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Abstract

Word error rate (WER) is a metric used to evaluate the quality of transcriptions produced by Automatic Speech

Recognition (ASR) systems. In many applications, it is of interest to estimate WER given a pair of a speech utter-

ance and a transcript. Previous work on WER estimation focused on building models that are trained with a specific

ASR system in mind (referred to as ASR system-dependent). These are also domain-dependent and inflexible

in real-world applications. In this paper, a hypothesis generation method for ASR System-Independent WER

estimation (SIWE) is proposed. In contrast to prior work, the WER estimators are trained using data that simulates

ASR system output. Hypotheses are generated using phonetically similar or linguistically more likely alternative

words. In WER estimation experiments, the proposed method reaches a similar performance to ASR system-

dependent WER estimators on in-domain data and achieves state-of-the-art performance on out-of-domain data.

On the out-of-domain data, the SIWE model outperformed the baseline estimators in root mean square error and

Pearson correlation coefficient by relative 17.58% and 18.21%, respectively, on Switchboard and CALLHOME. The

performance was further improved when the WER of the training set was close to the WER of the evaluation dataset.
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1. Introduction

Automatic quality estimation (QE) of machine

learning models has gained increasing popularity.

Many types of quality estimation have been stud-

ied (Negri et al., 2014; Chowdhury and Ali, 2023;

Kurz et al., 2022; Mittag et al., 2020; Zerva et al.,

2022), where the aim is to estimate the quality of

outputs of models. It was found to be useful for

measuring model performance for practical tasks,

such as image classification (Kurz et al., 2022),

machine translation (Specia et al., 2018), auto-

matic speech recognition (ASR) (Chowdhury and

Ali, 2023), speech synthesis (Huang et al., 2022)

and speech enhancement (Reddy et al., 2022),

especially when there is no oracle references or

ground-truth labels.

This paper mainly focuses on quality estimation of

ASR system output. ASR research (Povey et al.,

2016; Graves, 2012; Baevski et al., 2020; Gulati

et al., 2020; Radford et al.) has achieved impres-

sive successes and made huge progress on tran-

scription accuracy and computational efficiency.

Even so, errors still occur and it remains essen-

tial to evaluate the quality of ASR transcripts inde-

pendently at low cost, as oracle references are not

always available, especially in real-world applica-

tions or production scenarios.

Several methods to estimate the quality of ASR

transcripts have been proposed. As summarised

in Negri et al. (2014), these methods can be

roughly categorised into two classes: method us-

ing glass-box and black-box features. For the

glass-box methods, to estimate the quality of ASR

outputs, intermediate features of ASR systems,

such as confidence scores (Jiang, 2005; Kal-

gaonkar et al., 2015) are typically used. Another

type is a black-box method that directly estimates

the word error rate (WER) of transcripts and au-

dio (Negri et al., 2014; Ali and Renals, 2018, 2020;

Chowdhury and Ali, 2023; Park et al., 2023). The

former methods using a confidence score have

been used widely for different applications such as

semi-supervised learning (Drugman et al., 2016)

and speaker-adaptation (Deng et al., 2023). How-

ever, a common issue of ASR systems derived

from confidence scores is that they can be over-

confident (Li et al., 2021), which leads to low per-

formance of quality estimation. Compared to con-

fidence score-based methods, WER estimators

using black-box features are not dependent on the

intermediate features from specific ASR systems.

Hence, the WER estimators can have computa-

tional efficiency advantages at inference because

they do not require running expensive ASR decod-

ing. However, a common issue of most previous

WER estimators (Negri et al., 2014; Chowdhury

and Ali, 2023; Park et al., 2023) is that their training

is dependent on factors such as the nature of hy-

potheses or training datasets. These dependen-

cies may be causes of performance degradation

or result in a narrow range of use of WER estima-

tors.

