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Abstract
Multimodal learning is generally expected to make more accurate predictions than text-only analysis. Here, although
various methods for fusing multimodal inputs have been proposed for sentiment analysis tasks, we found that
they may be inhibiting their fusion methods, which are based on attention-based language models, from learning
non-verbal modalities, because non-verbal ones are isolated from the linguistic semantics and contexts and do not
include them, meaning that they are unsuitable for applying attention to text modalities during the fusion phase. To
address this issue, we propose Word-aware Modality Stimulation Fusion (WA-MSF) for facilitating integration of
non-verbal modalities with the text modality. The Modality Stimulation Unit layer (MSU-layer) is the core concept
of WA-MSF; it integrates language contexts and semantics into non-verbal modalities, thereby instilling linguistic
essence into these modalities. Moreover, WA-MSF uses aMLP in the fusion phase in order to utilize spatial and
temporal representations of non-verbal modalities more effectively than transformer fusion. In our experiments,

WA-MSF set a new state-of-the-art level of performance on sentiment prediction tasks.

Keywords: Multimodal, Sentiment Analysis
1. Introduction

In the field of machine learning, it is thought that
multiple source inputs improve the accuracy of the
output relative to that of a single one. This be-
lief comes by analogy to the cognitive function of
human beings, where multiple senses help us to
make more accurate decisions. The correspond-
ing methodologies are called multimodal machine
learning (or multimodal fusion), because they uti-
lize multiple sources as input. They have been
incorporated in real-world services, e.g. to enable
chatbots to provide more suitable responses that
are aligned with the user’'s emotions or sentiments.

Sentiment analysis is one of the main streams
of studies on multimodal fusion. “Multimodal” here
refers to aspects of human expression in commu-
nication, such as what words are said (linguistic),
what tone is used (auditory), and what gestures or
behaviors are displayed (visual). Several methods
have been proposed for fusing these modalities to
improve the accuracy of sentiment prediction, for
example, by performing tensor multiplication of lan-
guage, audio, and visual modality feature vectors
(Zadeh et al., 2017).

The attention-based language model, exempli-
fied by BERT (Devlin et al., 2019) in self-supervised-
learning language modeling, has achieved dramat-
ically higher accuracy scores compared with pre-
vious multimodal models. Since its advent, mul-
timodal method research has focused on how to
utilize attention-based language models by apply-
ing it to language modality vectorization as well as
other non-verbal modality vectorizations so as to
achieve accuracies greater than that of a single-
language-modality prediction. For instance, Yang
et al. (2020) demonstrated a methodology where

language features from BERT and audio features
from COVAREP (Degottex et al., 2014) are initially
combined using source-target attention. Subse-
quently, the resulting combined output is incorpo-
rated in BERT’s self-attention mechanism for senti-
ment prediction.

We have conducted a repeatability test to com-
pare the performance of single-language-modality
prediction model (i.e. BERT and its family) with
that of modern transformer-based multimodal senti-
ment analysis models (Tsai et al., 2019; Yang et al.,
2020; Rahman et al., 2020; Arjmand et al., 2021;
Hu et al., 2022; Han et al., 2021; Guo et al., 2022).
In particular, although the designers of those mod-
els claim that their methods outperform BERT and
its family, we found that almost all of the models
failed to score higher than BERT (See the Evalua-
tion section). Although some of the newer models
scored higher than BERT on some of the metrics of
the test, none of the models exceeded the accuracy
of BERT on all of the evaluation metrics (e.g. Acc’,
MAE).

We think those results are due to differences in
the evaluation procedures; the previous studies
conducted only a few (e.g. up to 5) iterations of
BERT learning as a benchmark, whereas we found
many iterations may be needed for it to achieve
much higher accuracy scores in sentiment anal-
ysis tasks. In this context, we suspect that non-
verbal modalities may actually hinder the learning
of attention-based language models in existing mul-
timodal learning approaches. This is because the
non-verbal modalities, such as acoustic and visual,
are usually temporal acoustic or visual embedding
sequences and do not have language essences.
Thus, they do not fit well the attention-based lan-



guage models that are invented for understanding
languages. As a result, audio/visual embedding
streams tend to be noise when current transformer-
based multi-modal fusion models fuse them with
the language modality. If this hypothesis is true,
it is a severe problem for multimodal fusion tasks
that must be resolved.

To cope with this problem, we devised a hew mul-
timodal fusion method called Word-aware Modality
Stimulation Fusion (WA-MSF). The main idea of this
method is the introduction of a new layer, named the
Modality Stimulation Unit layer (MSU-layer). Within
this layer, word semantics and contextual positions
are incorporated into non-verbal modalities, facili-
tating infusion of semantic and contextual details
from the textual modality before fusion. The MSU-
layer calibrates nonverbal modalities within the self-
attention structure based on the textual modality
and accomplishes seamless integration of textual
and non-textual modalities during their encoding
by BERT or its variants. As a result, these modal-
ities stimulated by language embeddings can be
integrated more effectively with textual modalities.

