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Abstract

In recent years, there have been significant advancements in semantic parsing tasks, thanks to the introduction of
pre-trained language models. However, a substantial gap persists between English and other languages due to
the scarcity of annotated data. One promising strategy to bridge this gap involves augmenting multilingual datasets
using labeled English data and subsequently leveraging this augmented dataset for training semantic parsers (known
as zero-shot multilingual semantic parsing). In our study, we propose a novel framework to effectively perform
zero-shot multilingual semantic parsing under the support of large language models (LLMs). Given data annotated
pairs (sentence, semantic representation) in English, our proposed framework automatically augments
data in other languages via multilingual chain-of-thought (CoT) prompting techniques that progressively construct
the semantic form in these languages. By breaking down the entire semantic representation into sub-semantic
fragments, our CoT prompting technique simplifies the intricate semantic structure at each step, thereby facilitating
the LLMs in generating accurate outputs more efficiently. Notably, this entire augmentation process is achieved
without the need for any demonstration samples in the target languages (zero-shot learning). In our experiments,
we demonstrate the effectiveness of our method by evaluating it on two well-known multilingual semantic parsing

datasets: MTOP and MASSIVE.
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1. Introduction

Enabling cross-lingual technologies is crucial be-
cause of their high applicability in global communi-
cation, breaking down language barriers, and fos-
tering collaboration among diverse communities
worldwide. Recent advancements in natural lan-
guage processing (NLP), especially the develop-
ment of advanced multilingual language models
have attracted significant research interest (Con-
neau et al., 2020; Xue et al., 2021; Muennighoff
et al., 2023). Semantic parsing is a fundamental
task within the field of NLP, with broad applications
in both business and everyday life (Do et al., 2023;
Mansimov and Zhang, 2022). For instance, it plays
a significant role in the development of Virtual As-
sistants (Fischer et al., 2021). The primary goal of
semantic parsing is to convert user input into a se-
mantic form that computers can process as struc-
tured data (e.9., Xeng, Yeng in Figure 1). However,
creating annotated data for multilingual semantic
parsing is time-consuming and requires a high de-
gree of human expertise.

To address the problem of the lack of annotated
data in the multilingual semantic parsing task, pre-
vious research in this area can be broadly cate-
gorized into two main approaches. The first ap-
proach involves training an aligner using the En-
glish reference dataset, which is then used to pre-
dict semantic forms in other languages (Nicosia
et al., 2021; Gritta et al., 2022). The second ap-
proach skips the aligner training step and relies
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Figure 1: Our framework utilizes LLMs to perform
zero-shot multilingual semantic parsing.

on Large Language Models (LLMs) incorporating
human support (in the selection of a few demon-
strations) to align the reference form with the de-
sired target semantic form (Awasthi et al., 2023;
Winata et al., 2021), utilizing in-context learning
techniques (Garg et al., 2022).

In this study, we introduce Zela, a framework
designed to enhance the performance of zero-
shot multilingual semantic parsing (Figure 1). We
achieve this by harnessing the inherent cross-
lingual generalization capabilities of LLMs for data
augmenting on new languages and incorporating
the current state-of-the-art (SOTA) semantic
parsing method, grammar-based RINE (Do et al.,
2023). Our approach consists of two main phases:
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LLM-based augmentation and multilingual seman-
tic parsing. In the first phase, LLM-based
augmentation, we initiate by utilizing off-the-shelf
translating tools to convert English utterances into
the desired target languages. Subsequently, we
employ a range of CoTl-prompting techniques to
guide LLMs in the progressive parsing of complex
logical structures in new languages to achieve a
multilingual corpus for the training process. For
example, given a pair in English (a sentence and
its semantic form), the sentence is translated
into a new language like German as “Welche
Konzerte gibt es in Omaha”. With the LLM
model, the translated sentence is then used to
generate a “silver” German semantic represen-
tation, “lIN:GET_EVENT [SL:CATE_EVENT
Konzerte ] [SL:LOCATION Omaha ] 1"
Compared to prior approaches that rely on a few
examples of the new languages for demonstra-
tions (Awasthi et al., 2023; Winata et al., 2021),
our method utilizes only the English utterance-
English semantic form pair to guide the LLMs
that incrementally predict the semantic form in
the target language (zero-shot setting). In the
second phase, multilingual semantic parsing,
we employ two approaches. The first approach
follows the standard seg2seq method, consis-
tent with previous works that treat the output
semantic form as a sequence of text (Nicosia
et al., 2021; Awasthi et al., 2023). The second
approach, the grammar-based RINE model (Do
et al., 2023; Mansimov and Zhang, 2022), views
the semantic form as a sequence of recursive
steps.  Our experimental results, conducted
on two well-established multilingual semantic
parsing datasets, MTOP (Li et al., 2021) and
MASSIVE (FitzGerald et al., 2023), demonstrate
the effectiveness of our framework. In the realm
of zero-shot multilingual semantic parsing, the
Zela framework achieves an Exact Match (EM)
score on the MTOP dataset that surpasses a
state-of-the-art (SOTA) method by 1.43 points.
Additionally, it shows similarly promising results
on the MASSIVE dataset, showcasing its potential
for advancing multilingual semantic parsing tasks.
Our paper makes the following contributions:

