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Abstract
Sign language is an effective non-verbal communication mode for the hearing-impaired people. Since the video-based
sign language detection models have high requirements for enough lighting and clear background, current wearing
glove-based sign language models are robust for poor light and occlusion situations. In this paper, we annotate
a new dataset of Word-based Wearable Chinese Sign Languag (WW-CSL) gestures. Specifically, we propose a
three-form (e.g., sequential sensor data, gesture video, and gesture text) scheme to represent dynamic CSL gestures.
Guided by the scheme, a total of 3,000 samples were collected, corresponding to 100 word-based CSL gestures.
Furthermore, we present a transformer-based baseline model to fuse 2 inertial measurement unites (IMUs) and
10 flex sensors for the wearable CSL detection. In order to integrate the advantage of video-based and wearable
glove-based CSL gestures, we also propose a transformer-based Multi-Modal CSL Detection (MM-CSLD) framework
which adeptly integrates the local sequential sensor data derived from wearable-based CSL gestures with the global,

fine-grained skeleton representations captured from video-based CSL gestures simultaneously.
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1. Introduction

Sign language can express semantic meaning
through the gestures of fingers, hands, and facial
expressions. Therefore, sign language is an effec-
tive body language to exchange information and
express rich semantic messages for the hearing-
impaired people. Sign language can be widely
used in many fields such as health care sector,
sign langue teaching, and culture communication
(Jin et al., 2017). To address the communication
barriers faced by hearing-impaired individuals and
mitigate their social isolation, the development of
automatic sign language translation and interpreta-
tion systems holds significant promise.

Over the years, numerous models have been de-
veloped to detect sign languages across various lin-
guistic regions, including American sign language
(Dreuw et al., 2008; Lee et al., 2020), Chinese sign
language (Huang et al., 2018), German sign lan-
guage (Koller et al., 2015), Japanese sign language
(Sun et al., 2013), Arabic sign language (Aliyu et al.,
2017), ltalian sign language (Escalera et al., 2014),
and Korean sign language (Yang et al., 2020).

The sign language detection models typically fall
into two primary categories: video-based and wear-
able glove-based. Generally, video-based models
face limitations associated with visual angles and
susceptibility to environmental factors. To address
these challenges, researchers have turned their
attention to the development of smart wearable
sign language interpretation platforms using ma-
chine learning techniques. For instance, Lee et al.
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(2020) introduced a sensor fusion-based Ameri-
can Sign Language (ASL) interpretation framework.
In addition, despite these advancements, no pri-
or work has effectively integrated the strengths of
both video-based and wearable glove-based sign
language gesture recognition methods simultane-
ously.

Recognizing the paucity of multi-modal Chinese
Sign Language (CSL) resources, including both
video-based and wearable glove-based datasets
and detection models, we embarked on the devel-
opment of a comprehensive, novel resource. We
present WW-CSL, a Word-based corpus for Wear-
able Chinese Sign Language, thoughtfully curated
to address this research gap. To amass this cor-
pus, we design a wearable data glove equipped
with 2 Inertial Measurement Units (IMUs) and 10
flex sensors. WW-CSL includes a total of 3,000
samples, each corresponding to 100 distinct word-
based CSL gestures. Moreover, we introduce a
transformer-based baseline model that fuses two
IMUs and ten flex sensors for wearable CSL de-
tection. Our approach marries the advantages of
video-based and wearable glove-based CSL ges-
ture recognition by presenting a novel multi-modal
CSL detection (MM-CSLD) framework. This frame-
work adeptly integrates the local sequential sensor
data derived from wearable-based CSL gestures
with the global, fine-grained skeleton representa-
tions captured from video-based CSL gestures.

This paper makes two significant contributions.

(1) We introduce an innovative wearable glove
equipped with two IMUs and ten flex sensors, es-
tablishing a robust foundation for the development
of computational models for CSL detection.
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(2) We present a robust multimodal CSL detec-
tion baseline that integrates the sequential sensor
data from local wearable-based CSL gestures with
the comprehensive, fine-grained skeleton represen-
tations extracted from video-based CSL gestures,
offering a unified and comprehensive approach to
CSL detection.

2. Related Work

In this section, we describe the representative sign
language corpus and its corresponding computa-
tional models.

2.1.

In the past decade, several sign language corpus
(e.g., video-based and wearable glove-based sign
language gestures) has been released. There are
many video-based sign language corpus, e.g., Ger-
man sing language (Forster et al., 2012; Agris et al.,
2008), American sign language (Neidle et al., 2012;
Pugeault and Bowden, 2011), Chinese sign lan-
guage (Chaietal., 2014; Huang et al., 2018), Greek
sign language (Efthimiou and Fotinea, 2007), Pol-
ish sign language (Oszust and Wysocki, 2013), Ar-
gentinian sign language (Ronchetti et al., 2016),
Arabic sign language (Shohieb et al., 2015).

