
LREC-COLING 2024, pages 17397–17408
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

17397

Visual-Textual Entailment with Quantities
Using Model Checking and Knowledge Injection

Nobuyuki Iokawa, Hitomi Yanaka
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{iokawa, hyanaka}@is.s.u-tokyo.ac.jp

Abstract
In recent years, there has been great interest in multimodal inference. We concentrate on visual-textual entailment
(VTE), a critical task in multimodal inference. VTE is the task of determining entailment relations between an image
and a sentence. Several deep learning-based approaches have been proposed for VTE, but current approaches
struggle with accurately handling quantities. On the other hand, one promising approach, one based on logical
inference that can successfully deal with large quantities, has also been proposed. However, that approach uses
automated theorem provers, increasing the computational cost for problems involving many entities. In addition, that
approach cannot deal well with lexical differences between the semantic representations of images and sentences.
In this paper, we present a logic-based VTE system that overcomes these drawbacks, using model checking for
inference to increase efficiency and knowledge injection to perform more robust inference. We create a VTE dataset
containing quantities and negation to assess how well VTE systems understand such phenomena. Using this
dataset, we demonstrate that our system solves VTE tasks with quantities and negation more robustly than previous
approaches.
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1. Introduction

Multimodal inference is a challenging task that re-
quires a unified understanding of different informa-
tion types. In particular, inference between visual
and textual data is a fundamental task that has
been actively studied in recent years and has ap-
plications including image retrieval systems and
robot interactions.

Visual-textual entailment (VTE; Xie et al., 2019;
Suzuki et al., 2019) is one of the most critical tasks
for multimodal inference. In a VTE task, an image
and a natural language sentence are provided as
a premise and a hypothesis, respectively. The task
is to determine the entailment relation between
the image and the sentence. The answer is entail-
ment if the image entails the sentence, and non-
entailment otherwise1. Table 1 shows an example
VTE task. In this example, the answer is entail-
ment because the hypothesis sentence correctly
describes the situation in the premise image. As
in this example, determining entailment relations
between an image and a sentence requires an ac-
curate understanding of objects and their relation-
ships in the image, as well as linguistic phenomena
in the sentence, such as quantities and negation.
Visual question answering (VQA; Antol et al., 2015)
is another reasoning task between images and
sentences. In a VQA task, the goal is to provide a

1VTE can be regarded as a three-class classifica-
tion task (entailment, contradiction, or neutral), but in
this study, we consider a binary classification task by
grouping contradiction and neutral into non-entailment.

Premise

Hypothesis Three plates are on the table.

Answer entailment

Table 1: Example VTE task. The premise image
was obtained from the Visual Genome (Krishna
et al., 2017) dataset.

natural language answer when presented with an
image and a corresponding natural language ques-
tion about that image. Addressing VQA requires
diverse skills, involving not only an understanding
of the meaning conveyed in images and text but
also the capability to formulate responses in align-
ment with the question format. In contrast, VTE is
a straightforward classification task that predicts
entailment relations. This task provides a more
direct means of assessing whether the model ac-
curately comprehends the meanings of images and
sentences.

Various deep learning-based approaches have
been developed to perform multimodal inference
between images and sentences (Lu et al., 2019;
Hu and Singh, 2021; Kim et al., 2021; Li et al.,
2021; Singh et al., 2022). In these approaches,
images and sentences are encoded as embed-
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ding vectors, and neural network models trained
with large datasets have achieved remarkable per-
formance on multimodal inference tasks. How-
ever, recent analyses have shown that such deep
learning-based approaches have difficulty in ac-
curately handling quantities (Chattopadhyay et al.,
2017; Zhang et al., 2018; Trott et al., 2018; Acharya
et al., 2019; Parcalabescu et al., 2021).

Approaches based on logical inference have
also been proposed for multimodal inference.
Suzuki et al. (2019) proposed a logic-based sys-
tem for solving VTE tasks. The system first gener-
ates logical meaning representations of a premise
image and a hypothesis sentence, then uses an
automated theorem prover to prove the entailment
relation between them. This approach successfully
solves VTE tasks with sentences featuring quanti-
ties and other semantically complex phenomena.
However, logical representations of images are
usually complex, and the computational cost of
proving these representations is high, especially
for problems involving many entities.