* Introducing effective Col techniques for
augmenting multilingual semantic parsing
datasets from the given English annotated
pair data.

» Applying the SOTA hierarchical semantic
parsing model, grammar-based RINE, for ad-
dressing the multilingual semantic parsing.

+ Conducting comprehensive experiments that
demonstrate the effectiveness of the Zela
framework on two datasets, namely, MTOP
and MASSIVE.

2. Related Works

Zeroshot Multilingual Semantic Parsing. In
the field of multilingual semantic parsing, MTOP
(Li et al., 2021) and MASSIVE (FitzGerald et al.,
2023) have emerged as benchmarks to evaluate
models. These benchmarks include a challeng-
ing multilingual zero-shot setting, where models
are exclusively given English data and must gen-
erate predictions in target languages. This setting
is significant because developing semantic pars-
ing datasets for languages other than English can
be quite challenging. Translation-based approach
is a common approach in zero-shot multilingual se-
mantic parsing (Hartrumpf et al., 2008; Liang et al.,
2020; Fang et al., 2021). Translation can be per-
formed at prediction time, wherein the user query
is translated into English and then processed by
an English semantic parser to obtain the logical
representation (Artetxe et al., 2020; Uhrig et al.,
2021). Alternatively, this approach can be used
during model training by translating English utter-
ances into other languages and employing these
translated versions as augmented training data
(Sherborne et al., 2020; Moradshahi et al., 2020;
Nicosia et al., 2021; Awasthi et al., 2023). Previ-
ous research has shown that incorporating transla-
tion during training yields better results compared
to translating at inference time (Yang et al., 2022).
This strategy is also adopted in building our seman-
tic parsing model in this study.

LLMs on Semantic Parsing. An LLM refers to
a language model characterized by its substan-
tial number of parameters, which can vary from
several billion parameters, e.g. T5 (Raffel et al.,
2020) with 11 billion parameters, to several hun-
dred billion parameters, e.g. PALM (Chowdhery
et al., 2022) with 540 billion parameters. These
models are primarily built using the Transformer
architecture (Vaswani et al., 2017) and undergo
initial training on massive volumes of unlabeled
text. After this pre-training phase, they can be fine-
tuned to adapt their learned representations for hu-
man instructions or specific tasks in the NLP field,
including semantic parsing (Touvron et al., 2023).
Various approaches have been proposed to tackle
the challenges of semantic parsing by harness-
ing the capabilities of in-context learning (ICL) in
LLMs. Shin and Van Durme (2022) demonstrated
that when performing ICL, LLMs pre-trained on
programming code, like Codex (Chen et al., 2021),
outperform LLMs like GPT-3 (Brown et al., 2020a),
which are primarily trained in natural language lin-
guistics, particularly in tasks related to semantic
parsing. An et al. (2023) pointed out that the suc-
cess of ICL in semantic parsing depends on the
choice of demonstration set. They identified three
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Figure 2: System architecture of our ZeLa framework.

critical factors when selecting demonstration sam-
ples: diversity, similarity, and complexity. Similar-
ity involves merging basic structures within explicit
expressions, diversity evaluates the recurrence of
patterns across different contexts, and complexity
measures the richness of information contained in
each example. Additionally, another method in-
troduced by Levy et al. (2023) focuses on creat-
ing comprehensive demonstrations within seman-
tic parsing. Their approach aims to collect demon-
strations that cover sub-logical structures neces-
sary for predicting new inputs.

