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Abstract
The application of Differential Privacy to Natural Language Processing techniques has emerged in relevance in
recent years, with an increasing number of studies published in established NLP outlets. In particular, the adaptation
of Differential Privacy for use in NLP tasks has first focused on the word-level, where calibrated noise is added to
word embedding vectors to achieve “noisy” representations. To this end, several implementations have appeared in
the literature, each presenting an alternative method of achieving word-level Differential Privacy. Although each of
these includes its own evaluation, no comparative analysis has been performed to investigate the performance of
such methods relative to each other. In this work, we conduct such an analysis, comparing seven different algorithms
on two NLP tasks with varying hyperparameters, including the epsilon (ε) parameter, or privacy budget. In addition,
we provide an in-depth analysis of the results with a focus on the privacy-utility trade-off, as well as open-source
our implementation code for further reproduction. As a result of our analysis, we give insight into the benefits and
challenges of word-level Differential Privacy, and accordingly, we suggest concrete steps forward for the research field.

Keywords: differential privacy, privacy-preserving NLP, evaluation

1. Introduction

Privacy vulnerabilities in Natural Language Pro-
cessing (NLP) have recently been placed in the
spotlight, and the discussions surrounding data pri-
vacy in this setting have gained increased attention
with the rise of Large Language Models (LLMs) and
chatbots such as ChatGPT. In particular, privacy
risks have been demonstrated in embedding mod-
els (Song and Raghunathan, 2020; Thomas et al.,
2020; Morris et al., 2023) and general-purpose lan-
guage models (Pan et al., 2020; Carlini et al., 2021).

To combat privacy risks in data processing
settings, Privacy-Enhancing Technologies (PETs)
have emerged as concrete technical solutions that
can be incorporated into existing systems. Under
this class of technologies, Differential Privacy (DP)
(Dwork, 2006) has risen in popularity due to its
mathematical foundations, composability and ro-
bustness to post-processing, and above all, its flex-
ible privacy parameter, known as ε.

The application of DP to NLP settings does
not come immediately, as the original sense of
DP was designed for injecting plausible deniability
into queries performed on sensitive attributes from
structured databases. As textual data rarely exists
in this form, reasoning about DP definitions initially
comes with its challenges (Klymenko et al., 2022).
Nevertheless, a number of implementations have
appeared in the literature, and as pointed out by Hu
et al., the majority of these revolve around embed-

ding vector perturbation methods at the word level
(Hu et al., 2023). Many of these implementations
employ Metric Local Differential Privacy (MLDP),
which was introduced as a generalization of the
standard DP notion (Chatzikokolakis et al., 2013).

The focus on applying DP to word embeddings
marks an intuitive first step in fusing the two fields,
as words can be perceived as atomic units of infor-
mation, which in turn are replaceable via calibrated
perturbations. In such methods, the goal becomes
to obfuscate the original text data as much as possi-
ble, while still preserving semantic coherence, and
ideally, grammatical correctness. In terms of pri-
vacy preservation, several metrics are introduced in
the literature, such as plausible deniability statistics
(Feyisetan et al., 2020) or membership inference
attack performance (Shokri et al., 2017; Carvalho
et al., 2023). Even so, such statistics are not uni-
formly reported across all word-level DP papers.

Beyond the metrics used to quantify the implica-
tions on privacy and utility, implementation papers
do not run a standard evaluation, making a com-
parison in terms of performance quite difficult. The
diversity in evaluation setups can be attributed both
to the relative adolescence of the field and accord-
ingly, the lack of a defined benchmark.

In this work, we aim to address some of the
above-mentioned gaps. We design an experimen-
tal setup with two separate NLP tasks, in which
seven different word-level DP algorithms are tested.
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These experiments are run with various combina-
tions of ε and embedding dimension. Finally, a set
of statistics is calculated on each experiment iter-
ation, providing the foundation for a comparative
analysis against the provided baselines.

The results from this work present the following
contributions to the research of DP in NLP:

1. An overview of the disparity in evaluation meth-
ods for word-level DP

2. A novel multi-dimensional experimental setup
focused on benchmarking privacy and utility
metrics for word-level MLDP

3. A comparative analysis of word-level MLDP
methods, guided by a novel composite metric

4. An open-source replication package for repro-
duction of the experiments, which includes pre-
viously unavailable code implementations of
the selected methods, found at:
https://github.com/sjmeis/MLDP

The structure of this paper is as follows. In Sec-
tion 2, related work in the field of word-level DP and
its evaluation are discussed. Afterwards, in Section
3, foundations of DP for NLP are introduced. Sec-
tion 4 briefly outlines the followed methodology for
this work, while Section 5 illustrates the resulting
findings. These results are analyzed and discussed
in Section 6. Finally, Section 7 underlines the impli-
cations following from our work and potential future
directions, which is followed by a discussion of the
perceived limitations of our study.

2. Related Work

The investigation of Differential Privacy in Natu-
ral Language Processing, specifically on the word
level, can be traced back to SynTF (Weggenmann
and Kerschbaum, 2018), in which “synthetic” term-
frequency vectors are created by performing single
word replacements using the Exponential Mech-
anism (McSherry and Talwar, 2007). Fernandes
presented the novel concept of using calibrated
noise added directly to word embedding vectors to
achieve noisy, perturbed vectors (Fernandes et al.,
2019). This method relies on a generalized form of
DP, often referred to as metric DP, which relaxes
DP for use in arbitrary vector spaces endowed
with a metric (Chatzikokolakis et al., 2013). Fur-
ther improvements to this technique were achieved
by experimentation with underlying noise addition
mechanisms, distance metrics, or both (Xu et al.,
2020; Feyisetan et al., 2020; Carvalho et al., 2023).
These implementations focus on the local DP set-
ting (Kasiviswanathan et al., 2011), in which DP is
applied to data at the user level and not at some
central authority.