In this paper, we propose a logic-based VTE sys-
tem with model checking. We use model checking
to speed up inference, focusing on VTE tasks in-
volving quantities and negation. Our system repre-
sents a premise image as a first-order logic (FOL)
structure (called an FOL model) and a hypothe-
sis sentence as a logical formula. The entailment
relation is then determined by performing model
checking between them. One crucial issue for
logic-based methods is differences in vocabulary
between a sentence and an FOL model. Another
problem is that an FOL model generated from a
premise image does not fully represent the informa-
tion in the original image. To address these issues,
we apply several types of knowledge injection and
perform more robust inference.

We construct a dataset for VTE that includes
quantities and negation to evaluate whether sys-
tems understand those phenomena. Using this
dataset, we show that our proposed system solves
VTE tasks with quantities and negations more ro-
bustly than the previous approaches (Suzuki et al.,
2019; Kim et al., 2021; Singh et al., 2022).

Our system and dataset will be publicly available
at https://github.com/ynklab/LoVTEQ.

2. Related Work

2.1. Deep Learning-based Systems

There has been remarkable progress in deep learn-
ing techniques in recent years, and approaches
using deep learning are being actively studied
in many areas of natural language processing.
In particular, Transformer (Vaswani et al., 2017)-
based large language models such as GPT (Rad-

ford et al., 2018), BERT (Devlin et al., 2019), and
RoBERTa (Liu et al., 2019), have achieved remark-
able performance on various natural language pro-
cessing tasks.

One deep learning-based approach for VTE
is Vision-and-Language Transformers (ViLT; Kim
et al., 2021), which learn joint representations of
the input image and text through the interaction
of their features in the neural network. ViLT con-
verts images and sentences into vector represen-
tations and predicts entailment relations using a
neural network model trained on a large dataset.
The Foundational Language And Vision Alignment
(FLAVA; Singh et al., 2022) model is another vision-
and-language model pretrained on both unimodal
data like images and text and multimodal data like
image-text pairs. FLAVA can solve image, text,
and multimodal tasks through fine-tuning specific
to the task at hand. Deep learning-based ap-
proaches such as ViLT and FLAVA are fast and
robust to input noise. However, Parcalabescu et al.
(2021) showed that deep learning-based vision-
and-language models have difficulty counting the
number of objects in an image.

2.2. Logic-based Systems

Suzuki et al. (2019) proposed a VTE system using
logical inference. That system maps a premise
image into a logical formula M and a hypothesis
sentence into a logical formula T , then uses an
automated theorem prover to determine whether
M ⊢ T (M entails T ). If so, the system determines
entailment, and non-entailment otherwise. This
system performs accurate inference for VTE tasks
involving linguistic phenomena such as quantities,
but reasoning about problems involving many ob-
jects takes time because it uses an automated
theorem prover. In addition, M and T must share
a consistent vocabulary, because when the same
meaning is paraphrased differently, the system can-
not recognize their identity.

The inference of entailment relations between
tables and sentences has also been studied. Kuro-
sawa and Yanaka (2022) proposed a logical infer-
ence system that focuses on understanding quan-
tities between tables and sentences. This system
maps a premise table into an FOL model and a
hypothesis sentence into a logical formula, then de-
termines the entailment relation by model checking
between the model and the logical formula. Kuro-
sawa and Yanaka (2022) applies model checking
instead of theorem proving to accelerate the in-
ference. Inspired by that approach, our proposed
method uses model checking.

https://github.com/ynklab/LoVTEQ
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2.3. Scene Graph

The VTE system by Suzuki et al. (2019) uses scene
graphs of images when mapping a premise image
to a logical expression. A scene graph (Johnson
et al., 2015) is a graph that represents informa-
tion about an image. Each node of a scene graph
represents either an object in the image, an ob-
ject attribute, or a relationship between two ob-
jects. Scene graphs can capture detailed informa-
tion about images and are applied to tasks such
as image retrieval (Johnson et al., 2015), visual
reasoning (Shi et al., 2019), and image genera-
tion (Johnson et al., 2018).