Typically, the training datasets of WER estima-

tors are generated based on speech datasets with

ground-truth references. These datasets are com-

posed of pairs of a speech utterance and a hy-
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pothesis, as well as the target WER. The latter is

derived by comparing a hypothesis with the refer-

ence transcript and computing the so-called edit

distance. The hypotheses are generated using

a specific ASR system. Hence, the WER esti-

mators (Negri et al., 2014; Chowdhury and Ali,

2023; Park et al., 2023) are dependent on the ASR

systems and the speech datasets used to gener-

ate the training datasets. In this paper, for sim-

plicity, these WER estimators are named system-

dependent WER estimators. When estimating

the quality of output from another ASR system,

system-dependent WER estimators do not per-

form well and need to be re-trained, which reduces

the usefulness of ASR system-dependent WER

estimators. In addition, they are also likely to suf-

fer performance degradation on out-of-domain test

data, where errors occur that previously have not

been observed.

The work in this paper tries to address the is-

sues above by proposing a System-Independent

WER Estimation (SIWE) method. Instead of gen-

erating training datasets using ASR systems, a

range of data augmentation methods are pro-

posed that allow to generate plausible hypothe-

ses. The data augmentation methods deduce hy-

potheses from ground-truth references by insert-

ing errors. Three types of strategies are used for

error insertion: producing insertion, deletion and

substitution errors. The training datasets gener-

ated from the proposed methods help SIWE to

achieve state-of-the-art WER estimation perfor-

mance. On in-domain test data, SIWE reaches

the same level as performance of the system-

dependent WER estimators. Furthermore, SIWE

outperformed the system-dependent WER esti-

mators on out-of-domain test data.

The main contributions of this paper can be sum-

marised as follows:

• This paper proposes a System-Independent

WER estimator, which enjoys a broader range

of use than system-dependent WER estima-

tors.

• This paper proposes a new data augmenta-

tion method for generating training datasets

for WER estimators.

• The proposed SIWEmodel reaches the same

level of performance as system-dependent

estimators on in-domain test data and it

further outperformed the system-dependent

WER estimators on out-of-domain test data.

2. Related Works

2.1. Word Error Rate Estimation

Negri et al. (2014) proposed an estimation method

for ASR QE without manual reference transcripts.

They trained a WER estimation model using both

glass-box and black-box features. Ali and Renals

(2018) also proposed a feed-forward neural net-

work called e-WER for predicting the number of

errors and word count per spoken utterance. In

Ali and Renals (2020), the features extracted from

a phone recogniser were used to improve the per-

formance. Moreover, e-WER3 in (Chowdhury and

Ali, 2023) extended the previous model to pre-

dict WER on multiple language data including En-

glish. In the study, only black-box features were

employed. In addition to these methods, the Fast

WER estimator (Fe-WER), has been proposed by

Park et al. (2023). This model reduced the com-

putational cost without performance degradation

by adopting self-supervised learning representa-

tions for speech and text as black-box features.

For evaluation, mean absolute error (MAE), root

mean square error (RMSE) and Pearson correla-

tion coefficient (PCC) were measured.

2.2. Automatic Speech Recognition
Systems

ASR has experienced impressive success and

made huge progress in recent years (Li, 2022).

They have significant differences in many ways,

including model architectures, input features and

training objectives. One type of ASR systems

is based on so-called hybrid modelling (Swieto-

janski et al., 2013; Povey et al., 2015). The

system consists of multiple independent modules

and is trained through a training objective, such

as lattice-free maximum mutual information (LF-

MMI) (Povey et al., 2016). End-to-end (E2E) ASR

systems have gained much attention. For E2E

to be robust to the long context, recurrent neu-

ral network (RNN) transducer Graves (2012) has

been adopted by He et al. (2019). Its encoder

is jointly trained with prediction networks that de-

pend on previous labels. Moreover, Transformer

has been integrated with E2E models: wav2vec

2.0 (Baevski et al., 2020); Conformer (Gulati et al.,

2020); Whisper (Radford et al.). First, wav2vec 2.0

is pre-trained to learn contextualised representa-

tion. Then, representation is linearly projected into

output tokens. The model is optimised by minimis-

ing the connectionist temporal classification loss.