Conceptually, the most similar to our work,
Awasthi et al. (2023) demonstrated the effective-
ness of using LLMs to translate English datasets
into multiple languages through ICL. To achieve
this, they manually selected a set of demonstra-
tions in the target languages and used these
demonstrations to construct input data for LLMs.
The outputs from LLMs were then utilized as aug-
mented data to train the multilingual semantic
parser. However, in contrast, our approach is en-
tirely focused on a zero-shot multilingual setting,
eliminating the need for any demonstration sam-
ples in the target language.

3. Methodology

Our study is centered on zero-shot multilingual
semantic parsing. We begin with an English
dataset containing pairs of data, each repre-
sented as (utterance, semantic—-form), de-
noted as Deny, = {(2l,,,¥ln,)}. Our pro-
posed framework, Zela, consists of two main
phases: LLM-based Augmentation and Multilin-
gual Semantic Parsing (Figure 2). First phase, we
employ an augmentation technique to transform

Deng into augmented data, denoted as Dy, =
{(wéaray;ar)}tare{de,fr,m}- In this context, Tiar
represents the translated utterance derived from
%, and yi,, corresponds to the logical form in
the target language. It is important to note that
these logical forms in both English (y;ng) and the
target language (y;,,.) share the same semantic
schema. For instance, as seen in Figure 2, where
both English and German logical forms share the
schema [IN:GET_EVENT [SL:CATE_EVENT ]
[SL:LOCATION ] 1. The only difference be-
tween them lies in the specific span within each
slot. Finally, we obtained a new augmented
dataset by combining data pairs on all languages
Deng U Dyarjtare{de,fr,-y- In the second phase,
we train a multilingual semantic parser with aug-
mented data from the first phase. In the following
sections, we will provide a detailed explanation of
our methodology for achieving this objective.

3.1.

We found that despite the effectiveness of LLMs
in understanding natural sentences, they struggle
to generalize complex semantic structures. One
reason for this challenge lies in the fact that LLMs
are primarily trained on large-scale natural lan-
guage data, making them proficient at tasks in-
volving natural sentences (e.g., question answer-
ing or machine translation) rather than semantic
parsing tasks. To address this challenge, we break
down the entire semantic representation into sub-
semantic fragments to simplify the complex se-
mantic structure at each step (Figure 3). We de-
fine a semantic fragment as a non-terminal node
in a hierarchical semantic representation, encom-
passing semantic tokens and the corresponding
text span of that node (e.g., [SL:LOCATION Om-

LLM-based Data Augmentation
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aha 1). This approach makes each semantic frag-
ment more natural than the original comprehen-
sive semantic structure. By providing examples
of list semantic fragments in the English language,
LLMs based on that to generalize similar seman-
tic fragments in a new language. In addition, we

(Xen): What concerts are in Omaha
(Xge): Welche Konzerte gibt es in Omaha

IN:GET_EVENT

[SL:CATE_EVENT] (sL:LocATION |

@ LLM Inferencing

(Yde)
Step 1: [IN:GET_EVENT Welche Konzerte gibt es in Omaha |
Step 2: [SL:CATE_EVENT Konzerte ]
Step 3: [SL:LOCATION Omaha ]

(Yen):

Figure 3: Overview of data augmentation process
(en — de) supported by LLMs.

propose three strategies using the CoT prompting
technique to instruct LLMs to generate a seman-
tic form in the target language step-by-step (v?,,.)
from the given triple (z%,,,, ¥i,, i.,): Standard
CoT, Multi-turns CoT, Multi-turn symmetry CoT.

Standard CoT In this strategy, the LLMs gen-
erate all the semantic fragments of the tar-
get language in one turn (Figure 4). No-
tably, the semantic schema between different
languages is exactly the same, therefore, we
use the root node ([IN:GET_EVENT Welche
Konzerte ...]) to initialize the CoT prompt-
ing template as a trigger encouraging the LLMs to
continue generating the next semantic fragments.
Finally, we utilize these generated semantic frag-
ments to reconstruct the semantic representation
in the target language.

Standard CoT
Input: What concerts are in Omaha
Step 1: [IN:GET_EVENT What concerts are in Omaha ]
Step 2: [SL:CATE_EVENT concerts ]
Step 3: [SL:LOCATION Omaha ]

Input: Welche Konzerte gibt es in Omaha
Step 1: [IN:GET_EVENT Welche Konzerte gibt es in Omaha ]
Step 2: <END_OF_INPUT>

Figure 4: Standard CoT prompting example.