Previous studies (Yang et al., 2018; Zellers et al.,
2018) proposed neural network models to gener-
ate scene graphs by detecting objects and their
relationships in images. Large-scale scene graph
datasets have also been constructed, including
Visual Genome (VG; Krishna et al., 2017) and
GQA (Hudson and Manning, 2019). The VG
dataset contains manually annotated scene graphs
for more than 100,000 images collected from Mi-
crosoft COCO (MS-COCO; Lin et al., 2014) and
YFCC100M (Thomee et al., 2016). GQA is another
scene graph dataset, constructed from VG by re-
moving duplicated objects and unnatural nodes
from VG scene graphs. The system by Suzuki
et al. (2019) uses VG scene graphs as structured
representations for premise images.

3. Method

3.1. Overview

Figure 1 shows an overview of our system for a
VTE task. We first generate an FOL model repre-
senting a premise image generated from a scene
graph of the image. We then map a hypothesis
sentence to a logical formula via syntactic and
semantic parsing. Finally, we apply model check-
ing to determine whether the logical formula of
the hypothesis sentence is valid under the model
of the premise image. We predict entailment if
the system outputs true, non-entailment otherwise.
During model checking, we incorporate additional
knowledge through knowledge injection.

We explain the details of each step in the follow-
ing subsections.

3.2. Meaning Representation for Images

The following describes how we construct meaning
representations for premise images. We first obtain
a scene graph of a premise image, then construct
an FOL model from that graph.

3.2.1. Scene Graph

We assume that a scene graph of the premise
image is available in an existing dataset. There
are studies about automatic scene graph genera-
tion (Yang et al., 2018; Zellers et al., 2018), and we
will investigate using these approaches in future
work.

Premise images in the dataset we used are from
the VG (Krishna et al., 2017) dataset, and we ob-
tained scene graphs of the images from the VG
and GQA (Hudson and Manning, 2019) datasets.
VG scene graphs contain many overlapping ob-
jects, making it difficult to accurately determine
the number of objects in an image. By contrast,
GQA scene graphs are created by normalizing
VG graphs. Therefore, GQA graphs describe in-
formation about objects more correctly but lack
information about attributes and relationships. To
obtain scene graphs that best represent the image
information, we create the following two graphs in
addition to the graphs included in those datasets.

VG+GQA We use the following procedure to con-
struct graphs by merging VG and GQA scene
graphs for the same image. First, we add the VG
graph objects to the GQA graph in order. If the
added object is already in the graph, we merge
the two objects, eliminating any VG graph overlaps.
We determine that two objects refer to the same
object if the intersection over union of their bound-
ing boxes exceeds a threshold value, which we
manually set to 0.70 based on prior experiments.
We then add the attributes and relationships of the
VG graph to obtain the final scene graph, which we
call VG+GQA.

VG+GQA+OD Some image objects may not be
annotated in the VG+GQA graph. In such cases,
we use a pretrained object detection model (Faster
R-CNN + Inception ResNet V2; Ren et al., 2015;
Szegedy et al., 2017) to identify objects not in the
VG+GQA graph. We then create a new graph
by adding the detected objects to the VG+GQA
graph, determining whether the detected objects
differ from objects in the VG+GQA graph by the
same method used when merging the graphs. We
call the created graph VG+GQA+OD (where OD
stands for "object detection").