Our method also contains an another aspect.
That is the approach to multimodal fusion. The
above MSU-layer establishes affinity between the
textual modality and the nonverbal modality. How-
ever, in the context of multimodal fusion, it is neces-
sary to adopt strategies that facilitate incorporation
of spatial and temporal representations from the
non-linguistic modality. With this perspective in
mind, we incorporated aMLP in our fusion process.
aMLP is a variant of gMLP (Liu et al., 2021), which
has its strength in the extraction and analysis of
spatial representations in the nonverbal modality
and includes a small-scale attention mechanism
for language information affinity.

We found that our method significantly improved
the accuracy of sentiment analysis compared with
that of BERT and other state-of-the-art methods.

This paper’s main contributions are:

1. We raise a concern regarding BERT and
other recent transformer language models for
multimodal sentiment analysis wherein they
face difficulties when integrating features from
non-verbal modalities, because of their lim-
ited grasp of language semantics and context
within diverse modality inputs.

2. Our proposal introduces the MSU-layer, which
enhances multimodal fusion by incorporating
language context into non-verbal modalities
as a pre-fusion step. Furthermore, we employ
aMLP as the fusion method after the MSU-
layer to efficiently manage spatial and temporal
representations within nonverbal modalities.

3. WA-MSF achieved state-of-the-art (SOTA) lev-
els of performance on the multimodal senti-

ment analysis task, with top-1 scores in Mean
Absolute Error (MAE) and correlation coef-
ficient (Corr) on the CMU-MOSI and CMU-
MOSEI datasets ':2.

2. Related Work

Deep-learning techniques have been used to ac-
quire high-level multimodal features. Bidirectional
LSTMs have been employed to capture long-range
dependencies from low-level acoustic descriptors
and visual features (Eyben et al. (2010), Wollmer
et al. (2010)). Additionally, CNNs have been used
to extract both textual and visual features (Poria
etal., 2015). More recently, advanced models have
emerged that learn representations of human mul-
timodal language. For example, Dumpala et al.
(2019) explored the use of cross-modal autoen-
coders for audio-visual alignment, and the tensor
fusion network (TFN) (Zadeh et al., 2017) calcu-
lates tensor products across input modalities (lan-
guage, audio, and video) with concatenated scalar
values in order to represent associations between
individual and combined modalities.

Several methods of multimodal fusion using
transformers have been proposed in the past. The
multimodal transformer (MulT) (Tsai et al., 2019)
uses transformer layers to fuse multimodal embed-
ding streams, but does not use them to encode
language modality embeddings. Low-rank fusion
network (LFN) (Sahay et al., 2020) is an ideological
successor of (Zadeh et al., 2017) that uses low-rank
fusion to reduce the learning parameters. MulT and
LFN also aim to fuse multimodal features without
aligning non-verbal feature lengths with the verbal
one. Cross-modal BERT (CM-BERT) (Yang et al.,
2020) encodes the language modality by using
BERT and the speech modality by using COVAREP
(Degottex et al., 2014). It then applies source-target
attention from the language embedding sequence
to the speech embedding. MAG-BERT (and its
variant MAG-XLNet) (Rahman et al., 2020) uses a
multimodal adaptation gate (MAG), a procedure for
melding non-verbal modality information into the
verbal information among the transformer layers.

More recently, several methods have achieved
prominent positions on the sentiment analysis
leaderboards for MOSI and MOSEI| datasets.
Cross hyper-modality fusion network (CHFN, Guo
et al. (2022)) utilizes a “multimodal interaction layer”

'As of Feburary 2024, our method mark top-1 scores
in CMU-MOSI leaderboard (https://paperswithcode
.com/sota/multimodal-sentiment-analysis-on-cmu-mo
si) and CMU-MOSEI leaderboard (https://paperswith
code.com/sota/multimodal-sentiment-analysis-on-cmu-
mosei-1).