At the same time, there are also some wearable
glove-based sign language datasets, e.g., Chinese
sign language (Wang et al., 2012), American sign
language (Lee and Lee, 2018; Mummadi et al.,
2018). However, the size of these wearable glove-
based corpora is small. For example, there are
only 7 predefined hand gestures in the wearable
CSL gestures (Wang et al., 2012), e.g., hand being
vertically lifted upwards, hand waving from left to
right, etc. Similarily, there are only 24 and 27 pre-
defined ASL gestures in Mummadi et al., 2018 and
Lee and Lee, 2018, respectively.

Sign Language Corpus

2.2. Sign Language Models

We introduce video-based and weareble glove-
based models for the sign language detection as
following.

Video-based Models: Yin et al. (2015) pro-
posed an SVM-based sign language classification
model to integrate the concatenated sparse coding
of frame fragments. Huong et al. (2015) preposed
a principal components analysis-based method to
recognize 25 Vietnamese gestures. Tharwat et al.
(2015) proposed an Arabic sign language recog-
nition model which adopts scale-invariant feature
transformation to extract the effective hand feature
points. Gupta et al. (2016) presented a KNN-based
Indian sign language gesture recognition model,
obtaining accuracy of 90% for the 26 gestures.
Tornay et al. (2020) proposed a Kullback-Leibler

divergence-driven HMM-based multilingual sign
language recognition model. Recently, many stud-
ies focused on adopting deep learning-based tech-
nology to conduct continuous sign language recog-
nition. For example, Cui et al. (2019) introduced
a sign language recognition framework based on
Bi-LSTM, and integrated optical flow feature and
RGB-D data simultaneously. Niu and Mak (2020)
designed a transformer-based approach to model
the temporal relationship among different frames
of gesture video.

Weareble Glove-based Models: Lee et al.
(2020) proposed a one-handed sensor fusion of
motion-based ASL interpretation framework based
on a recurrent neural network to recognize 27 word-
based ASL gestures. Lee et al. (2021) extracted 30
feature points from one-hand leap motion sensor
to conduct ASL recognition, obtaining accuracy of
91.82%. Kurtoglu et al. (2021) adopted RF (Ra-
dio Frequency) sensors to obtain time-frequency,
range-Droppler, and range-angle for sequential trig-
ger sign classification, obtaining accuracy of 92%
for 15 ASL words and 3 gross motor activities. Lee
and Lee (2018) presented an SVM-based 26 ASL
signs recognition through a data-glove consists of
1 IMU and 5 flex sensors. Mummadi et al. (2018)
introduced a random forest-based 24 static ASL
letters recognition through a data-glove consists of
5 IMU sensors.

3. Annotation Scheme

3.1.

Figure 1 illustrates our werable glove which adopts
2 inertial measurement unites (IMUs) and 10 flex
sensors. The IMU is fixed to the back of wrist, and
the flex sensors are attached to all fingers. 10 flex
sensors are attached to the backs of 10 fingers,
from the root to the tip, with the aim of collecting
bending data of the metacarpophalangeal joints.
When the metacarpophalangeal joint bends, the
interphalangeal joint also bends accordingly, which
greatly enhances the flexibility and durability of our
gloves. The components of our wearable gove
include MPU-6050, Raspberry Pi Zero 2W, and
flex sensors. The IMU sensor releases outputs of
acceleration from the accelerometer, angular rate
from the gyroscope, and the flex sensors deliver
flex value for each finger.

Werable Glove Design

3.2. Three-form Format Data

Huang et al. (2018) released a large-scale video-
based CSL gestures which include 500 popular
Chinese words and 102 Chinese sentences. We
selecte the most common 100 Chinese words from
their video-based CSL gestures to generate our
werable glove-based sequential sensor data. The
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Figure 1: Our wearable glove.

100-word of CLS gestures include "situation”, "ob-
jective", "clue", etc as shown in Table 1. We have
three-form format data, e.g., sequential sensor da-
ta, gesture video, and gesture text. We collect 30
times of data for each CSL gesture using our wer-
able glove, obtaing 3,000 samples.

Sequential Sensor Data: This sequential sen-
sor data is a matrix consists of 200 lines and 22
colums for each CSL gesture which includes the ac-
celeration in X-axis direction, acceleration in Y-axis
direction, acceleration in Z-axis direction, magnetic
field in X-axis direction, force angle, magnetic angle
in the Y-axis direction, magnetic angle in the Z-axis
direction, and the curvature of five fingers (from the
thumb finger to thumb finger).

Gesture Video: Since our annotator wears data
gloves, it is not feasible to collect the video format
of our annotator when performing sign language
gestures. To retain the same size of sequential
sensor data, we also extract the initial 30 videos
from Huang et al. (2018).