3.2.2. FOL Model

We represent the premise image as an FOL model
to perform model checking. The previous approach
by Suzuki et al. (2019) translates a premise image
to a formula for theorem proving, but we construct
a model for model checking. An FOL model is
defined in first-order predicate logic, denoted as a
pair (D,V ), where D is a domain (a set of entities),
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Figure 1: Overview of the proposed system. Our system first constructs an FOL model from the scene
graph of the premise image and maps the hypothesis sentence to a logical formula. Then the system
proves the entailment relation between them by model checking. The predicted label in this example is
entailment.

and V is a valuation (a set of predicates, or map-
pings from entities to truth values). Each predicate
in V is represented as a pair of a symbol and a set
of (tuples of) entities that satisfy the predicate. Our
approach leverages the scene graph of the image
to construct an FOL model as follows:

• Extract objects from the scene graph of the
image and define entities Xi corresponding to
each object.

• Define object names and attributes as unary
predicates and relationships between two ob-
jects as binary predicates.

Figure 2 shows the FOL model constructed from
the premise image in Figure 1.

3.3. Meaning Representation for
Sentences

In this subsection, we introduce meaning represen-
tations for hypothesis sentences. We first parse a
hypothesis sentence based on Combinatory Cate-
gorial Grammar (CCG; Steedman, 2000) to obtain
a CCG tree, then derive a logical formula as the
meaning representation of the sentence according
to the CCG tree.

3.3.1. CCG Parsing

We preprocess the hypothesis sentence in two
steps. First, we identify compound nouns in the
sentence by dependency parsing with spaCy2 and
combine each of them into a single token. Next, we
use spaCy to apply part-of-speech (POS) tagging.

2https://github.com/explosion/spaCy

POS tags are used in the semantic parsing step.
We then perform CCG parsing on the sentence
and derive CCG parse trees. We use the off-the-
shelf CCG parser depccg (Yoshikawa et al., 2017)
to perform CCG parsing, deriving three trees with
the highest probabilities for each sentence.

If the sentence has a there-construction, we filter
the obtained CCG trees by their structure. The
original semantic template of there cannot analyze
sentences with numerals, so we set the meaning
of there is/are to null and adopt the meaning of
subsequent parts as the meaning of the whole
sentence. For this reason, we select only trees
with a there is/are NP structure.

We choose from among the selected trees the
one with the highest probability. We then change
the categories of numerals from N/N to NP/N so
that their semantic representation is appropriately
assigned in the next step, semantic parsing.

3.3.2. Semantic Parsing

Next, we use semantic parsing to derive logical
semantic representations of the hypothesis sen-
tence. Semantic parsing is performed according to
the CCG parse trees using ccg2lambda (Martínez-
Gómez et al., 2016) by lambda calculus. We
use an AtLeast binary predicate as the semantic
representation of numerals.3 When F is a predi-
cate and n is a constant representing an integer,

3Numerals can express both the meaning of at least
and the meaning of exactly (Bylinina and Nouwen, 2020).
We use the at least meaning in this paper, but it is also
possible to express the exactly meaning in the same way
and perform inferences using that meaning by changing
semantic templates.

https://github.com/explosion/spaCy
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D = {X1, X2, X3, X4, X5, X6, X7, X8}
V = {(fork, {X1}), (knife, {X2, X3, X4}), (plate, {X5, X6, X7}), (table, {X8}),

(white, {X5, X6, X7}), (round, {X5, X6, X7}), (wood, {X8}),
(on, {(X1, X8), (X2, X8), (X3, X8), (X4, X8), (X5, X8), (X6, X8), (X7, X8)})}

Figure 2: FOL model of the image in Figure 1.

AtLeast(F, n) represents there are at least n enti-
ties satisfying F . For example, the logical expres-
sion

AtLeast(λx. (plate(x) ∧ white(x)), three)

means there are at least three white plates. In
ccg2lambda, semantic templates define CCG lexi-
cal items. We use the semantic template shown in
Table 2 to compose the meanings of numerals.

To improve the efficiency of model checking, we
also define a binary predicate Obj(c, x), where c is
a constant representing an object name, and x is
an entity. Obj(c, x) means the name of the entity x
is c. All nouns in the sentence are mapped to this
Obj predicate.

3.4. Model Checking

3.4.1. Overview

We perform model checking between the model
of the premise image and the logical formula of
the hypothesis sentence. The system predicts en-
tailment if the output is true, and predicts non-
entailment otherwise. In model checking, we use
the NLTK (Bird and Loper, 2004) evaluation func-
tion with additional processing for the AtLeast and
Obj predicates.