20ur code will be made available to support future
research studies on multimodal fusion.
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Figure 1: Overview of WA-MSF.

to facilitate alignment among non-verbal modalities
and enhance the verbal modality. TEASEL (Arj-
mand et al., 2021) introduces the speech modality
as a dynamic prefix alongside the textual modality,
in contrast to conventional language models like
RoBERTa (Liu et al., 2019). SPECTRA (Yu et al.,
2023) extends the text-based dialog pre-training
(utilizing RoBERTa) of the response selection task
to speech-text dialog pre-training scenarios and is
thereby able to adapt to a broader array of speech-
text tasks. MMML (Wu et al., 2023) emphasizes
designing fusion techniques aligned with dataset
annotation schemas and employs RoBERTa as the
text encoder. MultiModallnfoMax (Han et al., 2021)
utilizes mutual information (MI) in its training to in-
crease the effectiveness of multimodal fusion by
incorporating only information that is highly inter-
related between modalities. Finally, UniMSE (Hu
et al., 2022) simultaneously learns sentiment and
emotion in multimodal utterances using T5 (Raffel
et al., 2020).

Here, we introduce a fresh perspective that sets
us apart from the above-mentioned methods: pre-
learning and setting of language modality informa-
tion into the non-verbal modality before fusion. This
approach aims to facilitate subsequent fusion tasks.
Furthermore, we use aMLP as a fusion method
known for its strong non-verbal affinity. This com-
bination underlies the superior accuracy of our
method compared with existing approaches.

3. Methodology

This section explains our method, WA-MSF.

3.1.
WA-MSF consists of three phases:

Overview

1. Apply transformer encoder layers (e.g. BERT
or transformer-based) independently to indi-
vidual modalities (the red, yellow and green
boxes in Fig. 1).

2. For each modality, insert an MSU-layer just
after a certain number of encoder layers are
passed (the navy-blue box in Fig. 1).

3. Concatenate the final encoder outputs of all
modalities and input this concatenated result
to aMLP for fusion (gray box in Fig. 1).

Each phase is explained below.

3.2. Phase 1: Modality Encoding

This section explains the encoder process of fea-
tures in each modality through the encoder layers.

3.2.1. Feature Extractions for Individual

Modalities

For the language modality, BERT is used for to-
kenization and featurization. The data source is
simply the plain text of the utterances. The text is
then tokenized into word IDs and embedded into a
feature vector sequence by BERT.

For the audio modality, we utilize feature extrac-
tion methods such as COVAREP (Degottex et al.,
2014) or wav2vec (Baevski et al., 2020). Notably,
wav2vec, being a transformer-based model, seam-
lessly integrates with our approach.

For the video modality, a facial action unit (AU)
extraction methodology such as OpenFace (Baltru-
saitis et al., 2016) is used for featurization. AU is
a numeric representation of human facial expres-
sions, which is suitable for analyzing sentiment
from the visual modality.

3.2.2. Word Alignment for Nonverbal
Modalities

As we mentioned in the Introduction, our model
uses aMLP in the subsequent processing. Because
of it, at this stage, each modality serving as input
needs to be uniform token length for the later con-
catenation process. Nevertheless, the audio and
visual modalities undergo unique time slicing dur-
ing their featurization; given the varying sequence
sizes between these modalities and the language
modality, direct fusion is not appropriate. To ad-
dress this issue, we undertake a preprocessing step
prior to fusion. This step involves transforming the
audio and visual modalities into sequences aligned
with words. In the initial state, the audio modality se-
quence A has the form [, x f,, where [, stands for



the sequence length of the audio and f, means the
number of feature dimensions of the audio. Sim-
ilarly, the video modality sequence is expressed
as V,andits formis [, x f,. For word alignment,
the sequence of each non-verbal modality is trans-
formed from the non-verbal modality sequence M
(either A or V) into the aligned sequence M’ by
using a convolutional layer: M’ = ConviD(M™).
In this context, Conv1D represents a 1-dimensional
convolutional layer, and matrices with a superscript
T indicate transposed matrices. The described pro-
cedure generates modality sequences whose sizes
are l; x fm,, where [; corresponds to the length of
the linguistic modality sequence L (with dimensions
i x f1), and f,,,, signifies the dimension size of the
non-verbal modality m € {a or v}. This dimension
size is equivalent to % where k represents the
kernel size of the convolutional layer.

3.2.3. Isolated Transformer Encoding

Next, transformer encoder layers are applied to
each modality. Specifically, the BERT layer is uti-
lized for the language modality. In contrast, feature
vectors from other modalities require an additional
transformer encoder prior to fusion. This is due to
the architectural design of the MSU-layer, which is
intended to be integrated into transformer encoder
layers. Therefore, all modalities need to be en-
coded using transformer or transformer-like layers
before undergoing fusion.

