Unveiling Project-Specific Bias in Neural Code Models

Zhiming Li', Yanzhou Li', Tianlin Li'{, Mengnan Du?, Bozhi Wu'
Yushi Cao!, Junzhe Jiang?, Yang Liu!
'Nanyang Technological University 2New Jersey Institute of Technology
3Hong Kong Polytechnic University
{zhiming001, yanzhou001, tianlin001, bozhi001, yushi002}@e.ntu.edu.sg
mengnan.du@nijit.edu, junzhe.jiang@connect.polyu.hk, yangliu@ntu.edu.sg

Abstract

Deep learning has introduced significant improvements in many software analysis tasks. Although the Large
Language Models (LLMs) based neural code models demonstrate commendable performance when trained
and tested within the intra-project independent and identically distributed (lID) setting, they often struggle to
generalize effectively to real-world inter-project out-of-distribution (OOD) data. In this work, we show that this
phenomenon is caused by the heavy reliance on project-specific shortcuts for prediction instead of ground-truth
evidence. We propose a Cond-Idf measurement to interpret this behavior, which quantifies the relatedness of a
token with a label and its project-specificness. The strong correlation between model behavior and the proposed
measurement indicates that without proper regularization, models tend to leverage spurious statistical cues for
prediction. Equipped with these observations, we propose a novel bias mitigation mechanism that regularizes
the model’s learning behavior by leveraging latent logic relations among samples. Experimental results on two
representative program analysis tasks indicate that our mitigation framework can improve both inter-project OOD
generalization and adversarial robustness, while not sacrificing accuracy on intra-project 11D data. Our code is
available at https://github.com/Lyz1213/BPR_code_bias.

Keywords: Bias Learning, Neural Code Models, Model Interpretation

1. Introduction

Neural network models have revolutionized the soft-
ware engineering community by achieving signifi-
cantimprovements on many benchmarks, while not
requiring much domain expert knowledge and man-
ual efforts. The Transformer architecture-based
Large Language Models (LLMs) are nowadays
the most prevalent neural code models by demon-
strated to be effective on many downstream tasks.
Concretely, the encoder-only LLMs have achieved
improvements in many program analysis tasks
(e.g., bug detection, clone detection, etc. (Feng
etal., 2020; Guo et al., 2021)), the encoder-decoder
LLMs (Ahmad et al., 2021; Raffel et al., 2020;
Wang et al., 2021), as well as the decoder-only
LLMs (Chen et al., 2021; Touvron et al., 2023),
are especially useful for sequential prediction tasks
(e.g., code summarization (Al-Kaswan et al., 2023;
Gu et al., 2022), etc.). In particular, for the encoder-
only LLMs, the CodeBert (Feng et al., 2020) model
and its variants (Guo et al., 2021, 2022) have sur-
passed many delicately designed model architec-
tures without much inductive bias thanks to the
power of the pretraining and fine-tuning (Devlin
et al., 2019; Brown et al., 2020) training paradigm.

Despite the success reported in the literature,
we notice that most of these neural code mod-
els are evaluated merely under the intra-project
independent identically distributed (IID) data-split

1 Corresponding author

setting (Zhou et al., 2019; Allamanis et al., 2020),
i.e., collect code samples (often at the function
level) from multiple projects, then randomly shuffle
and split the dataset for training and test. However,
in real-world scenarios, neural code models should
be trained and tested in the inter-project setting
for the majority of cases, i.e., trained on samples
from a fixed set of projects while tested on sam-
ples from previously unseen projects. It is obvious
that the inter-project setting is much more challeng-
ing since the vocabulary within different projects
varies considerably because the naming conven-
tions among developers differ. Thus, the real-world
inter-project evaluation setting could be considered
as out-of-distribution (OOD), due to the significant
amount of usage of out-of-vocabulary words (Bo-
janowski et al., 2017; Hu et al., 2019) and different
programming styles. In particular, for the repre-
sentative program analysis tasks we evaluated in
this paper, neural code models that achieve decent
performance on the intra-project data suffer from
a significant performance drop on the inter-project
data. In addition, previous empirical analysis indi-
cates that neural code models are also sensitive to
semantic-preserving adversarial attacks (Li et al.,
2020) such as variable renaming and dead code in-
sertion (Yefet et al., 2020; Bielik and Vechev, 2020).