3.4.2. Knowledge Injection

Robust inference requires capturing paraphrases
(different words or phrases with the same mean-
ing) between the model of the premise image and
the logical formula of the hypothesis sentence. We
employ two types of paraphrase recognition in the
model checking process to achieve this: one using
synonyms and hypernyms, the other using word
embedding similarities. These methods are appli-
cable when the model includes the attributes and
relationships of the hypothesis, but cannot prove
attributes and relationships that are not explicitly
included in the model. Since models may not en-
compass all the information in the premise images,
we retrieve and incorporate additional knowledge
directly from visual information.

Synonyms and Hypernyms WordNet (Miller,
1995) is an extensive lexical database of semantic

relations between English words. We use Word-
Net synsets (groups of synonyms) to recognize
whether words in the model and the formula are
synonyms. We also address paraphrasing with
hypernyms. Namely, if a word in the formula is a
hypernym of a word in the model, an entailment re-
lation holds. For example, if the model contains an
object named dog, the hypothesis sentence there
is an animal is true. We use hypernym relations
in WordNet to handle such a paraphrase between
animal and dog. We call this knowledge injection
method WordNet.

Word Embedding We use word embeddings
from the pretrained Word2Vec (Mikolov et al., 2013)
model to cover paraphrases not included in Word-
Net. Namely, we calculate the cosine similarity
between word or phrase embeddings in the model
and one in the formula. The phrase embedding
is computed by averaging the embeddings of the
words in the phrase. We determine that two words
are paraphrases if their similarity exceeds a thresh-
old. We experimented with several threshold val-
ues and adopted those that achieved the best per-
formance (0.40 for objects and 0.90 for attributes
and relationships). We call this method Word2Vec.
For example, handle grip and grip have similar
embeddings (their similarity is 0.79), so they are
determined to be paraphrases. Note that this
method sometimes introduces inconsistencies be-
cause there are cases where words that are not
paraphrases have similar embeddings, such as
dog and cat, which tend to be used in the same
context.

Knowledge Injection from Raw Images We use
embedding vectors from the vision-and-language
model CLIP (Radford et al., 2021) to retrieve visual
information in images. The CLIP model is trained
on many image-text pairs using contrastive learn-
ing to predict high scores for correct image-text
pairs and low scores for others. We use CLIP’s
image and text encoders to obtain embedding vec-
tors of object images and phrases. We describe
the procedure for knowledge injection on attributes
and relationships using these embeddings.

Attribute To infer whether an object obj in the
model has an attribute attr described in the



17402

CCG category NP/N
POS tag CD
Semantics λE,F1, F2, F3.AtLeast(λx.(F1(x) ∧ F2(x) ∧ F3(x)), E)

Table 2: Semantic template of numerals. This template means that when the CCG category is NP/N
and the part-of-speech (POS) tag is CD (cardinal number), the semantics represented as a lambda
expression is given. E in the lambda expression is assigned a numeral.

hypothesis, we compute embedding vectors
of the object’s image and the two phrases,
“obj attr ” and “attr obj.” We then calculate the
cosine similarities between the image embed-
ding and the two phrase embeddings. If either
similarity exceeds a threshold, we conclude
that the object obj has the attribute attr.

Relationship To infer whether a relationship rel
in the hypothesis holds between two objects
obj1 and obj2 in the model, we compute em-
bedding vectors of the image covering the two
objects and the phrase “obj1 rel obj2.” We then
compute the cosine similarity between the im-
age and the phrase. If the similarity exceeds
a threshold, we conclude that the relationship
rel holds between the two objects obj1 and
obj2.

As with the word embedding thresholds for
Word2Vec knowledge injection, we set the thresh-
olds used in these methods to 0.20 from the results
of prior experiments. We call this knowledge injec-
tion method CLIP.