Second, Conformer is a model based on a trans-

former and convolutional neural networks for fea-

ture extraction. Last, Whisper is an ASR system

trained on large amounts of transcripts collected

from the internet. It is trained on multiple tasks,

such as speech recognition and language identifi-

cation.
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Figure 1: Illustration of WER estimation

3. ASR System-Independent WER

Estimator

3.1. WER Estimation

Figure 1 depicts ASR system-independent WER

estimation. The first step is generating training

data for WER estimation. Spoken utterances can

be transcribed by an ASR system for baseline

models or a simulator for proposed models. A

training instance for WER estimation consists of

a speech utterance, a hypothesis and a WER be-

tween the hypothesis and the reference transcript.

In previous studies (Negri et al., 2014; Chowdhury

and Ali, 2023; Park et al., 2023), the hypotheses

are produced from an ASR system, which, by im-

plication, makes the WER estimation models de-

pendent on the ASR system. This work proposes

to derive hypotheses from reference transcripts via

data generation. At training, the WER estimator is

usually optimised as a regression model through

the MSE loss function.

3.2. Fe-WER

3.2.1. Model Architecture

The WER estimator is built upon the method sug-

gested by Park et al. (2023). The model is based

on a two-tower architecture (Huang et al., 2013),

where one tower is a speech representation model

and the other is a text representation model as de-

scribed in Figure 2.

Figure 2: Overview of Fe-WER architecture

The tower models extract frame-level features

from a spoken utterance and token-level features

from a transcript. The features are averaged over

frames or tokens. The aggregated features for

speech and text are concatenated as an input to

the multi-layer perceptrons (MLPs). Then, the

MLPs output a WER estimate.

3.2.2. Training Objective

The model is trained to minimise mean squared

error (MSE).

MSE =
1

N

N∑
i=1

(WER− ŴER)2 (1)

where N is the number of instances, WER is an

actual WER and ŴER is an estimate.

3.2.3. Evaluation Metrics

RMSE is used as an evaluationmetric forWER es-

timation as well as PCC. These metrics have been

adopted for WER estimation in the recent stud-

ies (Chowdhury and Ali, 2023; Park et al., 2023).

RMSE measures the average difference between

estimates and actual WERs, while PCC measures

the relationship between them. PCC is from −1 to
1 and if it is 1, then the estimate tends to increase

when the target increases, while it is 0 if there is

no relationship between them.

3.3. Hypothesis Generation

3.3.1. Hypothesis Generation Strategy

There are three main strategies for hypothesis

generation: random selection, phonetic similarity,

linguistic probability. These approaches generate

the errors of an ASR, an acoustic and a language

model, respectively.

Random Selection Strategy Positions for inser-

tions, deletions and substitutions are selected ran-

domly, aiming for a specific target WER.

Phonetic Similarity Strategy An ASR model pro-

duces ASR errors between phonetically similar

words, such as grief and brief. Thus, the pho-

netic similarity between the reference word and

the other words can be considered when the sub-

stitution is generated. First of all, a word in a ref-

erence transcript is converted into a phoneme se-

quence, e.g. speech to S P IY CH. Then, the edit

distance between two words is calculated. After
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calculating all the distances to the other words in

a vocabulary list, the top n words similar to the ref-

erence word are listed. When a word is substituted

with another word, the word for substitution is se-

lected from the phonetic similar word list.

Linguistic Probability Strategy In the case of in-

sertion, it can be caused by grammatical correc-

tions. Here is an example of the insertion related

to the context rather than the acoustic similarity: [I

do not] know if he is alive. The words in [] are in-

serted by an ASR model with a language model,

which is used to get the probability of the word in

context.

The relation between Hypothesis generation

strategies and edit types is described in Table 1.

strategy del. sub. ins.

Random selection X X X
Phonetic similarity X
Linguistic probability X

Table 1: Hypothesis generation strategies and edit

types. del.: deletion, sub.: substitution, ins.: inser-

tion.

3.3.2. Hypothesis Generation Method

Random Sampling of Transcripts The first ap-

proach to hypothesis generation is to draw sam-

ples randomly from the transcripts of the ASR

corpus. In other words, the spoken utterances

and transcripts are paired randomly. This method

guarantees that the vocabulary list, the number of

words and the distribution of words in the training,

validation and evaluation dataset do not change

during hypothesis generation.