Optimal Positioning of MSU-Layer & Textual
Modality Protection As previously mentioned,
our model incorporates an MSU-layer immediately
after a specific layer of the transformer encoder for
each modality. In this paragraph, we elucidate the
rationale behind selecting the appropriate layers
within the transformer encoders to effectively prop-
agate both word-level and contextual information
to other non-verbal modalities. Striking a balance
between the layer position is crucial: positioning
the MSU-layer too early would mainly convey word-
level information, while positioning it too late might
sacrifice word-level details in favor of contextual
understanding. This decision is underpinned by
BERT’s learning pattern, which initially captures
word-level features in its early layers and subse-
quently comprehend sentence-level attributes in its
later layers (Ethayarajh, 2019). Taking BERT-base
as an example, considering its behavior and its pro-
gression towards more abstract features after the
9th encoder layer, we assert that the ideal place-
ment for the MSU-layer is around the 9th layer. This
is based on the observation made by Ethayarajh
(2019) that BERT-base tends to acquire heightened
abstraction in its features beyond this layer.
Another aspect of our method is that for the tex-
tual modality, the BERT layers before inserting the
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Figure 2: Design of the MSU-Layer.

MSU-layer are frozen. This aims to safeguard the
integrity of language modality sequences preced-
ing the MSU-layer against potential contamination
from incoming information of non-language modali-
ties. This protective measure prevents any poten-
tial interference with BERT’s ability to comprehend
words and contexts within the language modality.
Therefore, the layers before the MSU-layer must
be trained separately. We thus adopted a two-step
training procedure, as explained below.

3.2.4. Two-step Training

We independently train the language modality en-
coder before its use in multimodal fusion, as stated
in the preceding paragraph.

In the first step, we train the language model us-
ing only the text modality from the given dataset
and select the best one from the results. In the
second step, we train the multimodal fusion by ap-
plying the weight we retrieved at the first step to
the language model. Furthermore, we freeze the
encoder layers up to the point where the MSU-layer
is inserted.

3.3. Phase2: MSU-Layer

The MSU-layer, which is vital to WA-MSF, trans-
fers semantic and contextual information from the
text modality to the non-verbal ones prior to fusion.
Before reaching this layer, the sequence length
of each non-verbal modality has been aligned to
match [;, which corresponds to the word length.
This alignment is accomplished using Conv1D, as
elaborated in section 3.2.2. However, it is essential
to recognize that, at this particular stage, the latent
non-verbal tokens with a length of /; are unable to
utilize linguistic essences when calculating interre-
lations between modalities. This layer introduces
language semantic and contextual information and
then integrates them with non-verbal tokens. Con-
sequently, the non-verbal modality learns relation-
ships among its [; latent tokens by incorporating

Text (L) Acoustic (A1) Visual (V/)



linguistic information (see Fig. 2-(a) also).

First, the MSU-layer initially constructs a “source”
tensor M (either A’ or V') for the subsequent
source-target attention processing. The process
begins by concatenating the non-linguistic modal-
ity A (or V') and the linguistic modality sequence
L. Following this, the MSU-layer employs a feed-
forward neural network® (FFN) layer to reduce the
dimensionality of the concatenated sequence from
fi + fa, (OF fi + fu,) to fi. This adaptation is nec-
essary because the original size of the language
embeddings is meticulously designed to effectively
represent its language-specific attributes. M is
thus computed as M'! = FFN([L; M']).

Second, a dense layer is employed on each
modality sequence; the layer aligns the dimension
of the sequence (f,, for audio and f,, for visual)
with that of the linguistic modality sequence (f;).
This alignment is crucial for computing the source-
target attention in the subsequent step. Importantly,
these modality sequences have been duplicated
prior to forming the “source” tensor. As a result,
these sequences remain distinct from the “source”
side of the non-linguistic modality. Nonetheless,
we will maintain the reference to these processed
modality sequences as M’, since the original
modality sequences are no longer utilized.

Third, source-target attention is applied between
the non-verbal modality sequence augmented by
the text (M') as the source and the dimension-
modified non-verbal modality sequence (M’) as
the target. After this process, the MSU-layer pro-
vides a fusion-ready non-verbal modality sequence
M/, defined as follows:

M/ = Norm(b™ ® Attn(M', M') + M’). (1)

Here, ® represents the Hadamard product, Attn
denotes an attention layer, and Norm signifies the
layer normalization process. Here, we propose that
this process should include a residual connection
with weight b . This is for two reasons: we found
that (1) a residual connection without any correction
destabilizes the learning, and (2) the learning can
be stabilized by applying a correction based on the
size of the original latent space that the modality
had. Therefore, we decided to define b as follows:

Mo M|

o =i (e ) @

t, is @ minimum threshold vector for the coefficient
of the residual connection; this is a hyperparameter.
After that, our method transfers the effects of the
aforementioned operations to the language modal-
ity to enhance the efficiency of the MSU-layer. Con-
cretely, our method aims to back propagate informa-
tion from the non-verbal modality processed by the

3The FFN here is similar to the one implemented in
the transformer architecture (Vaswani et al., 2017).