We demonstrate an example of knowledge in-
jection using CLIP embeddings. The image in Fig-
ure 1 entails the sentence there is an empty plate.
The meaning representation of this sentence is

∃x. (Obj(plate, x) ∧ empty(x)).

Among the entities in the model (Figure 2), those
with the name plate are X5, X6, and X7. Here, we
consider the case where X5 is assigned to x. The
next step is to check the truth of empty(X5), but the
model has no empty attribute and no synonyms or
hyponyms of empty. In that case, we calculate the
CLIP embedding similarities between the image
of object X5 and the two phrases, empty plate
and plate empty. Since these similarities (0.31
for empty plate and 0.28 for plate empty) exceed
the threshold (0.20), the entity X5 is determined
to have the empty attribute, so the sentence is
evaluated as true.

4. Experiments

4.1. Dataset

In existing VTE datasets, each hypothesis sen-
tence is independent, and predicting the correct

entailment relation does not indicate whether the
VTE system accurately understands quantities or
negation. Therefore, we created a dataset to mea-
sure an accurate understanding of quantities and
negation. The dataset was created from VG (Kr-
ishna et al., 2017), with each problem consist-
ing of a premise image and two hypothesis sen-
tences where the answer is entailment and non-
entailment, respectively. The correct label must be
predicted for both entailment and non-entailment
sentences to solve each problem.

The dataset contains 100 problems with quanti-
ties and 100 problems with negation. In both cases,
the entailment sentence is based on a phrase in
VG describing the premise image, while the non-
entailment sentence is created by changing the
numeral of the entailment sentence or by switching
the presence of negation. For negation, we deal
with simple syntactic negations such as not and no.
Table 3 shows examples of the created problems.

4.2. Experimental Setting

We compared the inference accuracy and execu-
tion time of our system with the deep learning-
based models (ViLT, Kim et al., 2021 and FLAVA,
Singh et al., 2022) and the logical inference VTE
system (Suzuki et al., 2019) using our created
dataset. We used the two different ViLT models
fine-tuned on NLVR2 (Suhr et al., 2019) and SNLI-
VE (Xie et al., 2019), respectively, and the FLAVA
model fine-tuned on SNLI-VE. SNLI-VE (Xie et al.,
2019) is a large standard VTE dataset. Since the
VTE task in SNLI-VE is a three-class classification
(entailment, contradiction, or neutral), contradic-
tion and neutral are treated as non-entailment for
the models fine-tuned on SNLI-VE. NLVR2 (Suhr
et al., 2019) is another visual reasoning dataset
wherein the task is to determine the correctness
of a given caption for a pair of images. Captions
within NLVR2 cover various linguistic phenomena,
including quantity and negation. When making pre-
dictions using the models fine-tuned on NLVR2, we
utilized pairs of identical premise images. In the
experiment with the system of Suzuki et al. (2019),
we used the VG and GQA scene graphs with a
proof timeout of 60 seconds. For our system, we
experimented with the VG, GQA, VG+GQA, and
VG+GQA+OD graphs and applied all three knowl-
edge injection methods.
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(a) (b)

Premise

Hypothesis E Two men are standing on the road. The man is wearing a silver backpack.

N Three men are standing on the road. The man is not wearing a silver backpack.

Table 3: Example problems in the created VTE dataset. E and N stand for entailment and non-entailment
sentences, respectively. The premise images are obtained from Visual Genome (Krishna et al., 2017).
Problem (a) contains quantities, and problem (b) contains negation.

Model Scene graph Accuracy Execution time (s)
Quantity Negation

Random - 0.25 0.25 -

ViLT (NLVR2) - 0.07 0.38 0.763
ViLT (SNLI-VE) - 0.16 0.38 1.405

FLAVA (SNLI-VE) - 0.14 0.36 1.050

Suzuki et al. (2019) VG 0.08 0.49 3.429
GQA 0.04 0.48 1.840

Ours

VG 0.17 0.49 0.629
GQA 0.20 0.46 0.406
VG+GQA 0.20 0.47 0.456
VG+GQA+OD 0.14 0.47 0.652

Table 4: Accuracy and average execution times (seconds) for inference. Random is the random baseline,
and Ours is the proposed system. Datasets used for fine-tuning are shown in parentheses after model
names. Scene graphs are not used in the deep learning-based models.

