiyang and Li, Zhoujun and Huang,
Fei and Li, Yongbin. 2023. Api-bank: A
benchmark for tool-augmented llms. PID
https://github.com/AlibabaResearch/DAMO-
ConvAI/tree/main/api-bank.

Patil, Shishir G and Zhang, Tianjun and Wang, Xin
and Gonzalez, Joseph E. 2023. Gorilla: Large
language model connected with massive apis.
PID https://github.com/ShishirPatil/gorilla.

Qin, Yujia and Liang, Shihao and Ye, Yin-
ing and Zhu, Kunlun and Yan, Lan and Lu,
Yaxi and Lin, Yankai and Cong, Xin and
Tang, Xiangru and Qian, Bill and others.
2023. Toolllm: Facilitating large language mod-
els to master 16000+ real-world apis. PID
https://github.com/OpenBMB/ToolBench.

Rastogi, Abhinav and Zang, Xiaoxue and Sunkara,
Srinivas and Gupta, Raghav and Khaitan, Pranav.
2020. Towards scalable multi-domain conver-
sational agents: The schema-guided dialogue
dataset. PID https://github.com/google-research-
datasets/dstc8-schema-guided-dialogue.

Tang, Qiaoyu and Deng, Ziliang and Lin, Hongyu
and Han, Xianpei and Liang, Qiao and Sun, Le.
2023. ToolAlpaca: Generalized Tool Learning for
Language Models with 3000 Simulated Cases.
PID https://github.com/tangqiaoyu/ToolAlpaca.

Wang, Xingyao and Wang, Zihan and Liu,
Jiateng and Chen, Yangyi and Yuan, Li-
fan and Peng, Hao and Ji, Heng. 2023.
MINT: Evaluating LLMs in Multi-turn Interac-
tion with Tools and Language Feedback. PID
https://github.com/xingyaoww/mint-bench.

Xu, Qiantong and Hong, Fenglu and Li, Bo and
Hu, Changran and Chen, Zhengyu and Zhang,
Jian. 2023. On the Tool Manipulation Capability
of Open-source Large Language Models. PID
https://github.com/sambanova/toolbench.

http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2310.01377
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://github.com/matthen/dstc
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/api-bank
https://github.com/ShishirPatil/gorilla
https://github.com/OpenBMB/ToolBench
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/google-research-datasets/dstc8-schema-guided-dialogue
https://github.com/tangqiaoyu/ToolAlpaca
https://github.com/xingyaoww/mint-bench
https://github.com/sambanova/toolbench


2353

Yang, Rui and Song, Lin and Li, Yanwei and
Zhao, Sijie and Ge, Yixiao and Li, Xiu and Shan,
Ying. 2023. Gpt4tools: Teaching large language
model to use tools via self-instruction. PID
https://github.com/AILab-CVC/GPT4Tools.

Zang, Xiaoxue and Rastogi, Abhinav and Sunkara,
Srinivas and Gupta, Raghav and Zhang, Jian-
guo and Chen, Jindong. 2020. MultiWOZ 2.2:
A dialogue dataset with additional annotation
corrections and state tracking baselines. PID
https://github.com/budzianowski/multiwoz.

https://github.com/AILab-CVC/GPT4Tools
https://github.com/budzianowski/multiwoz

	Introduction
	Preliminary
	Method
	Evaluation Framework
	Manual Evaluation
	Static Evaluation
	Automated Dynamic Evaluation

	Dataset Construction
	API Document Construction
	User Script Generation
	Static Dialogue History Generation


	Experimental Setup
	User Agent Model
	Assistant Model
	Metrics

	Experimental Results
	Case Study

	Related Work
	Conclusion
	Ethics Statement
	Limitations
	Acknowledgements
	Bibliographical References
	Language Resource References

