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Abstract
Multi-intent natural language understanding (NLU) presents a formidable challenge due to the model confusion
arising from multiple intents within a single utterance. While previous works train the model contrastively to increase
the margin between different multi-intent labels, they are less suited to the nuances of multi-intent NLU. They ignore
the rich information between the shared intents, which is beneficial to constructing a better embedding space,
especially in low-data scenarios. We introduce a two-stage Prediction-Aware Contrastive Learning (PACL) framework
for multi-intent NLU to harness this valuable knowledge. Our approach capitalizes on shared intent information
by integrating word-level pre-training and prediction-aware contrastive fine-tuning. We construct a pre-training
dataset using a word-level data augmentation strategy. Subsequently, our framework dynamically assigns roles to
instances during contrastive fine-tuning while introducing a prediction-aware contrastive loss to maximize the impact
of contrastive learning. We present experimental results and empirical analysis conducted on three widely used
datasets, demonstrating that our method surpasses the performance of three prominent baselines on both low-data
and full-data scenarios.
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1. Introduction

Multi-intent Natural Language Understanding
(NLU) models are fundamental building blocks
within task-oriented dialogue systems (Qin et al.,
2019; Gangadharaiah and Narayanaswamy, 2019).
These systems encompass multi-intent detection
(mID) and slot-filling (SF) tasks. However, effec-
tively capturing multiple intents within short utter-
ances presents a formidable challenge, primar-
ily attributed to limited labeled data and the vast
spectrum of spoken expressions. Consequently,
a plethora of advanced models have emerged to
refine the granularity of dialogue content and in-
vestigate the relationships among different intents
(Qin et al., 2020; Song et al., 2022). Furthermore,
recent researches (Qin et al., 2021; Chen et al.,
2022a; Cai et al., 2022a; Wu et al., 2022) also
proved that the extensive linguistic knowledge em-
bedded within these pre-trained models, such as
BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019), is effective to facilitate the comprehension
of multiple intents within brief utterances.

However, these models often face a trade-off
between inference speed and the incorporation of
additional modules aimed at capturing more knowl-
edge in the training data. This knowledge assumes
a pivotal role in facilitating the model’s acquisition
of a more distinguishable semantic representa-
tion space, thereby yielding substantial benefits for
downstream tasks. Consequently, several training
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strategies have emerged to maximize the utility of
existing data without affecting the inference speed,
such as contrastive learning (Liu et al., 2021; Basu
et al., 2022) or curriculum learning (Chen et al.,
2023; Zhou et al., 2020; Zhan et al., 2021). Lever-
aging these methods empowers the model to con-
struct an improved embedding space while utilizing
the same volume of data.

Regrettably, existing contrastive learning (CL)
methods on multi-intent NLU typically assign fixed
roles, either positive or negative, to samples. This
potentially disregards the valuable knowledge em-
bedded in the relationships between the shared
intents, a factor that has been demonstrated to
enhance multi-intent detection (Xu and Sarikaya,
2013). Moreover, fine-tuning the model through
equal-weight contrastive learning cannot fully learn
the knowledge in the training data.

To tackle the above issues, we propose a
two-stage Prediction-Aware Contrastive Learning
(PACL) framework. PACL is meticulously designed
to effectively harness knowledge emanating from
shared intents through two-stage training: word-
level pre-taining and prediction-aware contrastive
fine-tuning. Building on Xu and Sarikaya (2013)
proof of words commonly used to express an intent
frequently appear across various instances, we fur-
ther observed that these words exhibit a distinctive
emphasis within the Part-of-Speech (POS) distri-
bution. Hence, we introduce a word-level data aug-
mentation strategy to construct a dataset for self-
supervised pre-training. It enables the model to
learn the associations between meaningful words
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and corresponding intents accurately. For fine-
tuning stage, we devise an innovative prediction-
aware contrastive learning framework. It facilitates
automatic role-switching for each sample, allowing
it to dynamically alternate between positive and
negative roles while adjusting its influence based
on the model’s confidence. Additionally, we design
an intent-slot attention mechanism to establish a
strong connection between the mID and SF tasks
for contrastive learning, which incentivized to more
effectively harness the knowledge derived from
shared intents, culminating in an embedding space
characterized by heightened distinguishability.