We also compared our results to a random base-
line. In our dataset, models are required to accu-
rately predict labels for both entailment and non-
entailment sentences simultaneously to solve each
problem. Given that the accuracy of random pre-
dictions for each sentence label is 0.5, the random
baseline for this task is 0.25 (= 0.52).

In addition, we conducted ablation studies of
knowledge injection to measure the effect of each
knowledge injection method. We evaluated our
system with various knowledge injection settings
using the GQA scene graphs.

4.3. Results

4.3.1. Overall Results

The results with four different systems are shown
in Table 4. The proposed method achieved the
highest accuracy for quantity problems when us-
ing the GQA or VG+GQA scene graphs and the

highest accuracy for negation problems when us-
ing the VG scene graphs. Compared to the ex-
isting approaches, our method with the GQA or
VG+GQA scene graphs achieved the highest accu-
racy for quantity problems. For negation problems,
our method showed better accuracy than deep
learning-based models and was comparable to the
method of Suzuki et al. (2019). Furthermore, the
execution times were shorter than the method of
Suzuki et al. (2019) and comparable to the deep
learning-based models.

Since the entailment and non-entailment sen-
tences in quantity problems are identical except
for the numerals, deep learning-based methods
are prone to errors by embedding both sentences
similarly and predicting the same label for both. On
the other hand, logic-based methods are prone to
errors due to incorrectly capturing the number of
objects in the image.
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Knowledge injection Accuracy Execution time (s)

WordNet Word2Vec CLIP Quantity Negation

✗ ✗ ✗ 0.05 0.50 0.002
✓ ✗ ✗ 0.07 0.52 0.034
✗ ✓ ✗ 0.05 0.58 0.006
✓ ✓ ✗ 0.08 0.58 0.023
✗ ✗ ✓ 0.14 0.44 0.212
✓ ✗ ✓ 0.18 0.41 0.285
✗ ✓ ✓ 0.12 0.48 0.415
✓ ✓ ✓ 0.20 0.46 0.406

Table 5: Accuracy and average execution times (seconds) for model checking in each knowledge injection
setting. GQA scene graphs were used. Details of each knowledge injection method are described in
Section 3.4.2.

Premise

Hypothesis E There are no metallic chairs.

N There are metallic chairs.

Table 6: Negation problem on which the CLIP
knowledge injection led to incorrect predictions.
E and N stand for entailment and non-entailment
sentences, respectively. The premise image is ob-
tained from Visual Genome (Krishna et al., 2017).

4.3.2. Knowledge Injection

Table 5 shows the results of various knowledge
injection settings using the GQA scene graphs.
For quantity problems, the highest accuracy was
obtained by applying all types of knowledge injec-
tion, indicating the effectiveness of these methods.
However, for negation problems, the accuracy was
higher without CLIP knowledge injection than with
it. CLIP knowledge injection also made the in-
ference slower because it takes time to encode
images and text to obtain feature embeddings. We
present a detailed error analysis in Section 5.2.

5. Discussion

5.1. Execution Time

The original Suzuki’s approach uses automated
theorem proving, which is generally slower than
model checking. Because some images in the
dataset contain many objects, and the models cre-
ated from such images are complex, Suzuki’s ap-
proach using automated theorem proving took a
long time to reason in such cases. In contrast,

the proposed method uses model checking, which
is relatively fast even for problems involving such
a large number of entities. For instance, when
performing inference on an image with 29 objects
using a VG scene graph, Suzuki’s method required
over 60 seconds for inference, whereas the pro-
posed method completed model checking in 1.18
seconds.

5.2. Error Analysis

We tried to improve inference accuracy by combin-
ing scene graphs from the two datasets and using
object detection, but the accuracy did not improve
substantially. This failure was due to object du-
plication. In order to accurately solve VTE tasks,
especially those involving quantities, scene graphs
need to contain exact information on objects in the
image. However, the VG scene graphs contain du-
plicated objects, and although the duplication was
removed in the process of creating the VG+GQA
graphs, that removal was insufficient. In addition,
we supplemented object information by object de-
tection, but the duplication of objects increased in
some cases, resulting in more inaccurate graphs.

