What has LeBenchmark Learnt about French Syntax?
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Abstract

The paper reports on a series of experiments aiming at probing LeBenchmark, a pretrained acoustic model
trained on 7k hours of spoken French, for syntactic information. Pretrained acoustic models are increasingly
used for downstream speech tasks such as automatic speech recognition, speech translation, spoken language
understanding or speech parsing. They are trained on very low level information (the raw speech signal), and do
not have explicit lexical knowledge. Despite that, they obtained reasonable results on tasks that requires higher
level linguistic knowledge. As a result, an emerging question is whether these models encode syntactic information.
We probe each representation layer of LeBenchmark for syntax, using the Orféo treebank, and observe that it has
learnt some syntactic information. Our results show that syntactic information is more easily extractable from the
middle layers of the network, after which a very sharp decrease is observed.
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1. Introduction syntactic information may be considered several

The analysis of large pretrained models have
emerged as a Natural Language Processing (NLP)
subfield aiming at understanding their inner work-
ings, their strengths and weaknesses, as well as
interpreting their predictions.

Probing (see Belinkov and Glass, 2019, for
a general survey) consists in assessing whether
some properties of a model’s textual input can be
predicted from the intermediate representations of
the model. Probing has been first proposed un-
der the names ‘auxiliary prediction task’ (Adi et al.,
2017), or ‘diagnostic classifiers’ (Veldhoen et al.,
2016), as a way to analyze deep learning systems,
and in particular understand whether they implicitly
learn some knowledge they were not trained on.
For example, despite being trained on raw texts,
the various layers of BERT (Devlin et al., 2019)
contain a lot of information about the POS tags
of its input (Tenney et al., 2019; Lin et al., 2019;
Rogers et al., 2020), that can be extracted with a
simple linear classifier.

In this paper, we apply probing to a pretrained
acoustic model for French, LeBenchmark (Evain
et al., 2021), and focus on assessing whether it
has implicitly learned some syntactic knowledge.
LeBenchmark is a Wav2vec2.0-style (Baevski
et al., 2020) pretrained acoustic model, trained on
the raw speech signal, i.e. very low level informa-
tion. As a result, probing it for high-level informa-
tion such as syntax is of important significance:
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abstractions away from the raw speech signal.

Specifically, we probe LeBenchmark for 2
tasks: part-of-speech tagging and unlabeled de-
pendency parsing. We frame both tasks as se-
quence tagging tasks by reducing dependency
parsing as a token-level task: predicting the rel-
ative position of the head of a token. We carry
out probing using Orféo (Benzitoun et al., 2016),
a treebank of spontaneous French spoken in re-
alistic interactions. After probing each of the 24
layers of LeBenchmark, we found that syntactic in-
formation is most present in the middle layers of
the model, and is much less accessible in the last
layers where it seems to almost disappear.

In summary our contributions are as follows:

» we carry out a probing study on LeBenchmark
for syntactic information. This is to the best of
our knowledge the first study of this type (i)
on French and more generally on a language
that is not English (ii) on spontaneous speech
(rather than read speech).

» we report on a finding: syntax is most ex-
tractable from the middle layers of the model
and almost disappears in the final layers.

2. Related Work

Self-supervised learning (SSL) consists in acquir-
ing robust representations from extensive unla-
beled data (referred to as pretraining) in order to
better recognize and understand patterns for other

17493

LREC-COLING 2024, pages 17493-17499
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0



root

periph

PeIPHbj | dep  dm

me

alors donc c' est pour euh
+3 +2 +1 0 -1 -1

SO SO it 1S for uh

Figure 1: lllustration of the relative head position
annotation scheme.

problems (referred to as fine-tuning). Recent re-
search with a focus on speech data has demon-
strated remarkable results in representation learn-
ing. On French Evain et al. (2021) trained and
released self-supervised acoustic models called
LeBenchmark to address a variety of speech tasks:
spoken language understanding, speech-to-text
translation, emotion recognition, speech recogni-
tion. From an acoustic signal, LeBenchmark com-
putes a sequence of vectors, each of which corre-
sponds roughly to a 25ms sound window. It was
pretrained with a constrastive learning objective.
No information about the notion of words or word
boundaries is used during the pretraining.

The interest of the community in understanding
what information was captured by these models
grew recently. In particular, Singla et al. (2022)
probe a pretrained acoustic model for English, but
focus on audio features, the only syntactic fea-
tures being the depth of the syntactic tree, and the
number of occurrences of some parts of speech,
where both of these are predicted from the whole
sentence representation. In contrast, we focus
on token-level syntactic information. Shen et al.
(2023) is the study closest to our own: they probe
English acoustic models for syntactic information
(tree depth, correlations between the continuous
representations of the model and the discrete tree
representations). They found that syntax is best
represented in the middle layers of networks, and
more obviously in models with larger parameter
sets. Unlike this work, we focus on French, sponta-
neous speech (rather than read speech), and use
a different methodology: we focus on simple linear
probes.