A recent survey (Hu et al., 2023) categorizes DP-
NLP methods into two categories: gradient pertur-
bation and vector embedding perturbation. Of the
19 implementations listed under vector embedding
perturbation in the local setting, 17 are word-level.

Klymenko et al. (2022) highlight the importance
of benchmarking in DP-NLP, particularly as future
research in the field. Looking to the word-level
methods outlined by Hu et al., there is a great dis-
parity in the tasks, datasets, and parameters used
to evaluate the proposed methods. An overview
of these evaluations, in line with the 17 mentioned
methods, is provided in Table 1.

In the works presented in Table 1, utility is often
measured by evaluating the accuracy of a given
NLP task with perturbed input data. Privacy, on the
other hand, is largely measured via (1) Empirical
Privacy, or the decrease in performance for adver-
sarial attacks, or (2) Plausible Deniability, in which
statistics try to illustrate the level of plausible deni-
ability introduced by a DP mechanism. Concretely,
plausible deniability is often measured by estimat-
ing the probability that a word will be perturbed to
another word, i.e., not remain the same.

Of particular focus in this work are the publica-
tions presented in the bottom half of Table 1. Specif-
ically, we investigate MDP techniques in the local
setting, henceforth Metric-LDP, or MLDP. These
methods generally focus on leveraging MLDP to
add calibrated noise to static word embeddings
(e.g., GloVe (Pennington et al., 2014)), in order to
achieve noisy word representations.

In another recent work (Mattern et al., 2022), the
authors address potential shortcomings of word-
level DP, particularly the tight constraints placed
in the local DP setting, as well as the effect this
has on the quality of language output, leading to
grammatical errors and inflexibility when attempting
to enforce changes in syntax. The implications of
these findings on model performance were not dis-
cussed or analyzed, however, and it is here where
our investigation begins.

3. Foundations

Differential Privacy (Dwork, 2006) was introduced
in 2006 as a formal definition for the quantification
of individual privacy. The original notion as pro-
posed by Dwork was aimed at privacy preservation
in the centralized setting, in which each row of a
structured database corresponds to one individual’s
data. According to Differential Privacy, the inclusion
of an individual in the dataset should only affect the
outcome of aggregate queries by a certain bound,
governed by the ε (privacy) parameter.
Definition 3.1 (ε-Differential Privacy). For any
databases D1 and D2 differing in exactly one ele-
ment, any ε > 0, a randomized function K, and all

https://github.com/sjmeis/MLDP
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Publication Model Task Dataset Epsilon Privacy Metrics Utility Metrics

(Lyu et al., 2020a) BERT Sentiment Analysis
Topic Classification

Trustpilot
AG News/DW ε ∈ {0.05, 0.1, 0.5, 1, 5} Empirical Privacy -

(Lyu et al., 2020b) GloVe
BERT

Sentiment Analysis
Intent Detection
Paraphrase Identification

IMDb, Yelp, Amazon
Intent Dataset
MRPC

ε ∈ {0.5, 1, 5, 10} - Accuracy, F1

(Plant et al., 2021) BERT Sentiment Analysis Trustpilot ε ∈ {0.01, 0.1, 0.5, 1} Empirical Privacy Accuracy, F1
(Krishna et al., 2021) LSTM Intent Classification ATIS, SNIPS ε ∈ {0.25, 0.5, 0.6, 0.75, 0.85, 1} AUC Accuracy
(Habernal, 2021) - - - - - -
(Igamberdiev et al., 2022) LSTM Intent Classification ATIS, SNIPS ε ∈ {1, 10, 100, 1000} - F1

(Maheshwari et al., 2022) Private
Encoder

Sentiment Analysis
Attribute Detection

Twitter
Bias in Bios, CelebA, Adult Income ε ∈ {8, 10, 12, 14, 16} Empirical Privacy,

MDL
Accuracy

(Feyisetan et al., 2020) GloVE
FastText

Binary Classification
Multi-class Classification
Question Answering

IMDb
Enron emails
InsuranceQA

ε ∈ {6, 12, 17, 23, 29, 35, 41, 47, 52} Plausible Deniability Accuracy

(Xu et al., 2020) FastText Binary Classification Twitter, SMSSpam ε ∈ {1, 5, 10, 20, 40} Plausible Deniability Accuracy

(Xu et al., 2021b) GloVe
FastText

Word Classification
Sentiment Analysis
Binary Classification

Product Reviews
IMDb
Twitter

ε ∈ (0, 40] Empirical Privacy -

(Xu et al., 2021a) GloVe Sentiment Analysis
Textual Entailment

IMDb
SNLI N.A. Empirical Privacy Accuracy

(Carvalho et al., 2023) GloVe Sentiment Analysis IMDb ε ∈ (0, 22] Empirical Privacy Accuracy

(Feyisetan and Ka-
siviswanathan, 2021)