Also, the accuracy on the negation problems
decreased when CLIP knowledge injection was
added, because this knowledge injection intro-
duces erroneous attributes and relationships. For
example, Table 6 shows a problem where CLIP
knowledge injection led to wrong predictions.
When using only paraphrase recognition for knowl-
edge injection, both entailment and non-entailment
sentences were predicted correctly. However, us-
ing CLIP knowledge injection, chairs were deter-
mined to have attribute metallic. The system thus
predicted the label of the entailment sentence as
non-entailment and the label of the non-entailment
sentence as entailment.

We used the similarity of Word2Vec word em-
beddings in paraphrase recognition, but some-
times this approach failed. For example, computer



17405

and computer mouse are not the same objects.
However, the cosine similarity between their word
embeddings is 0.83, which exceeds the similar-
ity threshold for objects (0.40). Therefore, they
were recognized as paraphrasing, and the object
computer mouse was incorrectly counted as a com-
puter.

In this experiment, approximately 80% of the in-
correct predictions were due to inaccurate scene
graphs or incorrect knowledge injection as de-
scribed above, and parsing errors were relatively
rare in this VTE task.

6. Conclusion

We presented a logic-based VTE system using
model checking and knowledge injection. We also
created a VTE dataset to evaluate the performance
on problems containing quantities and negation.
The results showed that our system solves VTE
tasks involving such linguistic phenomena more
robustly than the existing approaches. Also, by
using model checking, our system successfully
increases the efficiency of inference compared to
the existing logical inference approach.

In future work, we hope to correct the errors
mentioned in Section 5.2. We are also considering
applying the proposed method to arbitrary images
that are not annotated with scene graphs by uti-
lizing scene graph generation (Yang et al., 2018;
Zellers et al., 2018) and a method to predict FOL
models directly from images (Hürlimann and Bos,
2016). In recent years, there has been develop-
ment in models addressing visual reasoning tasks
through programs generated by large language
models (Gupta and Kembhavi, 2023; Surís et al.,
2023). We plan to evaluate these models as part
of our research.
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Limitations

The current parsing method cannot derive an ap-
propriate semantic representation of phrases such
as in front of because phrases consisting of mul-
tiple words are split into individual words. Com-
bining phrases into a single token before parsing
is necessary for more robust inference. Also, our
system only supports cardinal numerals and can-
not correctly parse other numerical expressions
such as ordinal numerals (e.g., first) and numerical
comparatives (e.g., more than two).

Another limitation of our method is the meaning
representation of numerals. The current repre-
sentation of numerals is distributive, which means
each of multiple objects individually does one thing.
There is another meaning of numerals called collec-
tive readings, in which multiple objects collectively
do one thing (e.g., Two men meet). We need to
modify the derivation of logical formulas and the
model checking procedure to support such read-
ings.

Moreover, in the experiments conducted in this
study, we only used a small dataset that we created
for the evaluation. In order to accurately compare
performance with other inference models, it is nec-
essary to use large datasets, such as NLVR2 and
SNLI-VE, which are used to train these models.
However, current large datasets do not contain
scene graphs of premise images, and there are
no existing VTE datasets focusing on quantities
and negation. We thus manually created a small
dataset focusing on these phenomena from Visual
Genome.

Another issue is the setting of thresholds. The
proposed method uses thresholds for (i) check-
ing whether two objects are identical when merg-
ing scene graphs, (ii) recognizing paraphrases us-
ing Word2Vec embeddings, and (iii) determining
whether a phrase correctly describes an object in
an image using CLIP embeddings. These thresh-
olds directly affect inference accuracy, but auto-
matically calculating optimal threshold values is
challenging. In this study, therefore, we manually
set thresholds that achieved the best performance
in preliminary experiments.
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