We evaluate our PACL framework on three promi-
nent multi-intent datasets: MixATIS (Qin et al.,
2020), MixSNIPS (Qin et al., 2020), and Stan-
fordLU (Hou et al., 2021). In addition, we employ
three robust baselines for comparison: RoBERTa
(Liu et al., 2019), TFMN (Chen et al., 2022b), and
SLIM (Cai et al., 2022a). Our experimental results
demonstrate that PACL yields substantial enhance-
ments in model performance while accelerating
convergence speed. Our empirical analyses fur-
ther reaffirm the indispensability of each compo-
nent within our framework.

2. Related work

2.1. Multi-Intent NLU

Compared to single-intent detection (Zhang et al.,
2019; Wu et al., 2020; Cheng et al., 2021), multiple
intents appear more common in real-time scenar-
ios. Early research (Kim et al., 2017; Gangadhara-
iah and Narayanaswamy, 2019) attempts to apply
traditional CNN or RNN-based methods. Qin et al.
(2020) proposed An Adaptive Graph-Interactive
Framework (AGIF), and further expanded this tech-
nique to a non-autoregressive model (Qin et al.,
2021). Cai et al. (2022b) proposed Explicit Slot-
Intent Mapping with Bert (SLIM) which transferred
JointBERT from single intent to multi-intent task
while solving the shared-intent problem. Consider-
ing the number of intents is important in the multi-
intent NLU task, Chen et al. (2022b) designed a
novel threshold-free framework to predict the num-
ber of intentions in the utterance before predicting
the specific intents.

2.2. Contrastive Learning

Contrastive Learning (CL) has been widely used
on NLU tasks, because of its data scarcity and
diverse expression. The recent works show the
effect of CL on the NLU task (Gunel et al., 2020;
Hou et al., 2021; Yehudai et al., 2023). Specifically,
for the multi-intent NLU task, Vulić et al. (2022)
devised a strategy to transform a general sentence-
encoder into a task-specific one on multi-intent

Utterance: I want to play basketball and have lunch

O O O B-sport I-sport O B-mean I-meal
Intents: do_sport & eat_meal

Slots

Figure 1: An example of multi-intent NLU task.

data through contrastive learning. Tu et al. (2023)
proposed a novel bidirectional joint model trained
using supervised CL and self-distillation, effectively
utilizing intent and slot features to complement
each other.

3. Proposed Method

3.1. Problem Formulation

As illustrated in Figure 1, given an input utterance
x = (x1, x2, ..., xn) with n tokens, the multi-intent
NLU model entails the simultaneous prediction of
both multi-label intents for the utterance and the
slot-filling for each word. Multi-label intent signifies
the presence of more than one distinct intent within
the set of possible intents.

The effectiveness of a joint training strategy for
NLU task has been proved by Chen et al. (2019).
The joint objective functions can be mathematically
formulated as follows:

Ljoint = LID + LSF (1)

where LID and LSF are the cross entropy loss of
intent detection and slot filling tasks.

Building upon this foundation, we introduce our
two-stage prediction-aware contrastive learning
(PACL) framework as shown in Figure 2.

3.2. Word-level Pre-training

As multi-intent samples tend to be particularly chal-
lenging to distinguish within the embedding space,
our initial step involves word-level pre-training to
bolster the model’s adaptability to the specific do-
main. Based on Cai et al. (2022a), which released
the correspondence between each token and sub-
intent in the MixATIS (Qin et al., 2020) and MixS-
NIPS (Qin et al., 2020) datasets, we conducted
an analysis focusing on the distribution of Part of
Speech (POS) categories associated with tokens
linked to distinct intents. Notably, POS categories
like “NN”, “NNS”, and “JJ” accounted for a signif-
icant proportion of words connected to intent la-
bels, reaching as high as 87.76% in MixATIS and
78.97% in MixSNIPS. This unveiled a strong corre-
lation between specific POS categories and intents.
We found that the intents are strongly correlated
with some words with specific POS.