MSU-layer to the hidden embeddings of the textual
modality. These hidden embeddings come from
the encoder layer where the MSU-layer is inserted,
which is the first learnable layer just after the frozen
layers. The actual procedure is that the audio and
visual modalities Af and V'/ are summed up and
source-target attention is applied to the language
modality in the same way as in equation (1) (see
Fig. 2-(b) also). The source is the sum of the non-
verbal modalities, and the target is the language
modality. After this process, the MSU-layer outputs
L/

3.4. Phase3: Modality Fusion by aMLP

Once all modalities have passed through their dedi-
cated encoder layers including the MSU-layer, they
are combined and subjected to another set of aMLP
encoder layers (gray box in Fig. 1). The procedure
is detailed below.

3.4.1. Modality fusion by concatenation

(“Dense & Concat” in Fig. 1)

First, all the modalities are concatenated into one
simple fused feature with summarized vectors from
the sequences of individual modalities. This sum-
marized vector is expected to play a role like CLS
embedding of BERT in fused sequence. For the
language modality, the summarized vector is just
the classification vector of the first token embed-
ding in the sequence. For the other modalities,
maxpooling is applied to their sequence, and the
resulting output is retrieved as the summarized vec-
tor. This operation retrieves the language vector 1/,
audio vector af, and video vector v/. The fused
sequence f is constructed through a dense layer
as follows: f = w[l/;a’;v’] +b.

To reduce the number of parameters, the di-
mension size of the vector is reduced to n; by
using the above dense layer. n; is a hyperparam-
eter. Subsequently, the sequences of all of the
modalities are concatenated along the sequence
direction, and the fused-summarized vector f is
designated as the first element. This leads to
the computation of a single fused modality se-
quence F' with a shape of ny x (I; x 3 +1) as
F o= [f,007,.. 07 a, . a0 o) ]
In this context, 1"s, a™f, and v™/ refer to the in-
dividual elements of L™, A"f, and Vs, respec-
tively. These tensors have been derived from the
previously obtained LY, A/, and V'/ in the process,
with their respective dimension sizes reduced to n ¢
through dedicated dense layers for the individual
modalities.



3.4.2. Encoding Fused Modality Tensor

Then, the fused modality sequence F' is encoded
by the fusion layers.

Here, we utilize a fusion method called “gMLP
with tiny self-attention” (aMLP), which is a variant of
the gMLP model (gray box in Fig. 1). The authors
of this method stated in their paper that gMLP effi-
ciently captures latent spatial and temporal repre-
sentations in audio and visual domains. Moreover,
aMLP is specifically enhanced for language-related
tasks by incorporating a tiny attention mechanism.
Hence, we deemed this method to be more suit-
able for multimodal fusion than methods like the
transformer. This is because, when it comes to
representing non-linguistic information, leveraging
the powerful capabilities of the function representa-
tion of MLP is better than introducing the dynamic
inductive bias calculated by the attention mecha-
nism.

The input and output structures of aMLP are com-
patible with the transformer. Thus, the fused se-
quence, F, made from the outputs of BERT and
the other modalities directly serves as the input to
the aMLP layer.

The encoder outputs the final hidden states F¢"¢
with the same shape as F'. The first embedding of
the sequence, f{", is retrieved as a representative
vector of the fused feature sequence. This vector is
fed into an output layer consisting of fully-connected
neurons. The resulting output serves as a logit for
the sentiment analysis task. To train this logit, we
employed a log-cosh loss function (Jadon, 2020).

4. Evaluation

We performed a detailed evaluation of WA-MSF.

4.1. Dataset

The evaluation utilized two multimodal datasets as
follows.

CMU-MOSI (Zadeh et al., 2016) is a dataset for
multimodal machine-learning tasks compiled by
Carnegie Mellon University. It mainly comprises
videos of individuals expressing their sentiments
about movies and TV dramas, which are then
scored as positive or negative on a scale of -3 to
3. We used 1284 sentences for training and 685
sentences for testing.

CMU-MOSEI (Bagher Zadeh et al., 2018) is a
similar dataset to CMU-MOSI but has a larger num-
ber of utterances. Furthermore, unlike CMU-MOSI,
its utterances were randomly chosen from various
topics and monologue videos. This dataset in-
cludes emotion measures, but we did not utilize
them. Instead, we employed sentiments annotated
on 16,272 sentences for training and 4,646 sen-
tences for testing.