GloVe
FastText Various MR, CR, MPQA, SST-5, TREC-6 N.A. - Accuracy

(Feyisetan et al., 2019) Poincaré Various MR, CR, MPQA, SST-5, TREC-6
SICK-E, MRPC, STS14 ε ∈ {0.125, 0.5, 1, 2, 8} Plausible Deniability Accuracy

(Carvalho et al., 2021) Binary Sentiment Analysis IMDb ε ∈ (0, 22] Empirical Privacy Accuracy

(Tang et al., 2020) GloVe Sentiment Analysis
Topic Classification

Trustpilot
AG News ε ∈ {3, 4, 5, 6, 7, 8} Plausible Deniability Accuracy

(Yue et al., 2021) GloVe
BERT

Sentiment Analysis
Semantic Textual Similarity
Question Answering

SST-2
MED-STS
QNLI

ε ∈ {1, 2, 3} Empirical Privacy Accuracy

Table 1: Word-level Local Differential Privacy (LDP) techniques and their evaluation. The bottom section
denotes word-level metric LDP approaches, the majority of which operate on static word embeddings.

S ⊆ Range(K):

Pr[K(D1) ∈ S] ≤ eεPr[K(D2) ∈ S] (1)

Thus, the ε parameter determines how indistin-
guishable the output (distribution) of the operation
performed on D1 and D2 must be.

As mentioned, the focus of this work is placed
on the application of DP in the word embedding
space, which is a multi-dimensional vector space.
As such, the definition of Equation 1 is not readily
transferable to this space. Instead, the notion of
MDP was developed to incorporate the usage of a
distance metric within the word vector space.
Definition 3.2 (Metric Differential Privacy, or
dX -privacy). For any x, x′ ∈ X (vector space) en-
dowed with a metric d, any ε > 0, and a randomized
function M : X → Y:

Pr[M(x) ∈ Y] ≤ eεd(x,x
′)Pr[M(x′) ∈ Y] (2)

One can see that this definition incorporates the
metric d into the ε parameter, now scaling the re-
quired indistinguishability by the relationship be-
tween two inputs (i.e., two words from the vocabu-
lary X ). In this setting, one can now reason about
two word vectors, whose relation can be quantified
by a distance metric.

In order to define MDP in the local setting, the
notion of MLDP was introduced (Alvim et al., 2018),
which is defined below:
Definition 3.3 (Metric Local Differential Privacy).
For all y ∈ Y:

Pr[M(x) = y] ≤ eεd(x,x
′)Pr[M(x′) = y] (3)

For an in-depth introduction of DP in metric
spaces for NLP, we refer the reader to (Feyisetan
et al., 2020). For technical details on how calibrated
noise is generated using a variety of DP mecha-
nisms, we refer to (Barthe et al., 2016).

4. Methodology

In this section, we introduce the details of our exper-
imental design, as well as provide a brief overview
of the algorithms included in our analysis.

4.1. Experimental Design

4.1.1. Tasks and Datasets

For our comparative analysis, we benchmark the
selected methods on two NLP tasks: Sentiment
Analysis and Topic Classification.

The Sentiment Analysis task is run on the IMDb
Movie Review Dataset (Maas et al., 2011), which
is a dataset of 50k movie reviews, classified as
either negative or positive in sentiment. We take a
random sample of 12k movies – 8k for training, 2k
for validation, and 2k for testing.

AG News (Zhang et al., 2015) is a dataset of
nearly 130k text excerpts from AG. The dataset
contains news articles on the four largest topics in
the AG News corpus: world, sports, business, and
science. For this task, we take a random sample of
6k articles from each topic – 16k in total for training,
4k for validation, and 4k for testing.

A summary of both selected tasks and their un-
derlying datasets is included in Table 2.



177

Dataset IMDb AG News
Task Type Binary Multi-class
Training set size 10,000 20,000
Test set size 2,000 4,000
Total word count 808,382 510,582
Vocabulary Size 42,662 27,234

Sentence Length µ = 80.84 µ = 25.52
σ = 22.53 σ = 6.78

Table 2: Summary of the two selected NLP tasks
and datasets, with key characteristics.

Choice of Datasets We choose IMDb and AG
News for multiple reasons: (1) their utilization in
previous works (Tang et al., 2020; Carvalho et al.,
2023; Xu et al., 2021b; Feyisetan et al., 2020), (2)
their relatively large size and accessibility, (3) the
ability of IMDb to simulate “sensitive” information
(personal reviews), and (4) the multi-class classi-
fication problem of AG News, to supplement the
simpler binary case of IMDb.

4.1.2. Evaluation Model

For both tasks, we employ an LSTM-based model
(Hochreiter and Schmidhuber, 1997) using Keras.
An embedding layer is added to allow the use of
GloVe embeddings as input, followed by a Dropout
layer (0.2), and finally, a fully connected layer with
a softmax activation is added to facilitate both clas-
sification tasks. The embedding layer was added
to facilitate the input format, as all tested mecha-
nisms map input words to discrete “noisy” output
words, each of which corresponds to an embedding
(GloVe in this case). For each experiment configu-
ration, the model was trained with a batch size of
64 with a maximum of 30 epochs. Early stopping
and checkpointing were activated.

It should be noted that the choice of LSTM in
lieu of transformer-based models was justified for
two reasons: (1) as the nature of this study is to
benchmark against a baseline, it was not seen as
necessary to achieve SOTA performance on the
two chosen tasks, and relatedly, (2) the training of
LSTMs is far more efficient than that of transformer-
based models, and given the large dimensions of
our conducted evaluation, the LSTM provided the
much more time- and resource-efficient option.