Gesture Text: The gesture text consists of the
words related to a specific CSL gesture.

4. Werable Chinese Sign Language
Corpus

In this section, we address the key issues of the
WW-CLS annotation, including annotator training,
quality assurance, and annotation instance.

4.1. Annotator Training

The annotator team consists of a Ph.D. in Chinese
linguistics as the supervisor (senior annotator) and
1 graduate student who has studied sign language
for more than 3 years as annotator. The annotation
is done in three phases. In the first phase, the an-
notator spends 2 weeks on learning the principles
of scheme. In the second phase, the annotator
spends 2 months on annotating the 100 CSL ges-
tures. In the final phase, the supervisor spends 2
weeks carefully proofread all 100 CSL gestures.

situation part objective
result clue gain
effect degree symbolize
popularize develop launch
occur establish solid
empty tight loose
inflate children youth
deaf grand mother | father-in-law
neighbor own me

you he friend
male female mister
eye ear nose
mouth heart people
the people model nanny
security staff | writer painter
student kind job

status society tradition
mop knife native place
carpet ear pendants | necklace
bracelet ring soap
toothbrush toothpaste towel
watch glasses mirror
basin cup ruler
SCissors thread switch
button box lock

key umbrella sauce
cigarette moon sun
steamed

stuffed bun wonton cake

a baked Wotou soup
pancake

snack tin preserved fruit
meat egg wine

tea rain bed

desk chair drawer
quilt

Table 1: 100 CSL gesture words.

4.2. Quality Assurance

In order to generate diverse data, the annotator
collects 30 times of data for each CSL gesture with
fast/medium/slow speeds when performing these
gestures. We calculate the average cosine simi-
larity between the sequential sensor data (vector).
The range of similarity value is from 0.50 to 0.90,
and the average similarity value is 0.77. The wide
range of similarity value guarantees the corpus’s
diversity. The more annotators, the higher the cost
is.

4.3. An Annotation Instance

Table 2 presents a XML-style sample of our word-
level CSL gestures. The <content> section demon-
strates the specific contents including gestures con-
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Table 2: A sample from our WW-CSL.
<?xml version="1.0" encoding="utf-8" 7>
<Content>situation</Content>
<Sensor>
7.2,-49,7.9, ...,1255

7.4,-3.751,..,-11.8

</Sensor>
<Video>./GestureVideo0/0-29.mp4</Video>
</Gesture>

tent (i.e., words). The <sensor> section represents
the corresponding sequential sensor data. The
Kvideo> section denotes the corresponding video
for the CSL gestures.

5. Proposed Model

Figure 2 illustrates the framework of our
transformer-based multimodal CSL detection
(MM-CSLD). We adopt 1-layer encoder and 1-layer
decoder of the transformer model. The encoder
consists of a multi-head self-attention layer and a
feedforward layer. The decoder has a query as
the initial input, the output after passing through
the multi-head projection module serves as the
query of another multi-head attention module, and
the output of the encoder serves as the key and
value. Similar to the encoder, the last two modules
of the decoder are the multi-head attention layer
and the feedforward layer. Finally, the decoder
passes through a linear layer with an output
dimension of 100 to obtain the final Chinese sign
language label. We select four skeleton points
(e.g., ' HANDLET’, 'HANDRIGHT’, 'ELBOWLEFT’,
and 'ELBOWRIGHT’) as inputs for the skeleton
data from the gesture video.

The input of the proposed model is a fusion data
F; which fuses the sampled sensor data and skele-
ton data from gesture video as shown in Equation
1.

F; = Concat(Flatten(S;), Flatten(W;)) (1)

where W = {W;,W,,...,W;} indicates the
wearable-based sequential sensor data, S =
{851, 52, ..., St} denotes the video-based skleton da-
ta, t embodies the time, Concat represents con-
catation operation, and F'latten refers to flattener
operation which can flatten a matrix to a vector.

We fed the fusion data F' = {F}, I, ..., F;} into
the position encoding and the vector encoded by
the position into the encoder. We calculate the
position encoding using Sin and Cosin functions
as shown in Equations 2 and 3.
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Figure 2: Our proposed MM-CLSD framework.
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where pos denotes current position, ¢ represents
the dimension index, and d,,,,4.; indicates the size
of dimension.

Data Preprocessing: For the sequential sen-
sor data, we remove invalid data from all collected
sensor data, perform sparse sampling on the se-
quences of unequal lengths, divide the sequence
into an average of 16 parts, and randomly extract
one time step of data from each data. Finally, the
16 time step data obtained is fed into our model as
sensor data. For the skeleton data from a gesture
video, we perform the similar process, obtaining
equal time step of skeleton data.