1780

First Contrastive State Second Contrastive State Target Contrastive State

negative sample

positive sample

Prediction-Aware Contrastive Fine-tuning

Word-level Pre-training

play basketball and have lunch

...

Word-level Data 
Augmentation

NLU 
Model

Intent: Meal & Sport
basketball, lunch Meal & Sport
lunch Meal 
lunch,homework Meal & Study...

eat lunch and do homework
Intent: Meal & Study

Multi-Intent 
Sample

Anchor 
Sample

Partially predicted
Anchor Sample

Single Intent 
Sample

Figure 2: The overview of our framework. Different shapes indicate completely different samples and
different shades of color indicate samples with shared intent.

Thus, we split the original utterance-level dataset
into word-level, concentrating on those aligned with
the specified POS categories to construct a word-
level multi-intent dataset. Firstly, we detect whether
a word with the specific POS recurs across multiple
utterances. Subsequently, we refined the intent as-
sociated with this word by extracting the shared in-
tent from those recurring utterances. For instance,
if a term “lunch” occurs in utterances linked to both
“Meal & Sport” and “Meal & Study” intents, we
identify it as belonging to “Meal”. For words that
remained connected to multiple intents, we con-
catenate them with words specifically indicating
the associated intent. Since this is word-level pre-
training, it is acceptable to have two words asso-
ciated with the same intent in an input even after
concatenation.

Due to the absence of sentence structure in-
formation in the concatenation of words, our pre-
training strategy exclusively focuses on the intent
detection task. This phase is dedicated to enabling
the model to acquire an understanding of the re-
lationships between individual words and various
intents, and facilitates the model’s ability to more
effectively capture the presence of multiple intents
within an utterance. The final pre-training loss can
be formulated as:

LPT = λ1LID + λ2LCL (2)

where LID is the cross-entropy loss of intent pre-
diction and LCL is the traditional contrastive loss of
the intent logits. {λ1, λ2} are the hyper-parameters
to balance each loss.

3.3. Prediction-Aware Contrastive
Fine-tuning

Upon the word-level pre-trained model, we intro-
duce an innovative prediction-aware contrastive
loss to fine-tune the model on the original
utterance-level dataset. In this fine-tuning process,
each instance, which shares common intents with
other samples, dynamically alternates its role (ei-
ther positive or negative).

As depicted in Figure 2, given an anchor sam-
ple, samples with incorrectly predicted intents
are designated as positive samples, while those
with correctly predicted intents serve as neg-
ative ones. To illustrate, consider a sample
with the intent “atis_capacity#atis_city”, once
the model successfully predicts part of the in-
tent, like “atis_capacity”, our model catego-
rizes samples with “atis_capacity#atis_city” and
“atis_capacity” as the positive candidates. Simulta-
neously, any samples with different intents, includ-
ing “atis_capacity”, are treated as negative. Be-
cause the anchor sample has already learned the
knowledge of the relationship between the anchor
sample and intent “atis_capacity”.

Noteworthy, those instance pairs with identical
or completely different multi-intent labels will be
regarded as mutually positive or negative pairs
during the entire training. This prediction-aware
contrastive learning empowers the model to gain
a substantial understanding of the relationships
between shared intents while expediting the clus-
tering of samples sharing common intents.

In greater detail, each time we construct the mini-
batch, we sample a maximum of K positive sam-
ples for each anchor sample. Regarding the neg-
ative samples, we randomly sampled them from
the mini-batch. In situations involving a multi-intent
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label to which only the anchor sample belongs,
we forward propagate this sample twice, following
SimCSE (Gao et al., 2021), to secure at least one
positive sample for each anchor. The original CL
objective function can be defined as:

Li
CL =

∑
p∈P (i)

log
f(hi, hi,p)∑

k∈H(i)

f(hi, hi,k)
(3)

where f(h1, h2) = exp(cos(h1, h2)/τ). P (i) is the
set of positive samples, while H(i) denotes the
set of all positive and negative samples for the i-
th anchor sample. hi is the representation vector
for contrastive learning. The τ is the temperature
value in CL loss. In our experiments, we sample at
most K positive or negative samples.