4.2. Evaluation Strategy and Metrics

For an equitable evaluation, we performed the train-
ing and evaluation of our method 100 times and
used the maximum scores, average scores, and
standard deviation in the comparisons described
below. This is because it has been pointed out
that the value of the set random seed sometimes
affects the accuracy more than the improvement of
the model to be verified (Picard, 2023). Therefore,
in order to minimize its effect as much as possi-
ble, especially in the ablation study, we adopted
a policy of performing the verification 100 times
consecutively without resetting the random seed
and comparing the accuracy by using those three
values.

We picked five metrics that are commonly used
in quantitative evaluations of multimodal sentiment
analysis (Yang et al. (2020); Arjmand et al. (2021)):

F-score (F1), binary accuracy (Acc?), 7-class
accuracy (Acc’), mean absolute error (MAE), and
correlation coefficient (Corr).

4.3. Parameter Tuning

We tuned the parameters of our model as follows.

4.3.1. Language Model

We had various options for the language modal-
ity model, including BERT, RoBERTA, XLNet, etc.
Here, we present results for the “BERT large” model
with a 1024-dimensional embedding and 24 en-
coder layers, which achieved the highest scores
among the tested models.

4.3.2. Hyperparameters

We needed to determine some of the parameters
for tuning the model itself and for training.

Parameters for tuning the model For the non-
verbal modalities, the number of transformer en-
coder layers was 24, which equaled the number of
layers of the BERT model.

For all modalities, the MSU-layer was inserted
after the 20th layer, so layers 1 to 20 of BERT were
frozen. This is because we predicted that the fi-
nal four layers of the encoder in the BERT-large
model would be utilized for abstract sentence com-
prehension. We conducted small-scale tests by
inserting MSU-layers from the 18th to the 22nd
layer and found that the insertion at the 20th layer
was the most accurate. The frozen layers used the
weights trained from the text-only data and were
not affected by other modalities. This was a spe-
cific implementation of what is described in section
3.2.3.

The residual connection threshold ¢, in the MSU-
layer was set to 0.5. It has been observed that



setting a value higher than this significantly reduces
the model’s accuracy. However, as long as this

Table 1: Evaluation Result (CMU-MOSI).
XXy: “higher is better”, XX,: “lower is better”.

value is varied within limits lower than this (and

higher than 0.0), it will not have any effect on the

experimental outcomes.

The dimensions size of the fused vector was
512, which is half the dimension size of the hidden
vector of BERT-large. The reason for choosing this
number is the need to balance learning speed and

performance of the model. In particular, too large a

vector risks divergence in learning. Also, the fusion
stage had 18 aMLP layers.

Method F1, Acc? Accl MAE, Corry
CM-BERT 84.5 84.5 44.9 0.729 0.791
MAG-BERT 82.5 82.37 43.62 0.727 0.781
MAG-XLNet 85.7 85.6 N/A 0.675 0.821
TEASEL 85 87.5 4752 0.64 0.836
CHFN 86.2 86.4 48.6 0.689 0.809
UniMSE 86.42 86.9 48.68 0.691 0.809
BERT-large 86.04 85.98 50.51 0.636 0.838
Ours (Max) 86.97 86.86 51.82 0.623 0.842
Ours (Avg) 85.99 85.96 49.99 0.629 0.838

We also considered each parameter of Conv1D.
For audio, Conv1D used a kernel size k of 20, a
stride of 10 and a padding of 5. For video, Conv1D

Table 2: Evaluation Result (CMU-MOSEI)

had a kernel size of k£ equal to 3, a stride of 2, and

padding of 1.

The maximum sequence lengths for text, audio,
and video were 50, 5000, and 1250, respectively.

Parameters for training The random seed num-
ber was initially set to 42 to ensure reproducibility.

Method F1y Acc? Acc] MAE; Corry
MMIM 85.94 8597 5424 0526 0.772
MAG-BERT 84.5 84.7 N/A N/A N/A

UniMSE 87.46 87.50 54.39 0.523 0.773
BERT-large  N/A N/A 53.38 0.531 0.775
Ours (Max) 86.09 86.26 54.63 0.515 0.785
Ours (Avg) 85.67 85.80 53.71 0.520 0.782

Randomness was ensured among the evaluation
attempts because this random seed was initialized
only in the first attempt.

The batch size was 48 for CMU-MOSI and 384
for CMU-MOSEI. These settings were made in con-
sideration of the total data size of each dataset.

RAdam (Liu et al., 2020) was chosen as the opti-
mizer.

The learning rate was 2e-4 and no scheduler was
applied. This is because the RAdam optimizer has
a self-learning rate-alignment mechanism.

The maximum number of iterations was 50, and
an early-stopping mechanism was applied. This is
because, in almost all cases, the training saturated
after 50 iterations.

4.4. Baseline methods for the evaluation

We prepared several baseline methods for the eval-
uation. They were selected from the related work
and are currently considered SOTA on the open
leaderboards.