For each experimental setting, the MLDP per-
turbed data (train + validation split) is used for train-
ing, and the evaluation is performed on the trained
model using the test split perturbed by the same
mechanism. This is to simulate the local DP set-
ting, in which user data is perturbed locally. The
metrics of the models trained on perturbed data
were captured and compared against the non-DP
(original data) baseline.

4.1.3. Embedding Model

We utilize pre-trained GloVe embeddings (Penning-
ton et al., 2014), which were trained on the entire
Wikipedia dataset from 2014 and Gigaword 51. In
particular, we use the 50-, 100-, and 300-dimension
versions of the word embedding model.

4.1.4. Privacy Budget

As introduced in Section 3, the privacy parameter
known as epsilon (ε) is used to scale the level of
privacy desired. In practice, a smaller epsilon value
adds a higher level of noise and thus leads to a
higher theoretical level of privacy protection. As
a result of surveying the parameter choice of the
MLDP methods in Table 1, we choose to use ε ∈
{1, 5, 10} for our experiments.

4.1.5. Metrics

For utility, we report the accuracy of each experi-
ment. This is seen to be a sufficient indicator of per-
formance, as both tasks have balanced datasets.

For privacy estimation, we employ four metrics
which allow for a uniform platform for evaluating
the effect of each algorithm on the input text. The
first three methods, introduced below, were chosen
due to their usage in the previous works listed in
Table 1, while the final metric (LOW) is inspired by
the approach of Yue et al..

Plausible Deniability (PD) [Nw ↓, Sw ↑] These
two metrics measure the plausible deniability cre-
ated by a particular mechanism. Concretely, given
a word n, Nw estimates the probability of not mod-
ifying the word (word stays unperturbed), and Sw

measures the support of the set of output words,
i.e., the number of words that w can be perturbed
with probability 1− η, with η being small. Inspired
by the approach taken by (Feyisetan et al., 2020;
Xu et al., 2021b), we estimate these metrics by run-
ning each mechanism on a set of 25 random words
from each dataset, each word being run 100 times.

Perturbation Percentage (PP) ↑ This metric cal-
culates the percentage of words perturbed to a
different word, i.e., that did not remain unchanged.
The more perturbed the data is, the higher the pri-
vacy protection; however, this may come at the
expense of reduced data utility (Kang et al., 2020).

Cosine Similarity (CS) ↑ This metric calculates
the cosine similarity between the sentence embed-
ding representations of the original and perturbed
inputs, inspired by BERTScore (Zhang et al., 2019).

1https://nlp.stanford.edu/projects/
glove/

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Although not a privacy metric per se, cosine simi-
larity provides insight into the effect of word-level
perturbations. By using this metric in combination
with PP, one can gauge the trade-off between in-
put perturbation and preservation of meaning. To
calculate this metric, a pre-trained SBERT model
(Reimers and Gurevych, 2019) is used, namely
paraphrase-distilroberta-base-v1.

Least-Occuring Words (LOW) ↓ This metric cal-
culates the percentage of least-occurring words
existing in both the original and perturbed datasets.
Least-occurring words are considered sensitive be-
cause they may contain information about individ-
uals, potentially leading to privacy breaches (Yue
et al., 2021). Here, we calculate the percentage
of the 1000 least-occurring words from the original
dataset that are still present in the perturbed data.

4.2. Selected Algorithms

We introduce the seven methods included in this
study, which represent all existing word-level MLDP
approaches that operate on static word embed-
dings in the Euclidean space. In addition, we also
include one method (SynTF) as a baseline, as it
served as a precursor to all other evaluated meth-
ods. Finally, we also briefly discuss the excluded
methods from Table 1.

SynTF (Weggenmann and Kerschbaum, 2018)
Although not explicitly an MLDP method, the SynTF
mechanism can be viewed as a precursor, as it
performs word-level DP synonym replacements by
sampling words from term-frequency vectors.

Calibrated Multivariate Perturbations (CMP)
(Feyisetan et al., 2020) This method adds cali-
brated multivariate normal noise to word embed-
dings, and then perturbs the noisy vectors back to
the nearest neighbor in the embedding space.

Mahalanobis Mechanism (Xu et al., 2020) This
method aims to improve upon previous methods
by adding elliptical noise using the regularized Ma-
halanobis norm, in order to account for vectors
existing in sparse regions of the embedding space.

SanText (Yue et al., 2021) The SanText mecha-
nism aims to improve word perturbation by relating
the perturbation probability of a word to another
token by their Euclidean distance in the embedding
space. Thus, the closer two words are semanti-
cally, the higher the probability that one serves as
the replacement for the other. We use the base
mechanism proposed in the paper.

Truncated Gumbel Mechanism (Xu et al., 2021a)
This method utilizes calibrated Gumbel noise to
scale the probability of perturbing to a new word
within a selected set of candidate words.

Vickrey Mechanism (Xu et al., 2021b) This
mechanism, motivated by Vickrey auctions, bal-
ances the perturbation probability between the first
and second nearest word neighbors. The authors
also provide a generalized mechanism for k neigh-
bors; we implement the original method (k=2).