In this work, we aim to explore the reason why
the encoder-only LLMs-based neural code mod-
els have low generalization ability on inter-project
data and why they are vulnerable to naive adversar-
ial attacks. Toward this end, we probe the model

17205

LREC-COLING 2024, pages 17205-17216
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

https://github.com/Lyz1213/BPR_code_bias

Integrated gradient visualization of type inference
static checkStockExists (control) {
const stockItem - GONGHON . set ('s') ;
const selector = gontrol . get ('s') ;
const exists = stockItem . value . some ((stock) => {
BB stock.product_id === parseInt\
(selector.value.product_id, @) ; }) ;
return exists ? { stockExists : true } : null ; }

Integrated gradient vi ization of vulnerability detection

struct device_opts * alloc_device_opts (char ¥ ref) {
struct device_list * device ;
device § malloc (sizeof (struct device_list)) ;
device -> ref B ref ; device =3 next E device_list ;
device 3 opts . name E strdup (default_device . name) ;
return & device -> opts ; }

Figure 1: lllustrative examples of attribution vectors
in terms of integrated gradient for cases of type
inference and vulnerability detection. The shades
of green indicate the weight value of the respective
token in the attribution vector.

behavior with a DNN model explanation algorithm:
integrated gradient (Sundararajan et al., 2017), and
find that the models heavily rely on ungeneralizable
project-specific cues for prediction while ignoring
ground-truth evidence when trained without regu-
larization. We formulate it as project-specific bias
learning behavior. As shown in the examples of
type inference (a task that aims to infer type for vari-
ables of an optionally-typed language) and vulnera-
bility detection (a task that aims to predict whether
a code snippet contains vulnerability) in Figure 1
(see Section 3.1 for detailed descriptions of the two
tasks). To predict the type of variable stockExists,
the GraphCodeBERT (GCB) model relies primarily
on uninformative sub-words such as control, I'tem
from irrelevant variable names in the snippet. In
contrast, human developers would infer based on
the Boolean constant true in the declaration state-
ment and infer it as a Boolean. Similarly, for the
case of vulnerability detection, to predict whether
the snippet contains a vulnerability, the model dis-
tributes almost all its weights to the user-defined
function/variable names, while ignoring the relevant
memory management APl malloc. The vulnerabil-
ity can be easily identified based on the fact that
the malloc function is not used along with a mem-
ory deallocation operation. This learning behavior
is problematic when applying the model under the
inter-project setting or adversarial setting, since the
semantics of these user-defined variable/function
names are inconsistent across projects. Further-
more, we show that project-specific bias learning
behavior can be interpreted with a proposed mea-
surement termed as conditional inverse document
frequency (Cond-Idf), which measures the related-
ness of a token with a label and its project speci-
ficness. We observe that when trained without
regularization, the model would rely heavily on the
tokens that frequently co-occur with a label yet are
highly semantically inconsistent and ungeneraliz-
able for prediction.

Furthermore, for the prevalent bias mitigation
methods we evaluated in this work, we observe
that though these methods manage to mitigate the
model from using observed shortcuts’, there is no
guarantee that the post-mitigated model would infer
based on the expected behavior instead of resorting
to other unexpected bias. To handle this concern,
we propose a novel bias mitigation mechanism,
termed as BPR (Batch Partition Regularization).
The proposed regularization is based on the prin-
ciple of invariant risk minimization (IRM) (Arjovsky
et al., 2019), which explicitly regularizes the model
behavior by identifying common logic properties
among samples. Concisely, the BPR first unshuf-
fles and sorts samples in the training dataset ac-
cording to a measure that embeds prior knowledge
about logic relations. The training dataset is then
divided into batches of environments in which the
samples are the most closely correlated. The in-
batch representations are expected to be regular-
ized during gradient update such that logically corre-
lated samples would share similar representations
instead of embedding other unknown shortcuts af-
ter debiasing the known ones. The major contribu-
tions of our work are summarized as follows:

* We unveil that the previous state-of-the-art
encoder-only LLMs-based neural code models
trained under the intra-project setting would suf-
fer from considerable performance drop on real-
world inter-project/adversarial data, and show
that this phenomenon can be attributed to the
project-specific bias learning behavior.

» We indicate that the project-specific bias learn-
ing behavior can be interpreted with a proposed
measurement called Cond-Idf.

» We propose a novel shortcut mitigation method,
called BPR. The idea is to explicitly regularize
the model behavior during training by identifying
common logic properties among samples.

» Experimental results on two representative pro-
gram analysis tasks validate that BPR can effec-
tively improve inter-project OOD generalization
and adversarial robustness while not sacrificing
accuracy on intra-project IID data.

2. Methodology

In this section, we first introduce the analysis and
interpretation methods of the project-specific bias
learning behavior. Then we illustrate the details
of the proposed bias mitigation mechanism, called
batch partition regularization (BPR).

'we use bias and shortcut interchangeably in this
paper.

17206

Backbone
Encoder

|| $S0| UOIIEDIYISSEe|D |

SSO| Yd9

Figure 2: Overview of the proposed bias mitigation
method. Training samples = € X" are first embed-
ded with 1 and sorted in terms of the similarity mea-
sure k, then batchified and partitioned into multiple
environments ¢ € £ according to their labels and
similarity scores. Finally, the batch partition regu-
larization (BPR) loss is computed along with the
classification loss.