Random Sampling of Words Another random

sampling can be at a word level. The words in

a reference are replaced with the words randomly

chosen according to the vocabulary distribution of

the datasets. With this method, the total num-

ber of words and the distribution of words in the

dataset can be maintained in addition to the length

of a transcript. However, with the random sam-

pling methods, theWER of the hypotheses can not

be targeted. For example, hypotheses of 10% of

WER. To address these issues, a method for con-

trolling WER is introduced in the following section.

Edit Generation In contrast to the random sam-

pling methods, individual edits on transcripts can

be generated to achieve a target WER for a

dataset. WER is the ratio of the number of dele-

tion, substitution and insertion errors in hypothe-

ses to the number of words in references. As the

reference does not change, the WER of a dataset

can be controlled by the total number of errors.

To keep the number of edits as close to the tar-

get as possible, the tokens of deletion and sub-

stitution, [del] and [sub], respectively, replace the

words to be deleted or substituted. Then, the

[del] tokens are deleted from the reference and the

[sub] tokens are replaced by other words. For sub-

stitution, a phonetic similarity matrix is built using

edit distance between phoneme sequences of two

words. Then, [sub] tokens could be substituted by

phonetically similar ones, e.g., born replaced by

borne. Among the words in the phonetic similar-

ity matrix, a word for the substitution is randomly

selected according to the similarity.

The total number of each edit type could change

whenever shorter paths are found as a result of

the insertion. For example, a sequence of a dele-

tion and an insertion converts into a substitution.

To minimise the unexpected change in the num-

ber of individual edits, a token for insertion, [ins],

is inserted between correct words after generat-

ing deletions and insertions. For the [ins] token, it

is replaced by linguistically probable ones, e.g., it

can be inserted into the end of because of. In a

similar way to the substitution, the word is drawn

from the most probable word list. The probability

is obtained by the language model trained on the

reference transcripts of a training dataset.

The example of the hypothesis generation is de-

scribed in Table 2.

3.4. Data augmentation

Training data are augmented by merging hypothe-

sis sets of different WERs. Each set is generated

individually. When they are combined, some in-

stances can be duplicated. To maintain the same

amount of data generated, they are not removed.

Therefore, if the same number of datasets are

merged, the amount of training data will be the

same.

4. Experimental Setup

4.1. ASR Corpora

Ted-Lium 3 (TL3) (Hernandez et al., 2018) was

used as a corpus for training WER estimators.

This corpus has been used for the WER estima-

tion task in previous studies (Chowdhury and Ali,

2023; Park et al., 2023). While the TL3 test dataset

was used for in-domain evaluation, three evalu-

ation datasets from different domains were used

for the evaluation of the models on out-of-domain

data. First, FCASC is an evaluation dataset for

AMI (Kraaij et al., 2005). AMI is a multiparty meet-

ing corpus recorded in business meetings of three

or four participants. These participants played the

roles of employees in a business situation with or

without scenarios. Second, 2000 HUB5 English

Evaluation Speech 1 is an English conversational

telephone speech dataset. It consists of 20 unre-

leased conversations from the Switchboard study

1https://catalog.ldc.upenn.edu/LDC2002S09
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step text

reference on the morning of september eleventh two thousand and

token(del/sub) on the [sub] of [del] eleventh two [sub] and

replacement on the talking of eleventh two gunned and

token(ins) on the [ins] talking of eleventh [ins] two gunned and

hypothesis on the one talking of eleventh down two gunned and

Table 2: Example of hypothesis generation.

(Godfrey et al., 1992) as well as 20 conversa-

tions from CALLHOME American English Speech
2. The Switchboard conversations are between

two people on daily topics. The CALLHOME con-

versations are between family members or close

friends. Finally, Wall Street Journal (WSJ) (Paul

and Baker, 1992) is a read speech corpus based

on mainly WSJ materials. One of the features

of WSJ is the transcripts with verbalised punctu-

ation, e.g., COMMA. For WSJ, there are multi-

ple evaluation datasets with different vocabulary

sizes: eval92 5k, eval92 20k, eval93 5k, eval93

20k. For the following experiment, the four eval-

uation datasets for WSJ were merged into one

dataset. The evaluation datasets from different

domains were named as AMI eval, SWB/CH eval

and WSJ eval.