Nevertheless, contend that positive and negative
samples with varying predicted probabilities should
exert distinct influences on contrastive learning.
We leverage the predicted probabilities to calibrate
the impact of each sample within our prediction-
aware contrastive loss function. In practice, the
higher the average probability of the intents associ-
ated with the anchor sample, which matches that
of the negative sample, the more challenging it
becomes to distinguish the negative sample within
the embedding space. Hence, we normalize the
probability as the weight of negative samples as
represented by the following equation:

wi,n = Softmax(Mean({pi|ynegi })) (4)

where pi,j is the probability that the i-th sample in
the batch belongs to the j-th intent.

With respect to the positive samples, a higher
probability of a shared intent between the posi-
tive sample and the anchor sample signifies the
model’s enhanced capacity for precise classifica-
tion. Consequently, it implies that the model can
afford to allocate reduced attention to these sam-
ples. Correspondingly, we assign weights to the
positive samples as follows:

wi,p = Softmax(αi

∏
{pi|yposi }),

αi =
Count(yposi )

Count(yi)

(5)

where the Count(·) means the number of elements
that satisfy the condition, while yi refers to the
predicted intent, and yposi represents the correctly
predicted intent. Combining the equation 4 and
5, the prediction-aware contrastive loss can be re-
written as:

Li
PACL =

∑
p∈Pos(i)

log
wi,pf(hi, hi,p)∑

k∈H(i)

wi,kf(hi, hi,k)
(6)

Finally, in order to enhance the connection be-
tween multi-intent detection and slot filling tasks,
we add a multi-head attention layer to capture the
relationship between all the slots and intent repre-
sentation. The final representation for CL can be
generated as follows:

Attention(Q,K, V ) = Softmax(
QKT

√
d

)V,

hintent = Attention(hcls, Hslot, Hslot)

(7)

h′
intent = (W [hintent, hcls] + b) (8)

where Attention(·) is the attention mechanism as
described by Vaswani et al. (2017). Hslot ∈ Rn×d

is the set of all the word representations of the
given utterance. W is the trainable parameters,
and h′

intent ∈ Rd is the final representation. We
feed the h′

intent to the same intent classifier in
equation 1 to train the additional layer in equa-
tion 7 and 8 only, which has few parameters and
will not affect the training speed too much. This
allows the latent space used for the CL to be more
adapted to the intent classifier in equation 1.

Overall, the final loss of the fine-tuning process
can be formulated as:

LFT = λ3LID + λ4LSF + λ5LPACL (9)

where {λ3, λ4, λ5} are the hyper-parameters to bal-
ance the impact of each loss.

4. Experiments

4.1. Dataset and Evaluation

We evaluate our method on three widely used multi-
intent datasets, MixATIS (Qin et al., 2020), MixS-
NIPS (Qin et al., 2020), and StanfordLU (Hou
et al., 2021). MixATIS contains 13161/756/828
utterances in train/validation/test set. MixS-
NIPS contains 39776/2198/2199 utterances in
train/validation/test set. As for StanfordLU, it con-
sists of 6428/790/820 train/validation/test data. We
sampled 10% of each intent for our low-data sce-
narios. For evaluation metrics, we use F1 score,
intent accuracy, and intent-slot overall accuracy.