Truncated Exponential Mechanism (TEM) (Car-
valho et al., 2023) This mechanism generalizes
the perturbation process to a selection problem by
utilizing the Exponential Mechanism. For our study,
we utilize the TEM mechanism with Euclidean dis-
tance, as proposed in the paper.

4.2.1. Excluded Algorithms

Of the introduced MLDP methods presented in Ta-
ble 1, we exclude (Feyisetan et al., 2019) and (Car-
valho et al., 2021) due to their use of embeddings
in non-euclidean spaces. Similarly, we exclude
(Feyisetan and Kasiviswanathan, 2021), as this
method does not map noisy vectors to words. (Tang
et al., 2020) is excluded due to its multi-stage per-
turbation mechanism and its similarity to CMP.

4.2.2. Algorithm-specific Parameters

In our experiments, we used the following algorithm-
specific parameters (beyond ϵ), which can be found
and modified in our provided repository: SynTF:
synonyms from NLTK WordNet, Mahalanobis: λ =
0.2, Vickrey: t = 0.5, TEM: γ = 0.5.

5. Experiment Results

5.1. Utility
The utility results for our study are presented in
Table 3. To obtain the accuracy scores, the LSTM
model was trained five times (10 for baseline tests),
and the evaluated scores were averaged to achieve
a single score. As early stopping was implemented,
accuracy was drawn from the best model. For each
combination of (task, dimension, epsilon), the high-
est score is bolded. Scores that surpass their re-
spective (task, dimension, epsilon) benchmark are
underlined. The measured scores are broken down
by embedding dimension and task in Figure 1.

5.2. Privacy
For readability, we present summarizing visualiza-
tions of the privacy metric results. Figure 2 illus-
trates the Nw:Sw ratio of the selected methods for
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Task: Sentiment Analysis (IMDb) Topic Classification (AG News)
Baseline: 77.30 79.81 84.53 83.92 84.44 84.28

Dimension: 50 100 300 50 100 300
Epsilon: 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

SynTF 72.58 72.26 71.83 74.16 74.79 74.64 75.96 75.99 76.24 81.73 81.55 81.05 84.36 82.53 81.71 83.69 82.59 82.39
CMP 52.10 61.50 77.40 49.60 63.15 78.85 50.85 56.80 75.00 63.67 83.77 84.60 58.70 80.35 84.26 51.30 69.55 82.45
Mahalanobis 53.20 66.70 75.25 49.80 58.95 76.25 52.00 54.05 67.90 62.67 79.94 84.32 62.75 79.42 83.70 53.05 68.32 85.75
SanText 58.97 54.60 54.52 64.48 63.16 61.49 71.21 68.94 69.38 65.15 63.91 62.46 68.21 69.62 68.98 73.20 74.08 74.11
Gumbel 78.08 76.95 77.33 78.43 79.10 81.01 81.64 81.08 81.24 84.17 83.95 84.98 85.27 84.68 84.00 83.45 84.80 84.69
Vickrey 54.18 70.00 75.16 50.50 69.46 74.34 53.66 59.00 69.23 63.29 81.00 83.41 59.78 76.95 83.97 46.29 69.70 81.94
TEM 52.38 74.50 76.30 55.15 77.50 78.75 50.34 81.90 83.20 65.15 84.70 85.10 62.42 84.25 85.20 60.12 84.00 81.75

Table 3: Utility scores (accuracy) for all experimental settings. The scores represent an average of five
runs (10 for baseline). Bolded scores denote the highest score per setting, while underlined scores mark
those that surpass the baseline.

(a) IMDb, d=50 (b) IMDb, d=100 (c) IMDb, d=300

(d) AG News, d=50 (e) AG News, d=100 (f) AG News, d=300

Figure 1: Accuracy scores per task and embedding dimension (d). Baseline scores are marked with a
dotted line, and the baseline value is indicated in the light blue box. The scale of the y-axis is uniform
across sub-figures for comparability.

our three chosen ϵ values. As lower Nw and higher
Sw values are preferred, lower values on the graph
represent higher plausible deniability guarantees.

A New Composite Metric The study of text pri-
vatization, for example in the case of word-level
MLDP, often views the privacy-utility trade-off in
two separate lights: privacy and utility are mea-
sured separately, and then these results are fused
in a qualitative analysis. As such, to the best of the
authors’ knowledge, there exists no single metric
that compares privacy and utility simultaneously.
We aim to address this gap in the introduction of
the following metric.

In order to aid in our pursuit to benchmark the
privacy-utility trade-off for our selected MLDP meth-
ods, we introduce a new metric that aims to cap-
ture both the utility of a method and its privacy-
preserving capabilities. As such, we utilize the
Privacy-Utility Composite (PUC) score, defined as:

PUC = α( 100∗Acc
B−Acc ) + (1− α) (100−Nw)+Sw+PP+CS+(100−LOW )

5

(4)
Where (B-)Acc represents the (baseline) accuracy
percentage, and {Nw, Sw, PP,CS,LOW} repre-
sents the set of privacy metrics we use, as intro-
duced in Section 4.1.5. Scores where lower values
are better are subtracted from 100. α is the privacy-
utility tuning parameter, where one can scale the
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(a) IMDb, Nw:Sw ratio (b) AG News, Nw:Sw ratio

Figure 2: Ratio of Nw to Sw, averaged over three embedding dimensions. Lower ratios correspond to
higher plausible deniability. Ratios are shown on the logarithmic scale due to outlier values (i.e., for TEM).