Multi-turn CoT As we mentioned, the semantic
schema is shared between languages; however,
in the Standard CoT strategy, the semantic form

generated by LLMs is not guaranteed this charac-
teristic. Therefore, in this strategy, we only use
LLMs to incrementally generate the span related
to each semantic frame decoded in English. For
example, in Figure 5, in the first turn, the LLMs
are required to predict “Konzerte” is text span of
SL:CATE_EVENT, and continuously predict span
“Omaha” belong to S1.: LOCATION in the second
turn (last turn).

Multi-turn CoT : Inference Turn 1

Input: What concerts are in Omaha

Step 1: [IN:GET_EVENT What concerts are in Omaha ]
Step 2: [SL:CATE_EVENT concerts ]

Step 3: [SL:LOCATION Omaha ]

LM
Inferencing

Konzerte

Input: What concerts are in Omaha
Step 1: [IN:GET_EVENT What concerts are in Omaha |
Step 2: [SL:CATE_EVENT concerts ]

LM
Step 3: [SL:LOCATION Omaha |

Input: Welche Konzerte gibt es in Omaha
Step 1: [IN:GET_EVENT Welche Konzerte gibt es in Omaha ]

Step 2: [SL:CATE_EVENT Konzerte |
Omaha Step 2: [SL:LOCATION <END_OF_INPUT>

Input: Welche Konzerte gibt es in Omaha
Step 1: [IN:GET_EVENT Welche Konzerte gibt es in Omaha |
Step 2: [SL:CATE_EVENT <END_OF_INPUT>

Multi-turn CoT : Inference Turn 2

Figure 5: Multi-turn CoT prompting.

Multi-turn symmetry CoT Compared with the
multi-turn CoT prompting strategy, this strategy
augmented the characteristic of the alignment of
semantic fragments between English and the tar-
get language. To this end, we pair each se-
mantic fragment of both languages together (Fig-
ure 6). This alignment aids in transferring informa-
tion and enhances the coordination and coherence
between steps in different languages, making the
parsing process more effective.

[
[

Multi-turn Symmetry CoT : Inference Turn 1

Language: English | German
Input: What concerts are in Omaha | Welche Konzerte gibt es in
Omaha

Step 1: [IN:GET_EVENT What concerts are in Omaha |
| [IN:GET_EVENT Welche Konzerte gibt es in Omaha ]
Step 2: [SL:CATE_EVENT concerts ] | [SL:CATE_EVENT <END70FJNPUT>\/2

N

S
W
&

Figure 6: Symmetry multilingual CoT prompting.

Filtering outputs In order to address the poten-
tial presence of noisy generated text, we have im-
plemented a systematic filtering procedure com-
posed of several sequential steps. The objective
of this process is to curate our augmented data to
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maintain a high standard of quality. The steps in-
volved are as follows:

» Span Alignment: First, we discard samples
whose spans do not match the translated ut-
terance. This ensures the generated text re-
mains coherent and relevant to the intended
content.

- Label and Intent Validation: Next, we check
for samples that contain label slots or intents
that are not recognized. We use a reference
label set extracted from English data to vali-
date this. Samples with unrecognized labels
or intents are removed from consideration.

+ Semantic Parsing Tree Compatibility: Addi-
tionally, we assess whether the samples can
be converted into accurate semantic parsing
trees. Any samples that cannot undergo this
conversion successfully are also excluded.

After this rigorous filtering process, we are left with
a refined and augmented dataset in the target lan-
guage. This dataset is now well-prepared and suit-
able for training the semantic parsers, ensuring
that they learn from high-quality data.

3.2. Multilingual Semantic Parsing

3.2.1. Seq2seqg-based approach

This approach employs a standard seqg2seq
method to perform multilingual semantic parsing,
following previous research (Awasthi et al., 2023;
Nicosia et al., 2021). It uses an encoder-decoder
multilingual pre-trained model as its backbone
(Xue et al., 2021) with augmented training data.
The loss function is defined as the negative log-
likelihood of the true tokens in the output se-
quence, and it is defined as follows:

T
Loss == _log(p (vt | y<t,x)) (1)
t=1

Here, T denotes the length of the output se-
quence, y; represents the true token at time step ¢,
y<¢ encompasses the sequence of tokens leading
up to time step ¢t — 1, = corresponds to the input
sequence within the augmented training data, and
p (Yt | y<t, z) denotes the model’s predicted prob-
ability of token y; at time step ¢, taking into consid-
eration the sequence of tokens up to time step t— 1
and the input sequence z.