4.2. Baselines

We compare our proposed approach with previous
state-of-the-art models (E et al., 2019; Qin et al.,
2019, 2020, 2021), whose results are taken from
previous work directly. Besides, we also repro-
duce three strong baselines: RoBERTa1 (Liu et al.,
2019), TFMN(Chen et al., 2022b), and SLIM2 (Cai

1https://huggingface.co/roberta-base
2https://github.com/TRUMANCFY/SLIM
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Model MixATIS MixSNIPS
IC Acc SF F1 Overall Acc IC Acc SF F1 Overall Acc

AGIF(Qin et al., 2020) 75.8 88.1 44.5 96.5 94.5 76.4
GL-GIN (Qin et al., 2021) 76.3 88.3 43.5 95.6 94.9 75.4
GISCo (Song et al., 2022) - - 48.2 - - 75.9
SDJN+BERT (Chen et al., 2022a) 78.0 87.5 46.3 96.7 95.4 79.3

Low-Data
RoBERTa† (Liu et al., 2019) 46.7 84.1 24.9 94.0 92.3 67.5
RoBERTa (PACL) 66.2 84.0 36.8 94.8 92.9 69.6
TFMN† (Chen et al., 2022b) 46.4 71.1 15.7 95.2 90.9 65.2
TFMN (PACL) 58.3 72.7 18.1 95.5 91.9 67.8
SLIM† (Cai et al., 2022a) 52.8 72.4 16.1 93.9 93.4 73.8
SLIM (PACL) 60.8 75.8 23.3 95.2 94.4 75.4

Full-Data
RoBERTa† (Liu et al., 2019) 77.5 85.5 47.7 96.5 95.6 80.9
RoBERTa (PACL) 79.1 86.0 48.9 96.5 96.2 83.4
TFMN† (Chen et al., 2022b) 81.5 86.9 48.6 97.1 96.1 83.4
TFMN (PACL) 82.9 86.7 49.4 97.4 96.3 83.6
SLIM† (Cai et al., 2022a) 78.9 87.1 46.4 96.8 96.3 83.7
SLIM (PACL) 81.9 87.3 50.4 96.9 96.8 85.1

Table 1: The results (%) on the test set of two datasets. † means we reproduce this framework as our
baselines. Bold numbers indicate the better result for each baseline, meanwhile, underlined numbers
show the best performance in the column.

et al., 2022a), to verify the effect of our framework.
More details about our implementations will be ex-
plained in Appendix.

4.3. Implementation Detail

We use the BERT-Base3 model for SLIM (Cai et al.,
2022a) and TFMN (Chen et al., 2022b). Besides,
we also employ the RoBERTa-Base4 (Liu et al.,
2019) model with 2 feed-forward classifier released
by hugging face. The max sequence length and
batch size are 50 and 64 for both pre-training and
fine-tuning. The sampling number K in our ex-
periments is set to 5. We pre-train the model for
{1, 3, 5} epochs and fine-tune it for 10 epochs. For
Roberta and TFMN models, we set the dropout
rate and learning rate to 0.1 and 2e-5. For the
SLIM model, we set the dropout rate and learn-
ing rate to 0.2 and 5e-5. For more details about
training, given an input utterance with n tokens,
x = {x1, x2, ..., xn}, and its encoded representa-
tion, h = {hcls, h1, h2, ..., hn, hsep}, where the rep-
resentation of the [CLS] token is utilized for multi-
intent detection, and the representations of the
other tokens are utilized for slot filling, separately.

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/roberta-base

Model
StanfordLU

IC Acc SF F1 Overall Acc
Low-Data

RoBERTa† (Liu et al., 2019) 21.3 29.1 21.2
RoBERTa (PACL) 32.4 28.8 31.9
TFMN† (Chen et al., 2022b) 41.7 30.0 38.8
TFMN (PACL) 46.7 31.8 40.2

Full-Data
RoBERTa† (Liu et al., 2019) 88.0 92.3 82.9
RoBERTa (PACL) 89.0 92.5 84.1
TFMN† (Chen et al., 2022b) 88.0 93.0 83.6
TFMN (PACL) 89.1 92.9 84.3

Table 2: The results (%) on the test set of Stan-
fordLU dataset. † means we reproduce this frame-
work as our baselines. Bold numbers indicate the
better result for each baseline.