3. Data

We use the Orféo treebank (Benzitoun et al., 2016),
a corpus of spoken French annotated in depen-

dency trees, and distributed with audio record-
ings.! The Orféo treebank is an aggregation of
multiple spoken French corpora, namely CFPP
(CLESTHIA, 2018), Clapi (ICAR, 2017), TCOF
(ATILF, 2020), OFROM (Avanzi et al., 2012-2020),
Fleuron (André, 2016), French Oral Narrative (Car-
ruthers, 2013), c-oral-rom (Cresti et al., 2004),
Corpus de référence du Francais parlé (DELIC
et al., 2004), Valibel (Francard et al., 2009), TUFS
(Kawaguchi et al., 2006), a professional meetings
corpus (Husianycia, 2011), as well as an unpub-
lished corpus provided by Orféo’s designers. Most
of the subcorpora contain French spoken in spon-
taneous interactions, except for French Oral Nar-
rative that consists of stories read by narrators.

The total length of recordings is around 196
hours, among which 9 hours have gold syntactic
annotations. The rest of the corpus was anno-
tated with good quality silver syntactic trees (Nasr
et al., 2020). The corpus has around 3.5 million
tokens (among which 170k have gold syntactic in-
formation. Finally, the corpus is provided with to-
ken timecodes automatically predicted by a forced
alignment system. In other words, we have the
start and end time of each token. We discard all
sentences that contain obvious timecode mistakes
(e.g. when the start time of a token is higher than
its end time) or annotation mistakes (e.g. POS tags
that are not listed in the official documentation and
correpond to typos in the manual annotation pro-
cess).

4. Probing Tasks

We use two different tasks to assess the amount of
syntactic information contained in the pre-trained
representations: part-of-speech tagging and unla-
belled dependency parsing. We cast both tasks as
word-level prediction tasks. Though dependency
parsing is not typically addressed with sequence
tagging methods, recent approaches have shown
that it is a viable method (Strzyz et al., 2019). In
our case, addressing both tasks as word-level pre-
diction tasks has the advantages of keeping the
probes and the decoding algorithms fairly simple.

4.1. POS tagging

The part of speech tagging task is a classification
task where the model classifies each word repre-
sentation into 20 different parts of speech. The
tagset is described by Benzitoun et al. (2016), It
is somewhat finer-grained than the Universal De-
pendency (Nivre et al., 2020) tagset. The speech
transcriptions in the Orféo treebank do not contain

"https://www.ortolang.fr/market/
corpora/cefc-orfeo
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Figure 2: POS tagging task accuracy per layer.
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Figure 3: Relative head distance prediction task
accuracy (UAS) per layer.

punctuation characters. Hence, the tagset does
not include punctuation tags.

4.2. Unlabeled dependency parsing

In order to cast dependency parsing as a token
classification task, we use a simple way of encod-
ing a dependency tree into token labels: relative
position encoding (Strzyz et al., 2019). With this
encoding method, the label of a token is an integer
corresponding to the relative position of its head
word. This label is computed subtracting the index
of the current word to the index of the head word.
In the sentence illustrated in Figure 1 : “Alors donc
¢’ est pour euh” (“So so it is for uh”), the root of
the sentence is “est” and is annotated with the rel-
ative label 0, the head of “Alors” is “est” and thus
is annotated with the label +3 (“Alors” is the first
word, “est” is the fourth one, 4 — 1 = 3).

2Sentence from CEFC-Orféo id:

cefc-cfpb-1000-5-1.

5. Experiments

This section presents the probes we use, outline
experimental settings and discuss the experiment
results.

5.1. Probes

Each layer of the pretrained acoustic model pro-
vides a vector representation for each acoustic
frame. However, both probing tasks require word
representations. In order to construct them, we
rely on the start and end timecodes available for
each token in the treebank (they were obtained au-
tomatically through forced alignement, and some-
times contain mistakes). We run the pretrained
model (whose weights are frozen) on the speech
signal, select the vector representations at a spe-
cific layer (1-24) and extract, for each token the list
of corresponding frames (i.e. 1024-coefficient fea-
ture vectors) that are within the time span of the
token. Then we aggregate the frames of a token
into a single vector with a mean pooling operation.

Finally, we feed token representations to a sim-
ple Softmax classifier (one linear projection with
bias followed by the Softmax activation). We re-
peat the process for each of the 24 layers of the
pretrained model in order to probe each of them
independently and analyse the dynamics of infor-
mation across layers.

5.2. Experimental details

The self-supervised speech model that we probed
in this study is LeBenchmark large® (Evain et al.,
2021) based on wav2vec2 (Baevski et al., 2020)
architecture, pre-trained on French datasets con-
taining 7k hours of spontaneous, read, and broad-
cast speech.