preferred weight placed upon utility and privacy
metrics. For example, choosing an α of 0.75 would
strongly emphasize the weight of the utility out-
comes, whereas the composite privacy score would
receive a weight of only 0.25. More generally, we
can define the PUC score as follows:
Definition 5.1 (Privacy-Utility Composite (PUC ↑)
Score). For a set of (1) utility metrics U , represent-
ing percentages compared to a baseline, and (2)
a set of privacy metrics P, which can be broken
down into metrics P ↑ and P ↓, and a privacy-utility
tuning parameter α, and a max score M :

PUC = α
|U|
∑

u∈U ui +
1−α
|P|

(∑
p∈P↑ pi +

∑
p̃∈P↓(M − p̃i)

)
(5)

Note that Equation 5 assumes that all scores
are on the same scale, i.e., in the range of [0,M ].
Scores not on the same scale can be scaled or
normalized accordingly. The PUC score also as-
sumes an equal weighting within a metric set, e.g.,
all utility scores are weighted equally.

It should also be noted that the choice if α is en-
visioned to be performed a priori, or rather, before
the design or evaluation of MLDP mechanisms and
not as a tunable parameter. In this way, the require-
ment of privacy protection versus utility preserva-
tion should be decided upon beforehand, so that
such a balance will be reflected in the analysis of
the PUC scoring results.

In Figure 3, we illustrate average PUC scores
with three α values. These values are meant to
simulate a preference for utility (Figures 3a, 3d), a
balanced preference (Figures 3b, 3e), and a pref-
erence for privacy preservation (Figures 3c, 3f).

Finally, to explore the relevance of our CS privacy
metric, we perform a Multiple Linear Regression
(MLR) test. We use epsilon (ϵ), Nw, Sw, and PP
as our predictor variables and CS as our response
variable. The resulting model and summary of the
regression test are shown in Table 4. Most impor-
tantly, one can see strong correlations between CS

and all other variables, notably a strong positive
correlation with ε and a strong negative correlation
with PP. This demonstrates that the choice of ε is
a strong indicator of the expected degree of utility
in the output privatized text.

R2 = 0.905 coef. std err t P>|t|

const. 126.6834 4.963 25.528 0.000
epsilon (ε) 0.6732 0.192 3.503 0.001

Nw -0.3158 0.054 -5.818 0.000
SW -0.2157 0.028 -7.811 0.000
PP -0.7728 0.038 -20.337 0.000

Table 4: MLR to predict the CS metric. In general,
R2 measures the goodness of the fit, ranging from
0 to 1. All predictors are statistically significant.

6. Discussion

Effect of DP on Utility While it is reasonable that
a lower ϵ value will generally lead to lower utility,
a thorough study of our results reveals additional
insights. Firstly, some methods prove to be utility
loss invariant w.r.t. the choice of ϵ. With SynTF, this
is explainable by its mechanism design. However,
in the case of Gumbel and SanText, their strength
in preserving utility across ϵ values is made clear.

We also observe the effect of embedding dimen-
sion. Looking at Figure 1, one can see that as em-
bedding dimension increases, Mahalanobis, CMP,
and Vickrey all experience drops in accuracy, given
a fixed ϵ. It is presumed that this is an artifact of
the mechanism design, where utility may begin to
deteriorate as more dimensions of noise are added.

Notably, the use of an MLDP mechanism in some
cases actually contributes to an increase in accu-
racy against the baseline, particularly in the case
of Gumbel, but also observed in TEM, CMP, and
Mahalanobis. Such a phenomenon was observed
13 times in the Topic Classification task and four
times in Sentiment Analysis. This finding opens the
discussion of MLDP as a “robustness mechanism”.
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(a) IMDB, α = 0.75 (b) IMDB, α = 0.5 (c) IMDB, α = 0.25

(d) AG News, α = 0.75 (e) AG News, α = 0.5 (f) AG News, α = 0.25

Figure 3: Privacy-Utility Composite (PUC) scores per task, with varying α. The PUC scores were averaged
across embedding dimension, and these averages are shown for each epsilon (ϵ) value. The left column
with α = 0.75 favors utility, the middle with α = 0.5 is balanced, and the right with α = 0.25 favors privacy.

Privacy Analysis Moving to the analysis of our
privacy metrics, we begin with our PD statistics,
namely the ratio of Nw to Sw. Much like Figure 1,
one can observe in Figure 2 that three methods
maintain a near-constant average ratio across ϵ
values. With SynTF and SanText, this phenomenon
can be attributed to the mechanism design, as they
operate differently from the five selected MLDP
mechanisms. Furthermore, we see that the ratios of
all methods generally follow the trend exhibited by
the utility lines in Figure 1, leading us to believe that
utility and the Nw : Sw ratio are closely correlated,
as best exhibited by the Gumbel mechanism.

An important discussion comes with the clear re-
lationship between a characterization of “effective”
perturbation, where one may base the effective-
ness of a mechanism in preserving privacy by the
level of plausible deniability that it provides. Thus,
a mechanism that has a high probability of perturb-
ing words (low Nw) and a high diversity of output
words (high Sw) would present the most attractive
option. However, one can observe that the mecha-
nisms with the lowest ratio scores, e.g., the Vickrey
mechanism, in Figure 2 also demonstrate lower
utility scores in Figure 1. Mechanisms that operate
in more of a “balanced” fashion, e.g., the Gumbel
mechanism, suffer less from utility drops. This illus-
trates an important finding regarding mechanism
design, namely that plausible deniability and utility
preservation must be considered in parallel.