4.4. Main Results

The primary experimental findings are summa-
rized in Table 1 and Table 2. Our proposed frame-
work consistently outperforms RoBERTa (Liu et al.,
2019), TFMN (Chen et al., 2022b), and SLIM (Cai
et al., 2022a) on both low-data and full-data sce-
narios. Notably, we conducted experiments solely
with the RoBERTa and TFMN models on the Stan-
fordLU dataset, as this dataset lacks matching data
for intent and individual tokens. Intuitively, the im-
provements achieved by the PACL framework are
more substantial in low-data scenarios compared
to high-data scenarios, across all three evaluation
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Method
MixATIS

Low-data Full-data
PT RS PA IC Acc SF F1 Overall Acc IC Acc SF F1 Overall Acc

Baseline 52.8 72.4 16.1 78.9 87.1 46.4
- - - 49.6 71.6 16.1 79.8 86.9 48.1√

- - 57.4 73.3 19.3 79.6 86.1 47.8
-

√
- 48.3 77.0 19.1 80.3 86.9 47.5

- -
√

50.1 71.5 15.6 80.1 87.6 48.1√ √
- 54.7 75.4 21.7 80.5 86.9 48.9√

-
√

54.5 75.4 21.3 79.9 86.4 49.3
-

√ √
58.8 71.2 17.6 81.6 87.5 50.1√ √ √
60.8 75.8 23.3 81.9 87.3 50.4

Table 3: The ablation study results(%). None of the “PT”, “RS”, or “PA” components are used meaning
the traditional CL method. More explanations are in Section 5.1.

metrics. For instance, on the MixATIS dataset, our
PACL method demonstrates a remarkable 11.9%
increase in intent detection accuracy and a 7.2%
boost in overall accuracy in the low-data scenario,
whereas it only achieves an improvement of up
to 2.7% in intent detection accuracy and 3.7% in
overall accuracy in the high-data scenario.

Furthermore, we anticipate a modest enhance-
ment in slot-filling F1 scores, as the primary objec-
tive of combining intent and slot representations
is to primarily enhance overall accuracy. Conse-
quently, we observe instances where the overall
accuracy improved, while the individual scores for
intent detection and slot filling exhibited less signif-
icant improvements. It is pertinent to mention that
the improvement in intent classification accuracy
is relatively lower on the MixSNIPS dataset com-
pared to the other two datasets. This divergence
may be attributed to the fact that MixATIS and Stan-
fordLU comprise a significantly larger number of
multi-intent labels, with 17 intents and 24 intents,
in contrast to MixSNIPS, which contains only 6 in-
tents. This discrepancy increases the proportion
of overlapping intents, which, in turn, results in our
PACL framework performing more effectively on
the MixATIS and StanfordLU datasets.

5. Analysis

5.1. Ablation Study

For a better explanation, we divide the fine-tuning
stage into two components in this section: dy-
namic role selection for each sample and the in-
tegration of prediction-aware contrastive loss. We
conducted ablation experiments in both low-data
and full-data scenarios to assess the efficacy of
each component, as summarized in Table 3. In this

context, “PT” refers to the word-level pre-training
process, “RS” signifies the dynamic selection of
roles (positive or negative) for each sample during
training, and “PA” indicates the prediction-aware
contrastive loss. Our findings unequivocally es-
tablish the necessity of each component. Specif-
ically, “RS” and “PA” can both contribute to en-
hancing the performance across all three metrics,
while combining “PA” and “RS” obtains further im-
provement on overall performance. This indicates
that these two components can benefit each other.
Regarding “PT”, it facilitates the model in acquir-
ing domain-specific precise knowledge at word-
level, consequently bolstering the effectiveness of
the subsequent prediction-aware contrastive fine-
tuning. However, “PT” gets less improvement on
full data than on low-data, due to the fact that the
greater amount of data in the full-data scenario
allows the model to learn the knowledge between
shared intents better, which diminishes the effect
of “PT”.