4.2. ASR Systems

Training data for WER estimation were generated

by transcribing the TL3 train set through differ-

ent ASR systems in Section 2.2: Whisper (Rad-

ford et al.), wav2vec 2.0 (Baevski et al., 2020),

Chain (Povey et al., 2015), Conformer (Gulati

et al., 2020), Transducer (Graves, 2012). These

models and their weights were downloaded from

online resources34567 except Chain. The Chain

model was trained on 100 hours of LibriSpeech

(Panayotov et al., 2015) using LF-MMI (Povey

et al., 2016) and its augmented versions by chang-

ing speed and volume. The details of each model

size and their training data are described in Ta-

ble 3.

model trained on
language

model

ASR1 Whisper 680k from net. Transformer

ASR2 wav2vec 2.0 LS 960h None

ASR3 Chain LS 100h 3-gram

ASR4 Conformer LS 960h Transformer

ASR5 Transducer LS 960h RNN

Table 3: Summary of ASR systems.

2https://catalog.ldc.upenn.edu/LDC97S42
3https://github.com/openai/whisper
4https://github.com/facebookresearch/fairseq
5https://github.com/kaldi-asr/kaldi
6https://huggingface.co/speechbrain
7https://github.com/speechbrain/speechbrain

methods and strategies

GEN1 random sampling of transcript

GEN2 random sampling of word

GEN3 edit generation

GEN4 edit generation, PS10

GEN5 edit generation, PS30

GEN6 edit generation, PS50

GEN7 edit generation, PS100

GEN8 edit generation, PS100, LS100

Table 4: Hypothesis generation methods. PSm:

phonetically similar m words, LSm: linguistically

similar m words

4.3. Training Datasets

The training datasets for WER estimation were

generated in two ways as described in Figure 3:

transcribing the TL3 train dataset with an ASR

model and simulating the ASR output. First, the

training dataset was transcribed using the ASR

models in Section 4.2. To prevent imbalanced

data from the low WER, the number of instances

whose WER was 0 was limited to the sum of the

second and the third common WER, e.g. the total

number of instances in the range of WER of 3%

and 4%.

(a) ASR hypothesis (b) Hypothesis generation

Figure 3: Illustration of ASR hypothesis and Hy-

pothesis generation

Second, the hypotheses were generated by hy-

pothesis generation methods described in Sec-

tion 3.3.2 and Table 4. For GEN1, a spoken utter-

ance and a transcript were paired randomly and

uniformly. For GEN2, each word was replaced

with another word randomly sampled from the
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word distribution of the TL3 train dataset. GEN3

was a method to generate hypotheses aiming for

target WERs of 2%, 4%...100%. From GEN4

to GEN7, phonetic similarity was adopted, while

the linguistic probability was employed by GEN8.

When the target WER is given, the target num-

ber for each edit is distributed almost equally. For

example, the WER of insertions, deletions and

substitutions generated using GEN7 were 3.06%,

3.33% and 3.29% when the target WER was 10%.

For substitution, the length of the phonetically

similar word list was different from 10, 30, 50

and 100: GEN4 to GEN7, respectively. More-

over, for linguistic probability, a 3-gram language

model was trained on the TL3 train with the SRI

Language Modeling toolkit8. Additionally, sev-

eral datasets were merged for data augmentation.

For example, the generated hypotheses of 10%,

20%...100% WER were merged into the dataset

called GEN7W10-100 when the hypothesis gen-

eration method is GEN7. The datasets generated

by ASR systems and hypothesis generations are

organised in Table 5.

dataset hours WER
std.

dev.

HYP1 train 256.22 0.1913 0.3184

HYP2 train 372.62 0.1618 0.1939

HYP3 train 434.78 0.3172 0.2419

HYP4 train 356.19 0.1580 0.2019

HYP5 train 376.52 0.1736 0.1864

GEN1 train 444.62 1.2898 2.9786

GEN2 train 444.62 0.9890 0.0320

GENnWm train 444.62 approx. m

Table 5: Training datasets for WER estimation.