3.2.2. Recursive Insertion-based approach

In this approach, we utilize the recursive-insertion
based approach (Mansimov and Zhang, 2022),
enhanced by grammar constraints. It employs
an encoder-only multilingual pre-trained language

model as a backbone (Conneau et al., 2020). The
parsing process is represented as an incremental
generation of sub-parsed trees, with the output of
the previous step serving as the input for the cur-
rent step. Grammar constraints are extracted from
English data and are used to guide the parsing
process (e.g. Table 1). The loss function com-
bines node label prediction, start position predic-
tion, and end position prediction with a grammar-
based penalty to filter out unpromising node label
predictions.

Step | Linearized representation of full logical form

Po What concerts are in Omaha

P1 [IN:GET_EVENT What concerts are in Omaha |

P [IN:GET_EVENT What [SL:CATE_EVENT concerts | are in
Omabha ]

Ps [IN:GET_EVENT What [SL:CATE_EVENT concerts | are in
[SL:LOCATION Omaha] |

Table 1: Example chain of incremental trees in
parsing process using of recursive insertion-based
approach.

Following previous work (Do et al., 2023), we
extract grammar from the English semantic pars-
ing tree (tree representation of logical form) to
cause the unpromising label prediction to be ig-
nored. Specifically, we extract parent-child gram-
mar rules from the semantic parsed tree of English
data G = {A — B| A, B are non-terminal nodes }
, for example IN:GET_EVENT — SL:LOCATION.
It is important to note that the sample in both En-
glish and the target language shares an identical
schema, differing only in the arrangement of slots
within each intent (Awasthi et al., 2023). Conse-
quently, the grammar extracted from English data
possesses a general applicability that extends to
target languages. After obtaining grammar, we
are ready to train a multilingual semantic parsing
model for all languages by using the grammar-
based RINE model (Do et al., 2023).

4. Experiment

In this section, we describe the details of the ex-
periment setups and the main results .

4.1.

To assess the effectiveness of our methods, we
conducted experiments using two well-known mul-
tilingual semantic parsing datasets: MTOP (Li
et al., 2021) and MASSIVE (FitzGerald et al.,
2023). Each dataset comprises English utter-
ances and their corresponding translations into
other languages.

Datasets and Evaluation Metric

"The source code of this work is released at https:
//github.com/truongdo619/ZelLa
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MTOP (Li et al., 2021) This dataset is a paral-
lel multilingual semantic parsing dataset that en-
compasses utterances and their decoupled com-
positional representations in six languages: En-
glish, German, French, Hindi, Thai, and Span-
ish. The term ”parallel” signifies that the dataset
was generated beginning with English utterances
and their annotations. Subsequently, these ut-
terances and their corresponding semantic repre-
sentations were translated into the other five lan-
guages through a meticulous process involving
post-processing, post-editing, and the filtering of
uncertain utterances. MTOP covers 11 different
domains, encompassing 117 intent types and 78
slot types. On average, each language in the
dataset contains approximately 12.3K training ut-
terances, 1.5K development utterances, and 2.7K
test utterances.

MASSIVE (FitzGerald et al., 2023) This dataset
is a diverse multilingual semantic parsing dataset
that spans 51 different languages. Unlike MTOP,
it solely contains tree representations without
nested utterances. This dataset encompasses 18
domains, 60 intent types, and 50 slot types. On
average, each language in the dataset includes
about 11.5K training utterances, 2K development
utterances, and 3K test utterances. In our experi-
ments, we focused on six languages: English, Ger-
man, Spanish, French, Hindi, and Thai.

Evaluation Metric In line with prior research
(Awasthi et al., 2023), we employ the agnostic ex-
act match (EM) as our primary evaluation metric.
This metric compares two logical forms while disre-
garding the order of slots within an intent, thus en-
suring a correct evaluation. We assess our meth-
ods, as well as other methods, based on this exact
match score.

4.2. Experimental Setting

LLM-based Augmentation In this phase, we uti-
lized three versions of the Llama 2 models (Tou-
vron et al., 2023) with 7B, 13B, and 70B parame-
ters. To ensure stable results when working with
LLMs, we set the temperature value to 0 as in pre-
vious works (Levy et al., 2023; Zhuo et al., 2023).