For CMU-MOSI, CM-BERT, MAG-BERT /XLNet,
TEASEL, CHFN, and UniMSE were the baselines.

For CMU-MOSEI, MMIM (Han et al., 2021), MAG-
BERT, and UniMSE were the baselines.

4.5. Results

We trained and tested our model using the configu-
ration described above. The results are shown in
Table 1 and Table 2. In the subsequent sections of
the paper, bolded scores in the tables represent
the best results, and underlined scores represent
the second-best results. The scores of the bench-
mark methods, except for BERT-large, were ob-
tained from the respective papers, while the score

of BERT-large was derived from the highest score
observed in our repeatability test.

First, we can see that BERT-large had high per-
formance especially in the CMU-MOSI evaluation.
It had the second-best Acc”, MAE, and Corr scores;
no baseline models performed better than BERT
on these three metrics.

On the other hand, our method outperformed the
prior SOTA methods on both CMU-MOSI and CMU-
MOSEI on the majority of metrics and was at least
second-best on almost all metrics. Needless to say,
it outscored BERT-large. In particular, it showed
significant improvements in terms of Acc’, MAE,
and Corr on the regression task of sentiment anal-
ysis. Note that the Acc’, MAE, and Corr metrics
are designed for regression tasks. In the realm of
sentiment analysis, regression involves discerning
subtle nuances in utterances and emotional context.
In this task, the impact of multimodal information on
enhancing language-derived data greatly affects
the model’s accuracy. In essence, these results
underscore our model’s effective use of multimodal
data, leading to impressive sentiment analysis per-
formance.

4.6. Ablation Study

We tested several subsets of our method on the
CMU-MOSI dataset to evaluate the effectiveness
of the multimodality and the fusion methods. A
summary of the results is shown in Table 3.



Table 3: Ablation Study Results - mean and standard deviation (CMU-MOSI)

Method F1, Accf1 ACCZI MAE,; Corrp
Modality combination
Text (BERT-large) 85.70 £0.66 85.67 £0.64 47.73 +£1.52 0.6591 +0.0149 0.8270 4+ 0.0082
Text + Video 86.05 + 0.43 86.01 +0.41 49.87+0.78 0.6319 +£0.0027 0.8363 + 0.0024
Text + Audio 85.87 £0.46 85.85+0.43 49.94 £0.69 0.6298 £+ 0.0027 0.8368 £ 0.0021
Full 85.99 £ 0.47 85.96 +0.44 49.99 +£0.74 0.6288 + 0.0027 0.8376 + 0.0019
Fusion method

Vanilla 85.54 + 0.45 85.54 +0.43 49.65+ 0.87 0.6362 + 0.0039 0.8357 + 0.0022
+ Transformer 85.89 £ 0.43 85.86+0.41 49.64 +0.77 0.6349 +0.0027 0.8361 + 0.0019

+ MSU-Lyr 85.85 £ 0.37 85.82+0.39 49.78£0.77 0.6338 +0.0026 0.8358 + 0.0019
+aMLP 85.95 +£0.43 85.92+0.40 49.85+0.78 0.6310 £+ 0.0030 0.8370 £ 0.0022

+ MSU-Lyr 85.99 + 0.47 85.96 +0.44 49.99 +0.74 0.6288 + 0.0027 0.8376 + 0.0019

0.65
0.68
0.64
0.66
0.64 § 0.63
0.62 ' I
BERT-large text text full 0.62 Vanilla Transformer Transformer
+ video + audio + MSU

Figure 3: Ablation study, modality (MAE). Bolded
black lines in violin plots indicate its quartiles.

4.6.1. Effectiveness of Multimodality

Initially, we evaluated our method by removing
some modalities from its data source. As shown in
the top half of Table 3, we selected four patterns
of combining modalities, i.e., “text-only”, “text and
video”, “text and audio”, and “full modalities” (see
Fig. 3). The results indicate that every multimodal
combination outperformed BERT-large’s text-only
approach. For instance, all the modality combina-
tions provided two or more percent higher accuracy
in terms of Acc”. This indicates that our method
has sufficient strength in multimodal fusion for the
sentiment analysis task. Furthermore, there were
only slight differences in the results for the various
modality combinations, unlike the big difference
for the text-only model. Overall, we found that full
modality fusion (text, audio, and video) provided
the most stable accuracy and the best performance
on the regression task. These findings are proof
that full modality fusion is the best in terms of Acc’,
MAE, and corr among all modality combinations on
regression-related tasks.