HYPn: transcribed by ASRn, GENnWm: gener-

ated by GENn with target WER of m

4.4. Evaluation Datasets

The evaluation datasets were generated by the

ASR systems in Table 3. The instances of 0 WER

were filtered out as described in Section 4.3. As a

result, the total duration of audio could be reduced

differently according to an ASR system. The WER

estimation models were also evaluated on the out-

of-domain test sets, AMI eval, SWB eval and WSJ

eval. Each test set was transcribed by ASR1–5.

WER of the evaluation datasets are summarised

in Table 6.

4.5. WER Estimator

MLPs are employed to predict WER. The layer

sizes of the model were [2048, 600, 32, 1]. The

outputs of hidden layers are dropped out at a rate

8http://www.speech.sri.com/projects/srilm/

dataset hrs. WER std.

in-domain

HYP1 eval (TL3) 1.97 0.0979 0.1935

HYP2 eval (TL3) 3.41 0.1243 0.1501

HYP3 eval (TL3) 4.18 0.2099 0.1806

HYP4 eval (TL3) 3.38 0.1226 0.1673

HYP5 eval (TL3) 3.53 0.1300 0.1445

out-of-domain

HYP1 eval (AMI) 7.34 0.2754 0.4068

HYP2 eval (AMI) 8.16 0.3883 0.3542

HYP3 eval (AMI) 8.68 0.5946 0.3184

HYP4 eval (AMI) 8.18 0.3934 0.3555

HYP5 eval (AMI) 8.68 0.4087 0.3613

HYP1 eval (SWB/CH) 2.75 0.1970 0.3522

HYP2 eval (SWB/CH) 3.37 0.3336 0.3569

HYP3 eval (SWB/CH) 3.56 0.6558 0.2889

HYP4 eval (SWB/CH) 3.29 0.3412 0.3590

HYP5 eval (SWB/CH) 3.56 0.6561 0.3575

HYP1 eval (WSJ) 2.13 0.0307 0.0748

HYP2 eval (WSJ) 1.60 0.1293 0.1166

HYP3 eval (WSJ) 2.22 0.1388 0.1332

HYP4 eval (WSJ) 1.50 0.1258 0.1123

HYP5 eval (WSJ) 1.62 0.1306 0.1120

Table 6: WER on evaluation datasets.

of 0.1. The Adam optimiser is used with a learning

rate of 0.007. The cosine scheduler with 15 itera-

tions is used as an annealing factor of the learning

rate. For feature extraction, HuBERT large (Hsu

et al., 2021) and XLM-R large (Conneau et al.,

2020) are adopted. The averaged representations

are 1024-dimensional features.

5. Results

5.1. Evaluation on In-Domain Datasets

The performance of the WER estimators trained

on the ASR hypotheses is summarised in Table 7.

The performance of the estimators was best when

the evaluation dataset was generated with the

same ASR used to transcribe the training dataset.

For example, when the estimator was trained on

HYP1 train (TL3), then the performance of the es-

timator was the best on HYP1 eval (TL3).

For ASR system-independent WER estimation,

WER estimators were trained on the data aug-

mented with the datasets in Table 5. SIWE1

and SIWE2 are the estimation models trained on

the GEN1 and GEN2 train, respectively. These

random sampling methods for data generation

showed relatively poor results. However, the

RMSE and PCC of SIWE3–8 are comparable to

those of ASR system-dependent WER estima-

tors, Fe-WER1–5. SIWE8 outperformed the other

SIWE models on most evaluation datasets.