We implemented the probing classifiers in
Python, relying on PyTorch (Paszke et al., 2019)
and HuggingFace (Wolf et al., 2020) libraries. All
experiments and preprocessing steps are run on
an Nvidia GeForce GTX 980 GPU.

We measured the performance of our probes
in both tasks with the accuracy metric, which is a
widespread measure in the probing literature. For
the relative head distance prediction, the accuracy
measure corresponds to the unlabeled attachment
score (UAS), a metric classically used in depen-
dency parsing.

During the ftraining, we used a batch size
of 1024. The classifier was trained using an
early stopping mechanism, which stops the train-
ing process if there is no accuracy increase larger

Shttps://huggingface.co/LeBenchmark/
wav2vec2-FR-7K-large
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Figure 4: Per-category evaluation of the best layer (layer 14) on the relative head distance prediction task
with two evaluation metrics: accuracy (UAS) and F-score.

than 0.0001 on the validation set over a span of 10
epochs.

For the POS tagging task, we use a learning
rate of 0.005 and for the relative head distance
prediction task we use a learning rate of 0.001,
based on preliminary experiments. For both tasks,
we optimize models with stochastic gradient de-
scent (SGD) with Nesterov accelerator and mo-
mentum 0.99. The target optimization function is
the negative log-likelihood of the gold labels. We
use a a random 80%/10%/10% ratio split to con-
struct the training, development and test sets.

Baseline As a control experiment, we use a
baseline that consists of the exact same archi-
tecture as the wav2vec?2 large model, but where
trained parameters are replaced by randomly reini-
tialized parameters, a classical baseline in the
probing literature (Arps et al., 2022).

5.3. Results

We present the accuracy of the probe on POS
tagging in Figure 2, while taking as input each of
the 24 transformer layers of the pretrained acous-
tic model. The accuracy ranges from 36.8% for the
first layer (layer 0) to 65.5% for layer 15. The ac-
curacy decreases after layer 15 and plummets for
the last three layers. In contrast, the random initial-
isation baseline is about constant across all layers
with an average accuracy of 24%, confirming that
LeBenchmark encodes indeed POS information.

We observe a similar behavior on the unlabeled
dependency parsing task as shown in Figure 3.
The accuracy of the classifier reaches the peak of
52% at the 14th layer and then degrades towards
the ends. The average random initialized baseline
accuracy is 35%. The overall accuracy of the clas-
sifier on pre-trained representations is lower than
in the POS tagging task, which is expected since
the task is harder.

Our results are in line with those of Shen et al.
(2023), who observed a similar pattern on English
(using different models, data and methods). Com-
pared to the literature on probing BERT models
for syntax, a remarkable difference is that for both
tasks, the accuracy for the final layers plummets
to match the accuracy of the first layers (and even
that of the baseline in the unlabeled dependency
parsing task). In contrast, Hewitt and Manning
(2019) also observe that the middle layers of BERT
encode the most syntactic information, but the de-
crease after the middle layers is not as sharp as
what we observe for LeBenchmark.

We now consider the results on the unlabeled
dependency parsing task using the best layer as
input (layer 14) and present its results in terms of
accuracy and F; score broken down by label in Fig-
ure 4. As expected, we observe that the model
fares better on the most frequent classes, i.e. —1,
+1, and 0 (0 is the label for the root token of an
utterance), with F; scores above 55%. Overall,
we conclude that the model better encodes local
syntactic information. However, it still has non-
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zero F; scores even on longer distance depen-
dency, despite the corpus having no punctuation
marks (whose attachement would be more easily
predictable).

6. Conclusion

We have presented a series of experiments aiming
at probing each layer of a French pretrained acous-
tic model (LeBenchmark) for 2 types of syntactic in-
formation: parts of speech, and unlabeled depen-
dency arcs. We show that the wav2vec?2 architec-
ture encode some information about French syn-
tax, in particular local attachments, despite having
been pretrained only on raw speech signals. We
show that the middle layers of the model are those
from which syntactic information is the more easily
extracted, a result in line with recently published
results on English (Shen et al., 2023). Finally, the
accuracy pattern across layers exhibits a sharp de-
crease in the last layers, a pattern that is not ob-
served in BERT-style text-trained models (where
the decrease is much softer).

7. Limitations

We acknowledge two limitations of our study. First,
due to time constraints we performed all experi-
ments with a single pretrained model, whereas us-
ing another model (LeBenchmark base 7k or a mul-
tilingual model) would have strengthen the robust-
ness of our findings. Secondly, a limitation of the
type of probe that we use is that the target informa-
tion might be present in the representations but not
extractable with a simple linear classifier.

8. Ethical Considerations

To the best of our knowledge, we do not see any
potential ethical limitations of our work.
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