Seqg2seq-based Multilingual Semantic Parsing
The pre-trained mT5-Large checkpoint (1.2B pa-
rameters) (Xue et al., 2021) was utilized for ini-
tialization of our seq2seq semantic parser. Fine-
tuning was performed using a combination of En-
glish gold data and augmented data from other lan-
guages. We employed the Adam optimizer with a
learning rate of 1e-5, a warm-up period of 1000
steps, and a batch size of 32. Training extended

over 10,000 steps and took an average of 25 hours
on a single A100 80GB GPU. We selected the best
checkpoint based on performance on the develop-
ment set and used it for predictions on the test set.

Recursive-based Multilingual Semantic Pars-
ing We utilized the XLM-Roberta model (355M
parameters) as an encoder. The training process
involved the use of the Adam optimizer with a
number of warm-up steps set to 1000. The learn-
ing rate was chosen from the options {1e-05, 5e-
05, 1e-06}?, and the training spanned 50 epochs
(1000 steps). Grammar rules were extracted from
the training set of the English gold data.

Baseline We reproduce the TAF method
(Nicosia et al., 2021; Awasthi et al., 2023) as a
strong baseline in our study. For hyperparame-
ters, we maintain the same values as specified in
the original papers.

4.3. Main Results

We compared our proposed methods with meth-
ods from previous research, including zero-shot
setting, few-shot setting, and the TAF method
(Awasthi et al., 2023; Nicosia et al., 2021), on
two datasets: MTOP and MASSIVE. Specifically,
for the MTOP dataset, we considered several
methods: (1) Seqg2seq Zero-shot: Trained ex-
clusively on English data and utilized semantic
parsing model based on the seg2seq approach
(Awasthi et al., 2023). (2) Seg2seq Few-shot:
Trained with additional human-selected samples
combined with English data (Awasthi et al., 2023).
(3) Seg2seq TAF: Employed English data mixed
with corresponding augmented data using the TAF
method (Awasthi et al., 2023). (4) Seq2seq Zero-
shot: Our reproduction of the zero-shot setting
using the seg2seq approach. (5) Seg2seq TAF:
Our reproduction of the TAF method. (6) RINE-
based Zero-shot: Our zero-shot setting uses En-
glish data only with the recursive insertion-based
method (RINE) enhanced by grammar constraints.
(7) Seqg2seq ZeLa: Our proposed method utilizes
the seg2seq approach. (8) RINE-based ZelLa: Our
proposed method utilizes the recursive insertion-
based method enhanced by grammar constraints.

MTOP In the MTOP part of Table 2, our best
method outperformed previous works by achiev-
ing a 1.4 EM score improvement compared to
the state-of-the-art TAF method (Awasthi et al.,
2023; Nicosia et al.,, 2021), as shown by the
results in rows (3) and (8). This improvement
was particularly significant for low-resource lan-
guages like Hindi and Thai, as seen in rows (7)

2The values in the best performance are bold.
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MTOP MASSIVE
Method . . .
. de es fr hi th Avg de es fr hi th Avg
(1) Seg2seq Zero-shot (Awasthi et al., 2023) : 544 57.8 628 423 421 51.9 1 543 534 546 401 494 504
(2) Seq2seq Few-shot (Awasthi et al., 2023) | 62.8 695 659 553 539 615 ' 543 581 580 544 600 57.0
(3) Seq2seq TAF (Awasthi et al., 2023) | 750 749 780 630 608 703 | 675 646 653 616 635 645
|
(Our methods) :
(4) Seq2seq Zero-shot 1 540 589 589 441 383 508 | 544 518 545 449 513 514
(5) Seq2seq TAF | 732 752 785 619 626 703 ' 633 625 621 585 67.1 628
(6) RINE-based Zero-shot | 635 681 703 544 439 600 | 622 564 580 550 57.6 57.8
(7) Seq2seq ZelLa 1739 719 762 71.0 624 711 | 680 650 663 627 620 648
(8) RINE-based ZeLa 754 740 787 703 603 717 | 682 640 656 623 656 65.1
Table 2: Performance comparison using Exact Match on MTOP and MASSIVE test sets.
and (8). Among the methods using seg2seq se- Method de es fr hi th Avg
mantic parsers, namely rows (1), (2), (3), and Standard CoT 713 702 755 59.0 56.6 665
: Multi-turn CoT 721 704 756 614 567 673
(7), the ZelLa seq2seq-based approach achieved Multi-turn symmetry CoT  72.3 71.3 77.7 66.7 59.8 69.6

the highest results. This demonstrated the ef-
fectiveness of our augmentation method using
LLMs enhanced by our multilingual CoT prompt-
ing strategies. Furthermore, when using the recur-
sive insertion-based method enhanced by gram-
mar rules in rows (6) and (8), performance further
improved compared to the seg2seq-based method.
This highlighted the value of incorporating gram-
mar information and breaking down the parsing
process into substeps.