For comparison between Fe-WERs and SIWEs,
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model

evaluated on

HYP1 eval HYP2 eval HYP3 eval HYP4 eval HYP5 eval

RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑
Fe-WER1 0.0926 0.8806 0.1234 0.6524 0.1876 0.5375 0.1404 0.6658 0.1333 0.5491

Fe-WER2 0.1350 0.7210 0.0928 0.7962 0.1494 0.6807 0.1151 0.7584 0.1069 0.6921

Fe-WER3 0.1404 0.7003 0.1139 0.7454 0.1148 0.7790 0.1166 0.7239 0.1165 0.6745

Fe-WER4 0.1275 0.7565 0.1084 0.7323 0.1459 0.6556 0.1090 0.7611 0.1125 0.6656

Fe-WER5 0.1402 0.6908 0.1017 0.7662 0.1303 0.7148 0.1105 0.7517 0.1064 0.6997

Table 7: RMSE and PCC of WER estimators trained and evaluated on ASR hypotheses of TL3. Fe-

WERn is an estimator trained on HYPn train.

model

evaluated on

HYP1 eval HYP2 eval HYP3 eval HYP4 eval HYP5 eval

RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑
SIWE1 0.8730 0.0754 0.8447 0.1022 0.7776 0.0516 0.8494 0.0949 0.8416 0.0661

SIWE2 0.8797 0.1964 0.8507 0.2703 0.7845 0.2011 0.8436 0.0829 0.8484 0.1838

SIWE3 0.1542 0.6897 0.1320 0.5994 0.1558 0.6551 0.1626 0.5257 0.1331 0.5707

SIWE4 0.1471 0.7144 0.1222 0.6470 0.1488 0.6721 0.1583 0.5433 0.1315 0.5588

SIWE5 0.1472 0.7225 0.1235 0.6481 0.1503 0.6851 0.1621 0.5294 0.1324 0.5708

SIWE6 0.1484 0.7122 0.1252 0.6305 0.1495 0.6820 0.1612 0.5282 0.1307 0.5756

SIWE7 0.1443 0.7282 0.1195 0.6739 0.1479 0.6830 0.1598 0.5361 0.1283 0.5959

SIWE8 0.1268 0.7914 0.1133 0.7083 0.1369 0.7152 0.1455 0.6204 0.1266 0.5946

Table 8: RMSE and PCC of WER estimators trained on GEN hypotheses and evaluated on ASR hy-

potheses of TL3. SIWEn is trained on GENnW10–100.

the RMSE and PCC values are averaged over

HYP1–5 eval without a duration weight, the mean

RMSE and PCC of the SIWE8 model were bet-

ter than Fe-WER1 by 0.0056 and 0.0289, respec-

tively. The results are shown in Table 8.

5.2. Evaluation on Out-of-Domain
Datasets

The estimators were evaluated on out-of-domain

datasets in Table 6. For simplicity, the RMSE and

PCC values are averaged over HYP1–5 eval with-

out a duration weight. The mean RMSE and PCC

are shown in Table 9. In terms of the means of

RMSE and PCC, the performance of SIWE7 and

SIWE8 on AMI and SWB/CH eval are better than

those of all Fe-WERs, while the results on WSJ

eval are mixed. On WSJ eval, the RMSE and the

PCC mean values of all the SIWE models are bet-

ter than those of Fe-WER1, while they are worse

than those of Fe-WER4.

6. Discussion

6.1. Data Generation Method

In this section, we will discuss the effect of each

generation method for WER estimation on in-

domain and out-of-domain data in detail. First, the

edit generation method, GEN3, improved the per-

formance of the estimators significantly compared

to GEN1 and GEN2. In Table 8, the mean RMSE

of SIWE3 was 0.1542, while those of SIWE1 and

SIWE2were 0.8730 and 0.8797, respectively. The

amount of the training data would be helpful to im-

prove the performance of the estimator because

the training dataset for SIWE3 was the merged

dataset of GEN3W10–100. Moreover, all the PCC

values of the estimators trained on GEN3–7 were

over 0.5, while those of SIWE1 and SIWE2 were

below 0.3. Second, using phonetic similarity for

substitution also brought an additional gain in the

performance of the estimators. Additionally, as

the size of the phonetically similar word list in-

creased from 10 to 100, RSME and PCC of SIWE

improved. Furthermore, when the linguistic proba-

bility was added to the generation method, GEN8,

the performance was notably improved on all eval-

uation datasets. For example, the mean RMSE

and PCC of the SIWE8 estimator on HYP1–5 eval

were 0.1298 and 0.6860, while those of the SIWE7

estimator were 0.1400 and 0.6434, respectively.