6. Preliminary Experiments

6.1. Baselines

For the wearable-based CSL detection, we select
GRU, LSTM, CNN, and Dense as baseline systems.
We adopt 1-layer GRU and LSTM followed by 2-
layer fully connection layer in the baseline modules.
We adopt 1-layer CNN and 2-layer Dense followed
by 1-layer fully connection layer in the baseline
systems. For the video-based CSL detection, we
adopt the CNN-based Conv3D (Tran et al., 2015)
and the GRU-based FO-DMT-Net (Zhang et al.,
2020) as our baseline modules.
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6.2. Experimental Settings

Evaluation Metric: We adopt four popular evalu-
ation metrics, i.e., accuracy, precision, recall, and
F1-Score, to investigate the performance of our pro-
posed framework and other comparing approach-
es.

Parameter Settings: The number of heads is
set to 2 in the multi-head self-attention layer. The
dimension of the feedforward layer is set to 1024,
the activation function is RELU, and the dropout
value is set to 0. The dimension size of the final
linear layer is set to 100. The initial learning rate
is set to ¢4, the batch size is set to 32, and train-
ing epochs is set to 300. The hidden size is set
to 512 for the three baselines (e.g., Dense, LSTM,
and GRU). The kernel size is set to 3 for the CN-
N baseline, and activation function is RELU. The
input size of wearable-based sensor data is set to
22. The input size of video-based skeleton data
is set to 12, and sample duration is set to 16. We
adopt Adam optimizer to optimize our cross entropy
loss function. Since the size of current corpus is
limited, we follow previous works to omit validation
set. We randomly select 80% for training and 20%
for testing. Train 300 epochs, save the model once
after each epoch, and all models converge after
300 epochs. Then, search for the best parameter
model from the tensorboard utility and find the best
performing model on the test set as the result of
this model.

6.3. Experimental Results

Table 2 presents the performance comparision re-
sults. We can conclude that our proposed model
MM-CLSD outperforms other baselines in terms
of accuracy, precision, recall, and F1-Score mea-
sures. Our MM-CLSD successfully integrates the
sequential sensor data from the local wearable-
based and the global fine-grained skeleton repre-
sentation for the video-based CSL gestures, re-
spectively. Based on the findings in Table 3, we
can derive the following insights:

(1) Our transformer-based model performs the
best on the wearable-based sensor data. Intuitive-
ly, the sequential models (e.g, transformer, GRU,
LSTM) perform better than non-sequential models
(e.g., CNN, Dense) because sign language is a
kind of time series.

(2) In fact, the Conv3D is a kind of CNN-based
model, and the FO-DMT-Net is a kind of GRU-
based model. They cannot capture the key se-
quential skleton data of sign language. In addition,
the total number of skeleton of FO-DMT-Net is 25,
resulting much noises in sign language detection.

(3) Since the dimension size of the input data
equals to 34, only 2 or 17 heads can be adopted
in the self-attention. The performance of using 17

Table 3: Performance of CSL detection.

Model Accu. Prec. Reca. F1
Werable-based sensor data
GRU 0.9183 0.9262 0.9183 0.9222
LSTM 0.9150 09279 0.9150 0.9214
CNN 0.8667 0.8862 0.8667 0.8763
Dense 0.8783 0.8994 0.8783  0.8887
MM-CSLD w/o
video data 0.9350 0.9449 0.9350 0.9399
Video-based data
GRU 0.5267 0.5615 0.5267  0.5435
LSTM 0.5933 0.6225 0.5933 0.6075
CNN 0.5733 0.5826 0.5733 0.5779
Dense 0.5283 0.5555 0.5283 0.5416
Conv3D 0.4450 0.4816 0.4450 0.4626
FO-DMT-Net 0.4810 0.6268 0.4810 0.5443
MM-CSLD w/o
sensor data 0.7033 0.7393 0.7033  0.7209
Combined multimodal data

GRU 0.9083 0.9262 0.9083 0.9172
LSTM 0.9317 0.9363 0.9317 0.9340
CNN 0.9133 09255 0.9133 0.9194
Dense 0.9083 0.9443 0.9083 0.9260
FO-DMT-Net 0.5267 0.6453 0.5183 0.5749
MM-CSLD(2 heads) 0.9733 0.9779 0.9733 0.9756
MM-CSLD(17 heads)  0.9650 0.9713  0.9650  0.9641

heads is worse than that with 2 heads. The poten-
tial reason is that the large number of 17 heads
cannot extract discriminative learning features to
classify gesture type.

7. Conclusions and Future Work

We annotate a word-based wearable Chinese sign
language dataset which adopts three-form format
scheme by using our wearable glove consists of
IMU and flex sensors. Meanwhile, we present
a transformer-based multi-modal CSL detection
framework on the proposed WW-CSL through inte-
grating the local features from the wearable glove
and the global features from the video gesture. Our
future endeavors will focus on sentence-based CSL
data collection and continuous CLS detection.
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