MASSIVE In the case of the MASSIVE dataset,
as shown in Table 2, we evaluated the per-
formance of our method alongside previous ap-
proaches. Our method achieved superior perfor-
mance, surpassing the TAF method (Awasthi et al.,
2023; Nicosia et al., 2021) by a margin of 0.6
EM. This result underscores the generalizability of
our approach beyond the MTOP dataset, demon-
strating its effectiveness across different datasets.
Furthermore, the performance trends observed in
the MASSIVE dataset closely mirror those seen
in the MTOP dataset. Specifically, our augmenta-
tion method exhibited superior performance when
paired with the seq2seq semantic parser, outper-
forming the TAF method, as shown in rows (3)
and (5). Additionally, the adoption of a recursive-
insertion-based approach in row (6), enhanced by
grammar rules, led to further performance improve-
ments compared to the seq2seq method, mirroring
the trends observed in the MTOP dataset.

In addition, we performed a bootstrap t-test
(Efron and Tibshirani, 1994) with the null hypothe-
sis that our proposed ZelLa framework (row 8) and
the baseline TAF method (row 6) have the same
expected values. This analysis involved three ran-
dom seeds for each experimental setting. The
obtained p-values in both MTOP and MASSIVE
datasets were less than 0.05, providing strong ev-
idence that our proposed framework significantly
surpasses the baseline in performance.

Table 3: Impact of CoT prompting strategies:
Multi-turn symmetry CoT results more effective
augmented datasets yielding higher EM accuracy.

5. Analysis

To gain deeper insights into our framework, we
conducted several analyses. All the experiments
in this section are performed on the MTOP dev set.

5.1. Role of CoT Prompting Strategies

In Table 3, we present the results of three pro-
posed multilingual CoT strategies: standard, multi-
turn, and multi-turn symmetry. The multi-turn sym-
metry CoTl strategy achieved the most effective re-
sults. We attribute this superior performance to the
symmetry strategy’s capacity to improve the align-
ment and coherence between steps at the same
level in both English and the target languages.

5.2. Role of LLM Size

Table 4 presents the results obtained with differ-
ent parameter sizes of LLama 2 (Touvron et al.,
2023). We can see that larger LLM models con-
sistently deliver better performance, with the 70B
model achieving the best results, followed by the
13B model and, finally, the 7B model. However,
it is important to note that the analysis also high-
lights the effectiveness of smaller models. For ex-
ample, even though LLama 7B is only one-tenth
the size of LLama 2 70B, it still manages to achieve
93% of the performance of the larger model. Simi-
larly, LLama 13B, which is five times smaller than
LLama 2 70B, attains 95% of its performance. This
suggests that one can choose the LLM size based
on specific computational constraints without sac-
rificing significant performance.
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Method de es fr hi th Avg

Llama-7B  68.7 695 73.6 59.9 53.6 650
Llama-13B 715 713 758 593 544 665
Llama-70B 723 71.3 77.7 66.7 59.8 69.6

Table 4: Impact of LLM size: EM performance
of semantic parsers trained on translated datasets
improve with increasing the size of LLMs.

Method de es fr hi th Avg
MBART 71.0 713 737 644 558 672
Google 723 713 77.7 66.7 59.8 69.6
Oracle 720 73.0 776 655 609 69.8

Table 5: Impact of Translation: Results using
Google translation approximate human translation
(Oracle).

5.3.

In this analysis (Table 5), we assess the impact
of different machine translation tools on the fi-
nal performance of our method. We consider
translated utterances from the off-the-shelf MBart-
based model (Tang et al., 2020), Google transla-
tion3, and the oracle setting using gold translated
utterances from the dataset. We can see that there
is a big improvement when using Google transla-
tion compared with the mBART by 2.4 EM score.
However, the results of Google translation and
gold translation are nearly identical, despite the lat-
ter involving human annotators. This shows the
effectiveness of using Google translation in multi-
lingual semantic parsing tasks compared to other
machine translation methods, aligning with previ-
ous works (Shi et al., 2022; Li et al., 2014).