However, the performance improvement by GEN8

could not be achieved on out-of-domain data.

The results in Table 9 show that all the results

of SIWE8 are behind the SIWE3–7 on AMI and

SWB/CH evals. These results mean that the lin-

guistic information obtained from the TL3 corpus

might not be helpful for WER estimation on differ-

ent corpora.
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model

AMI eval SWB/CH eval WSJ eval

RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑
Fe-WER1 0.3620 0.5705 0.3581 0.5356 0.2727 0.2623

Fe-WER2 0.4623 0.4523 0.4196 0.4653 0.1186 0.5274

Fe-WER3 0.3286 0.6097 0.3250 0.5645 0.2675 0.3944

Fe-WER4 0.5289 0.1741 0.4940 0.1601 0.1158 0.4926

Fe-WER5 0.3400 0.5978 0.3209 0.5601 0.1657 0.5060

SIWE7 0.2822 0.6764 0.2645 0.6673 0.2177 0.3628

SIWE8 0.2897 0.6518 0.2882 0.6224 0.2549 0.3947

Table 9: Mean RMSE and PCC of WER estimators evaluated on AMI, SWB/CH and WSJ eval.

WER

range

AMI eval SWB/CH eval WSJ eval

RMSE↓ PCC↑ RMSE↓ PCC↑ RMSE↓ PCC↑
W2–20 0.3454 0.6618 0.3243 0.6321 0.1092 0.4546

W12–30 0.3106 0.6818 0.2886 0.6592 0.1193 0.4219

W22–40 0.2957 0.6771 0.2714 0.6678 0.1452 0.3929

W32–50 0.2835 0.6869 0.2636 0.6720 0.1673 0.3783

W42–60 0.2765 0.6900 0.2593 0.6731 0.1961 0.3871

W52–70 0.2747 0.6827 0.2642 0.6657 0.2610 0.3682

W62–80 0.2755 0.6844 0.2673 0.6663 0.3063 0.3700

W72–90 0.2803 0.6811 0.2746 0.6651 0.3191 0.4036

W82–100 0.3023 0.6870 0.3125 0.6627 0.4588 0.3704

Table 10: Mean RMSE and PCC of SIWE7 trained on the datasets comprising different target WER

ranges. Mean WERs of HYP1–5 eval of AMI, SWB/CH and WSJ are 0.4121, 0.4367 and 0.1110, re-

spectively.

6.2. Data Augmentation

The performance of SIWEs was behind that of

Fe-WERs on out-of-domain data except for WSJ

eval. For further analysis, SIWEs were trained

on the datasets consisting of different ranges of

target WER. For example, training data of WER

of 2%, 4%...20%. The amount of data does not

change from the datasets used in Table 9 as the

same number of datasets were merged. The per-

formance improvement was observed when the

WER range of the training dataset was close to

the WER of evaluation datasets. For example,

SIWE7W2–20 performed better than the others in

terms of both mean RMSE and PCC when the

mean WER of HYP1–5 eval (WSJ) was 0.1110.

Similarly, SIWE7W42–60 outperformed the others

on SWB/CH eval whosemean ofWER onHYP1–5

eval (SWB/CH) was 0.4367. Moreover, those re-

sults in Table 10 are better than those of SIWE7 in

Table 9.

7. Conclusion

Hypothesis generation and data augmentation for

ASR system-independent WER estimation are

proposed in this paper. The estimator trained

on the hypotheses generated by this proposed

method outperforms the baselines on out-of-

domain datasets. As a hypothesis generation

strategy, linguistic information helps improve the

performance of WER estimators when they are

evaluated on in-domain datasets. The pho-

netic similarity for substitution improved the per-

formance of the estimators on both in-domain

and out-of-domain datasets. On out-of-domain

datasets, the performance of estimators has fur-

ther improvedmarginally when the hypotheses are

generated with a target WER close to the evalua-

tion dataset.
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