5.2. Different Proportions of Training
Data

To further explore the effectiveness of our
method on different data volumes, we con-
ducted experiments on MixATIS dataset with
{20%,30%,40%,50%} data, and the results com-
pared with baselines are shown in Table 4. Our
method has an average 3% improvement in in-
tent accuracy as well as an average 3.28% im-
provement in overall accuracy for data on differ-
ent proportions. Intuitively, the enhancement of
our method slightly decreases as the proportion of
data increases. It is because more training data
will enable the model to recognize multiple intents
more clearly, which in turn diminish the effect of
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Percentage
MixATIS

IC Acc SF F1 Overall Acc

10%
52.8 72.4 16.1
60.8 75.8 23.3

20%
71.4 82.1 36.9
72.6 84.2 40.2

30%
74.8 84.7 42.3
75.9 86.2 44.0

40%
75.7 85.9 43.3
77.9 86.9 45.7

50%
75.8 86.1 44.6
78.0 86.9 46.6

Table 4: The experimental results with different
percentages of the MixATIS dataset. For each per-
centage, the upper results are the SLIM baseline,
while the bottom ones are our PACL framework.
Bold numbers indicate the better result for each
percentage.
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Figure 3: The Intent Accuracy of different numbers
of intents trained on low- and high-data of MixATIS
dataset.

contrastive learning. Notably, the model performs
much worse optimizing 10% of training data than
on the other proportions, meanwhile, PACL obtains
the maximum performance optimization (8% im-
provement on Intent Accuracy and 7.2% improve-
ment on Overall Accuracy) on 10% of the data.
This also proves that our PACL framework can
help the model construct better embedding spaces
indirectly, especially for low-data scenarios.

5.3. The Effect of Different Number
Intents

Next, we conduct a comparative analysis of the
impact of the SLIM baseline and our PACL frame-
work on labels with varying numbers of intents. As
shown in Figure 3, it is clear that on single-intent
test data, there are minimal disparities in model
performance across different methods and data
volumes. However, the disparity between the per-
formance of models trained on low- and high-data
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Figure 4: The learning curve of intent accuracy and
overall accuracy on MixATIS test set every fixed
validation step.

scenarios obtains significant improvements on test
data with 2- and 3-intent labels. This divergence
can be attributed to the fact that training on sam-
ples with multiple intents aids the model in com-
prehending individual intents, whereas the reverse
is not as effective. Moreover, the degree of en-
hancement achieved by our method for the model
intensifies with the increasing number of intents. In
low-data scenarios, our approach enhances intent
accuracy by 8% for 2-intent test data and by 9% for
3-intent data. In high-data scenarios, our method
improves intent accuracy by 3.7% for samples with
2-intent labels and by 4% for samples with 3-intent
labels. These results underscore the effectiveness
of our PACL framework for multi-intent NLU while
enhancing the efficiency of utilizing low-resource
data.

5.4. Learning Curves

In order to validate the impact of our PACL frame-
work during the training process, we visually ana-
lyze the learning curve of SLIM (Cai et al., 2022a)
on the test set of the MixATIS dataset (Figure 4).
The intent accuracy of the baseline and PACL
approaches is denoted by dashed lines, while
solid lines represent their respective overall accu-
racy curves. Our proposed method demonstrates
swifter convergence compared to the baseline,
showcasing consistent enhancements in both in-
tent accuracy and overall accuracy. Notably, the
overall accuracy of PACL in the early stage is lower
than baseline. This makes sense because the pre-
training process uses word-level inputs, and the
model needs to adapt to the utterance-level pattern
in the early stage of training process.

5.5. Visualization

As shown in Figure 5, we utilized the t-SNE algo-
rithm to visualize the distribution of intent embed-
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Figure 5: The distribution of intent embeddings in MixATIS dataset. The left one is trained on SLIM
baseline, and the other one is trained with our PACL method.