4.6.2. Effectiveness of Fusion Methods

As described above, our method consists of two
fusion steps: one involves inserting the MSU-layer

Figure 4: Ablation study, transformer fusion (MAE).

among the transformer layers for each modality
and the other is the multimodal fusion by aMLP.
Here, we conducted an ablation study to assess
the actual effectiveness of each step. We prepared
five different fusion method combinations:

(1) Fuse all modalities directly after the encoder
layer for each modality without any fusion meth-
ods (Vanilla),

(2) Use transformer for fusion (“Transformer” in
Fig. 4),

(3) Add the MSU-layer before the transformer fu-
sion (“Transformer + MSU” in Fig. 4),

(4) Use aMLP for fusion (“aMLP” in Fig. 5),

(5) Use both the MSU-layer and aMLP layers
(“aMLP + MSU” in Fig. 5; this is the same
as the full version of our method).

The results are displayed in the bottom half of
Table 3. They show that the MSU-layer with trans-
former fusion has a positive effect on MAE and Acc’.
Furthermore, the combination of the transformer
and MSU-layer outperforms the basic “vanilla” fu-
sion. However, inclusion of the MSU-layer led to
slightly worse performance in terms of Acc?, F1,
and correlation compared with using only trans-
former fusion. Therefore, the collaboration between
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Figure 5: Ablation study, aMLP fusion (MAE).

the transformer and MSU-layer did not exhibit the
desired level of synergy.

Another discovery concerns our proposal, aMLP
fusion. The aMLP layer showed the highest per-
formance, excelling not only in transformer fusion
but also in the fusion combining the transformer
and MSU-layer. Furthermore, the aMLP layer had
good synergy with the MSU-layer, whereby aMLP-
MSU fusion outscored aMLP-only fusion on all met-
rics. Therefore, both the MSU and aMLP layers
effectively improve the accuracy of our model in
sentiment analysis tasks. This result supports our
hypothesis regarding aMLP.

5. Conclusion

We proposed a new method of multimodal-fused
sentiment analysis, called word-Aware-modality-
stimulation fusion (WA-MSF). The core idea of our
approach revolves around the modality-stimulation-
unit layer (MSU-layer) designed to activate linguistic
information within non-verbal modalities by refer-
encing the verbal modality sequence prior to the
fusion process. We also employed aMLP as a mul-
timodal fusion process, which enables understand-
ing of individual modalities as well as learning after
fusion; aMLP is the most applicable fusion method.
Our experiments showed strong synergy between
the MSU-layer and aMLP in fusion and demon-
strated that our approach achieved SOTA accuracy,
particularly on sentiment analysis regression tasks.
Our research findings will facilitate seamless multi-
modal fusion and have the potential to accelerate
related research in the field of multimodal analysis.

6. Ethical considerations

In this study, when undertaking multi-modal learn-
ing, it is necessary to utilize both visual and audi-
tory information of the speakers. This information
is closely associated with personal data, and it is
ethically imperative to ensure sufficient anonymiza-
tion within the utilized datasets or within the internal
model structures.

The datasets we employed, namely CMU-MOSI
and CMU-MOSEI, have effectively implemented
anonymization measures for these aspects and
have made the data available in a suitable form as
open data. Additionally, WA-MSF promptly trans-
forms input data into features, so no personally
identifiable information is left within the model pa-
rameters. Therefore, the requirements for the ethi-
cal perspective mentioned above have been met.
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Appendix A. Evaluation environment

The following environment was configured for CMU-
MOSI:

« GPU: NVIDIA V100 GPU with 16 GiB VRAM.
 Driver version of GPU: 440.33.01.
« CUDA version: 10.2.

+ OS: Ubuntu 18.04.6 (docker-isolated environ-
ment).

+ Python for actual code, version 3.8.0.
» Pytorch as the library, version 1.12.0+cu102.

» Transformers as the library as well, version
4.15.0.

The following environment was configured for
CMU-MOSEIL:

« GPU: NVIDIA A100 GPU with 80 GiB VRAM.

 Driver version for GPU: 450.80.02.
» CUDA version: 11.0.

OS: Ubuntu 20.04.4 (docker-isolated environ-
ment).

+ Python for actual code, version 3.8.10.
+ Pytorch as the library, version 1.12.0+cu113.

» Transformers as the library as well, version
4.15.0.

Appendix B. Parameter size

Our “Full” model (employing BERT-Large for textual
modality, having L+A+V modalities with 24 encoder
layers and fused using 18 aMLP layers) contained
524,824,647 parameters. This is approximately
x1.5 the number of parameters of the BERT-Large
model and x4.8 that of the BERT-Base model.

We also discovered that using an encoder with
12 layers for the audio and visual modalities had
only a slight impact on accuracy. In this case, the
total number of parameters was 476,831,847 (ap-
proximately x1.4 that of BERT-Large and x4.3 that
of BERT-Base).
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