Impact of Machine Translation

5.4. Error Analysis

In this section, we conduct an error analysis to as-
sess the predictions made by our ZelLa framework
compared to the gold data. We categorize errors
into five main types: Wrong Intent, Wrong Slot La-
bel, Wrong Slot Span, Extra Slot, and Missing Slot.
Table 5.4 presents examples of these five error cat-
egories and their respective percentages in the to-
tal errors. The analysis revealed that the most fre-
quent error category was "Wrong Span Prediction,”
where the schema was correctly predicted, but the
span within each slot was incorrect.

Furthermore, we assessed our framework’s per-
formance in reducing the quantity of the above five
error types compared to the TAF baseline (Fig-
ure 7). The analysis demonstrated substantial
improvements, with the most significant enhance-
ments observed in the "wrong slot label” category.
We attribute this improvement to our augmentation

3https ://translate.google.com/

Error Example
Wrong Utterance: Wer arbeitet bei Long John Silver ’s ?
Slot Span | Prediction: [IN:GET_CONTACT [SL:EMPLOYER Long John
(43.3%) | Silver]]
Gold: [IN:GET_CONTACT [SL:EMPLOYER Long John Silver
s]]
Utterance: Schick eine Videonachricht an den Smoothie - Chat
ﬁ’grgf)'m Prediction:  [IN:SEND_MESSAGE [SL:TYPE_CONTENT
' Videonachricht | [SL:GROUP Smoothie | ]
Gold: [IN:SEND_MESSAGE [SL:GROUP Smoothie ] ]
Wrong Utterance: Starte meinen Timer neu
Intent Prediction: [IN:RESTART_TIMER [SL:METHOD_TIMER
(15.0%) Timer ]
Gold: [IN:RESUME_TIMER [SL:METHOD_TIMER Timer]]
Missing Utterance: Spiele einen bestimmten Rap - Knstler
Slot Prediction: [IN:PLAY_MUSIC [SL:MUSIC_GENRE Rap]]
(14.7%) Gold: [IN:PLAY_MUSIC [SL:MUSIC_GENRE Rap ]
[SL:MUSIC_TYPE Kunstler ]]
Wrong Utterance: Welche Neuigkeiten gibt es in der Musikbranche ?
i’litel Prediction: [IN:GET_STORIES_NEWS [SL:NEWS_TYPE
(10.1%) Neuigkeiten ] [SL:NEWS_TOPIC Musikbranche ]]
Gold: [IN:GET_STORIES_NEWS [SLINEWS_TYPE
Neuigkeiten ] [SL:NEWS_CATEGORY Musikbranche ] ]

Table 6: Examples of error categories on the dev
set of MTOP dataset.

approach, which employs symmetry CoT prompt-
ing. This approach only requires LLMs to predict
label spans while already knowing the schema, in-
stead of generating both the schema and the label
spans as in the TAF method. This underscores the
effectiveness of the proposed framework.

Wrong Slot Label{ E—
Wrong Slot Span| I
Missng Slot|
Extra Slot{ |
Wrong Intenty |
0 50 100 150 200 250 300

I Reduction
Hl Increase

Figure 7: Enhancement observed across five error
types in terms of quantity when comparing ZelLa
with the baseline.

6. Conclusion

In conclusion, this paper presents the Zela
framework, a versatile tool designed to signif-
icantly enhance zero-shot multilingual seman-
tic parsing tasks by leveraging the inherent
cross-lingual capabilities of large language mod-
els. Through a combination of an innovative
LLM-based multilingual augmentation approach,
and advanced multilingual semantic parsing tech-
niques, our framework demonstrates outstanding
performance on well-established multilingual se-
mantic parsing datasets like MTOP and MAS-
SIVE. ZelLa’s performance surpasses state-of-the-
art methods, achieving a notable 1.4-point in-
crease in the exact match score on the MTOP
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dataset. Moreover, our approach’s adaptability ex-
tends its potential applications to a wide range
of other natural language processing tasks, un-
derscoring the promise of cross-lingual advance-
ments in bolstering the resilience and effective-
ness of natural language processing systems.
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