Figure 6: The distribution of several shared intents
samples in MixATIS test set. The upper one is
original BERT model, while the lower one is the
BERT model pre-trained with our word-level pre-
training strategy.

dings in the MixATIS dataset. The embeddings
derived from the SLIM baseline demonstrate the
classification boundaries with limited capability to
distinguish between shared intent samples. In con-
trast, the intent embeddings produced by our PACL
model exhibit a more distinct distribution, indicating
a heightened ability to differentiate between closely
related intent classes.

In further detail, we randomly extract several
samples with the same shared intents from the
MixATIS test dataset to visualize the distinctions
in embedding spaces between the original BERT
model and the BERT model pre-trained using our
word-level pre-training strategy. Notably, the visual
analysis in Figure 6 reveals that, following our word-
level pre-training strategy, the model exhibits the
capacity to distinguish between utterances with
distinct intents, even when they share some intents.
This enhanced capability positions the model for
improved performance during the fine-tuning stage.

5.6. Case Study

In addition to the t-SNE visualization, we exhibit
two illustrative examples to validate the perfor-
mance of our method more specifically, in which
example 1 is drawn from the MixATIS dataset, while
example 2 is drawn from the MixSNIPS dataset. As
depicted in Table 5, the SLIM baseline encounters
challenges in making accurate predictions on both
multi-intent detection and slot filling tasks, which
primarily stems from the high similarity between
multiple intents. In contrast, our method success-
fully demarcates a more distinct boundary, which
ameliorates the mispredictions (Example 1) and
underpredictions (Example 2) problems. Further-
more, our method addresses inaccuracies in slot
predictions. The consistency of slot and intent cor-
rections also demonstrates the strong correlation
between the token and its corresponding intent.

6. Conclusion

This paper introduces a novel two-stage prediction-
aware contrastive learning framework for multi-
intent NLU, which significantly enhances model
performance through leveraging word-level pre-
training and prediction-aware contrastive fine-
tuning. Our method acquires knowledge not only
from distinct intents, but also from shared common
intents. The experimental results show that our
method significantly improved for both low-data
and full-data scenarios. As for the future work, we
plan to explore how to maximize the impact of con-
trastive learning with a reduced number of positive
samples.

7. Limitations

The main limitation of this approach is training effi-
ciency. Although it will not increase the inference
time, it has more training cost because of the gradi-
ent calculation for contrastive samples, especially
since the number K is strongly related to the model
performance. Besides, even though our approach
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Example 1
Query list la and also how many Canadian airlines flights use aircraft dh8
Model answer
Intent atis_city#atis_quantity
Slots O B-city_name O O O O B-airline_name I-airline_name O O O B-aircraft_code
Predicted by SLIM (Cai et al., 2022a)
Intent atis_abbreviation#atis_quantity
Slots O B-aircraft_code O O O O B-airline_name I-airline_name O O O B-aircraft_code
Predicted by PACL
Intent atis_city#atis_quantity
Slots O B-city_name O O O O B-airline_name I-airline_name O O O B-aircraft_code

Example 2
Query book a restaurant for one person at 7 am and then play the album journeyman
Model answer
Intent BookRestaurant#SearchCreativeWork

Slots O O B-restaurant_type O B-party_size_number O O B-timeRange I-timeRange O
O O O B-object_type B-object_name

Predicted by SLIM (Cai et al., 2022a)
Intent BookRestaurant#PlayMusic#SearchCreativeWork

Slots O O B-restaurant_type O B-party_size_number O O B-timeRange I-timeRange O
O O O B-music_item B-album

Predicted by PACL
Intent BookRestaurant#SearchCreativeWork

Slots O O B-restaurant_type O B-party_size_number O O B-timeRange I-timeRange O
O O O B-object_type B-object_name

Table 5: The examples of how our method solves the intent misclassification problem and improves
overall accuracy. Red texts indicates the incorrect results, while blue texts indicates the correct results.

utilizes the relation between the two tasks for asso-
ciative contrastive learning, only intent labels are
used for supervision. It might be better to design a
strategy to introduce slot-label supervision.
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