In a similar vein, the MLR analysis gives inter-

esting insights into the connection between privacy
and utility. If we assume that Nw and Sw, under a
certain ϵ constraint, supplemented with the empiri-
cal observation of PP, can characterize a general
MLDP mechanism well, then one can very well
predict CS given any mechanism. This provides
a useful link to mechanism design and the (pre-
dicted) effect on the preservation of semantics, and
ultimately, the effect on utility.

Privacy and Utility in the Same Light Key to
this discussion is also an analysis of the compos-
ite quantification of privacy and utility, which was
aided by our introduced metric: the PUC score.
In Figure 3, we see that the PUC score can vary
quite significantly with the choice of α. As an exam-
ple, with an α of 0.75, one can clearly see that the
Gumbel Mechanism presents an attractive choice
of method, and this is supported by the observed
accuracy score of Figure 1. However, if we tune the
parameter more towards privacy, this mechanism
falls significantly from the top position. Indeed, look-
ing to the privacy results of Gumbel, the observed
scores are not on par with the other selected meth-
ods. Most notably, Sw tends to be quite low. Similar
analyses using the PUC score can be performed,
with the goal of tailoring the benchmark interpreta-
tion to the privacy preferences of the user.

An immediate challenge with the quantification
of the privacy-utility trade-off in a comparative man-
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Original: Sorry, gave it a 1, which is the rating I give to movies on which I walk out or fall asleep. In this case I fell asleep 10 minutes from the end, really, really bored and not caring at all about what happened next
Preproc: sorry gave rating give movie walk fall asleep case fell asleep minute end really really bored not caring happened next

Mechanism d ϵ Sentence

CMP 300 1 gr gft expectable chakra grandparent gored magritte noo sniper breakfast meh substantive paternal verifiably viking flute erm striker muddies shane
CMP 300 5 relay neighborhood crime dubai hiroshima vampyre sandal kilcher estimate evers studiously mib cowgirl puzzle coldest stv danube berkley pulitzer del
CMP 300 10 cardiff interpretation efficiency hollywood movie stooped reacting sleep case export asleep minute dillon unable lot bored interfere trainor depressive gunter

SynTF 300 1 meritless devote rat ease_up flick walkway fall departed character diminish asleep mo cease actually in_truth blase not deal materialize future
SynTF 300 5 disconsolate afford rat devote movie base_on_balls downfall gone vitrine fell departed narrow terminal in_truth truly tire non lovingness take_place future
SynTF 300 10 bad cave_in blackleg ease_up movie paseo hang at_peace font precipitate asleep mo stop truly actually bore not manage happen succeeding

TEM 300 1 peckenpahs urchin iñárritu lansburys streaming clout goosebump kissed welcomed maggies iwhippedi waswell occuped damme unbielevable calligraphy cameraman nula sharie british
TEM 300 5 sorry gave rating give movie walk fall asleep case fell asleep minute end really really bored not caring happened next
TEM 300 10 sorry gave rating give movie walk fall asleep case fell asleep minute end really really bored not caring happened next

Mahalanobis 300 1 perspicacious peace gf pellet gomer gargan raspberry kursk no prime wisconsin pickier reddin salvific designer clunkers incursion martyr hurd umm
Mahalanobis 300 5 sincere ha hrithik goalkeeper batman innes pole astral bellucci visa disfigured clan wale geometry faceoff simon sharia humperdink von faulty
Mahalanobis 300 10 sad summary rating age movie mum monarch asleep psychiatric fell asleep goalkeeper talker silver prototype improvising office caring thigpen declined

SanText 300 1 sorry gave rating give granddaughter walk fall asleep case fell asleep minute end really workhorse generate agreeing caring happened next
SanText 300 5 sorry gave rating give movie walk fall asleep hypothetically huggable selina memorably end crucially really starstruck insisting caring happened next
SanText 300 10 sorry gave rating give movie begun fall asleep concluded fell asleep minute end really really bored be caring happened next
Gumbel 300 1 embarrassed give indicating gave filmed anyway though awake reason dropped woke minute end definitely certainly tired though evera happen week
Gumbel 300 5 disappointed put rating giving movie walking fall awake example falling asleep equalizer ended really know bored although elderly happened expected
Gumbel 300 10 ashamed giving rating given starred walked coming sleep example slid fortunately came however obviously certainly bored be loving happening take
Vickrey 300 1 dah mayoral herein wachowski address ee corneau blazing ketchup observatory curled verdi thematic zen materialises ishwar wrestlemania nicholsons sonja interference
Vickrey 300 5 pepe pota eavesdrops hatching stunt yeop traumatizing takoma detained factly picher hitch light englund encyclopedia glanced calcium ditzy pasta chromosome
Vickrey 300 10 miserable assertion plunging invocation jerker sabre competing appetizer homicide dated suspended sanchez levy go consistency scene entertained flawed dreamt cbs

Table 5: Example text output on the IMDb dataset, for all evaluated mechanisms and ε values on
300-dimensional GloVe embeddings. The original dataset text, as well as the preprocessed text, is given.

ner traces back to the foundations of Metric Dif-
ferential Privacy. With the generalization of DP
to metrics, the comparability of the ε parameter
across mechanisms becomes more difficult, espe-
cially for those operating in different metric spaces.
Although we evaluate our selected MLDP mecha-
nisms on discrete ε values, a more calibrated evalu-
ation presents a concrete opportunity for improving
the comparability of word-level MLDP mechanisms.

The Question of Metrics Our work highlights the
need for a qualified and agreed upon set of metrics,
which are necessary in order to evaluate word-level
MLDP metrics on a uniform platform. In addition,
this need for evaluation extends beyond the word-
level to all DP NLP methods. The challenges this
brings are numerous, rooted in the core challenge
discussed above, i.e., the comparability of ε. In
this work, we aim to begin the discussion with a
base set of metrics, which provide the foundation
for further metrics, as well as the opportunity to
validate the efficacy of these metrics.

To start such validation, we critically view some
of the privacy metrics proposed here. The privacy
metric of LOW presents an interesting point of in-
quiry, as this score varies quite significantly be-
tween mechanisms and experiment runs. No dis-
cernible interpretation, therefore, can be drawn;
thus, an analysis of the usefulness of such a score
is a topic of future investigation; therefore, further
studies into the usefulness of this metric, as well as
other lexical- or syntactic-based metrics, would be
well-served. In addition, it becomes very important
for the field of evaluating text privatization to agree
upon a standard set of privacy metrics, something
that currently does not exist. Such standardization
would be paramount in unifying the validation and
evaluation of privacy in NLP.

Another dimension of evaluation and metrics not
directly covered in this work is that of semantic
coherence and readability. Although our CS and
PP metrics capture to a degree the “closeness” of
the perturbed text to the original, a closer look at

the perturbed outputs (see Table 5) illustrates that
there is still much room for improvement. There-
fore, going forward in evaluating DP mechanisms,
a greater emphasis should be placed on producing
readable, coherent privatized outputs. This is also
supported by the analysis of Mattern et al. regard-
ing the question of optimal text privatization.

7. Conclusion

In this work, we conduct a comparative analysis of
seven word-level Differential Privacy mechanisms,
motivated by a lack of uniformity in the evaluation
of word-level MLDP methods. We design a multi-
dimensional experimental setup, which evaluates
our chosen methods on two NLP tasks, with three
ϵ parameters and three GloVe embedding dimen-
sions, resulting in a total of 126 data points. To aid
in the analysis, we employ a combination of utility
and privacy metrics, as well as a novel composite
score to quantify the interplay between the two. Fi-
nally, we include a discussion and analysis of the
observed results, with the goal of providing a basis
upon which future works on word-level MLDP eval-
uation for NLP can build. To this end, we provide
a full replication repository, which can be found at
https://github.com/sjmeis/MLDP.

As additional points of future work, we suggest
(1) a more in-depth critique of the merits of word-
level MLDP, (2) a focus on improving syntactic
and semantic coherence in DP text perturbations
(see Table 5), (3) the evaluation of MLDP mecha-
nisms on a more diverse set of tasks and model
architectures, and (4) further refinements on the
metric-driven quantification and understanding of
the privacy-utility trade-off in the NLP domain.

The results of our comparative analysis show that
the classic argument of “higher privacy, lower util-
ity, and vice versa” is considerably more complex,
particularly in the realm of text. The evaluation of
word-level MLDP methods is a start to tackling this
question, and its implications provide the impetus
to the continued study of privacy in NLP.

https://github.com/sjmeis/MLDP
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9. Limitations and Ethics Statement

While the aim of our work was to provide a uniform
and fair evaluation for word-level MLDP methods,
a clear limitation comes with the selection of our
experiment parameters, or rather, those that were
left out. Firstly, only pre-trained GloVe embeddings
were utilized; other models such as Word2Vec or
FastText were not included. In addition, the choice
of ϵ can be perceived as limiting, especially the
lack of uniformity in ϵ selection, and the resulting
effects. This is especially crucial with MLDP, as
the underlying distance metric for each mechanism
affects the scale of noise added. Finally, the limita-
tion of computational resources did not allow us to
fine-tune algorithm-specific parameters; thus, we
chose a single value for such parameters.

Other limitations include our choice of privacy
metrics. Empirical Privacy (degradation of adver-
sarial performance) was not measured. Further-
more, our chosen metrics included previously un-
used metrics, such as LOW. While these metrics
were seen to be useful for illustrative purposes,
validation of them as useful metrics would be an
excellent point of future work.

On the note of metrics, our proposed PUC Score
assumes that all individual metrics included in the
composite scoring are weighted equally, an as-
sumption that may or may not reflect the prefer-
ences or requirements of real-world practitioners.
Thus, further work in the refinement of the compos-
ite metric to allow for such flexibility is needed.

As a benchmarking study, a final limitation comes
with the fact that we did not benchmark time or
resource consumption for each of our experimental
runs. A quantification of the time needed, as well
as the computational overhead, to perform word-
level MLDP would be very useful in completing the
picture we present in this work.

Regarding ethical implications, the core of this
study looks to an increasingly important topic of
societal relevance, namely that of data privacy. In
this light, we hope that our work contributes to the
principle of respecting privacy in the processing
of text data, particularly that which may contain
sensitive information.

An ethical consideration to note is using pre-
trained word embedding models as the basis
for word-level MLDP. Possible ethical concerns
with such models have been pointed out (Boluk-
basi et al., 2016; Papakyriakopoulos et al., 2020;
Manzini et al., 2019), and the effect of bias in these
models was not tested by our study.
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