2.1. Behavior Analysis and Interpretation

We consider two typical software analysis tasks:
vulnerability detection and type inference (see Sec-
tion 3.1 for a detailed description of the two tasks).
The backbone encoder-only LLMs-based models
we analyze are the pre-trained CodeBERT (Feng
et al., 2020) and GraphCodeBERT (Guo et al.,
2021, 2022) models. Although they have been re-
ported to achieve state-of-the-art performance on
multiple software analysis tasks (Guo et al., 2021,
2022), we find that compared to their high perfor-
mance on the intra-project 11D data, their perfor-
mance drops considerably on the real-world inter-
project OOD set and adversarial set for the two
evaluated tasks. Intuitively, to robustly infer, the
model should learn to embed abstract, generaliz-
able code semantics, instead of using merely low-
level self-defined variable/function names. In the
following, we unveil that neural code models may
utilize ungeneralizable tokens as shortcuts, while
disregarding ground-truth evidence for predictions.
This is because these tokens co-occur frequently
with the label while they are project-specific and un-
generalizable due to the developer’s idiosyncrasies,
which results in models’ poor generalization and
robustness.

Model Behavior Analysis. We analyze the
model’s behavior using a post-hoc DNN model
explanation algorithm: Integrated Gradient (Sun-
dararajan et al., 2017). Intuitively, the algorithm
attributes the prediction to the input by giving
each feature an importance score (Montavon et al.,
2018), which indicates its contribution to the output.
The detailed formula is as follows:

Algorithm 1: BPR mitigation mechanism

Data: Training set X, similarity function &,
embedding function p, encoder f
// calculate similarity matrix
1 X, ();
2 for (z;,z;) € X x X do
| Xy m(p(ma), plx;)), A € RIFIXI
// training set unshuffling
a4 for \;; € sorted(vec(A\{\i;|i = j})) do
5 for k € {z;,z;} do
6 if £ ¢ X, then
7 L | X Xullk;

// train with BPR loss
8 for B € batches(X,) do
9 Lepr B, 0)~Bx 17 5(0(@i), p(z;))-
10 Se(f(z4;0), f(z5;0))
1 L < LpeBias + 7p - LBPR
// update model weights
12 0+ 60—-—nVel

1Gs(z;) = _ xi))

1 afy x + (
- E:l
(1)
Specifically, given an input sequence with 7" words
z; = {zt}L |, »t € R? denotes a word embedding
with d dimensions, the model f(-) outputs the pre-
diction probability f,(x;) for the ground truth label
y, m denotes the number of intermediate samples
over the straightline path from baseline reference
vector z to the input z;. We then compute the
gradients of f,(x;) with respect to each input word
embedding within z; and reduce each vector of
the gradients to a single attribution value with the
L2 norm. We use zero word embedding as the
baseline reference vector z/. Eventually, we obtain
a feature importance vector 1Gs(z;) € RT, where
each scalar within the vector indicates the contribu-
tion of the corresponding word to f,(x;).

Skewed Dataset Distribution. To reflect the
project-specific bias learning behavior, we propose
a measurement called conditional inverse docu-
ment frequency (Cond-Idf), which measures the
co-occurrence between a word w and a label [
(co-occur(w, 1)), as well as its specificness across
projects II (specific(w,II)). The measurement is
denoted as follows:

Cond-ldf (w,,II) = co-occur(w, 1) A specific(w,II)
=p(l | w) - 1df(w, IT)
N
{rell:wenr}
(2)
We approximate the conjunction with product t-
norm (Esteva and Godo, 2001). Specifically, the

=p(l|w)-log

17207

conditional probability is calculated as p(ljw) =
%&”w’?, and N is the total number of projects in
the corpus: N = |II|. We normalize the Idf term
such that both the two measurements are scaled
between [0, 1]. For each label [, we obtain a distribu-
tion in terms of all words in the vocabulary. Words
with high Cond-Idf values indicate that they fre-
quently co-occur with the label and are also highly
project-specific. We observe that a large portion
of this part of the words is the user-defined com-
ponents. Although these words strongly correlate
with the label in the training set, their semantics
are inconsistent and ungeneralizable. For exam-
ple, consider a case in type inference, a model
might correlate a token temp with the semantics of
a Boolean object in one project, since it is frequently
used in cases such as temp=True;. However, if the
model learns this spurious correlation, it might ar-
bitrarily infer an integer variable temp as Boolean
when dealing with temp=1.0; since it bases its pre-
diction heavily on token temp while ignoring the
ground truth evidence 1. 0.

To interpret the bias learning behavior quanti-
tatively, we evaluate the alignment between the
model’s integrated gradient distribution and its cor-
responding Cond-Idf distribution. We first calculate
the integrated gradient importance vector for every
sample in the IID test set. Afterward, we calculate
the mean integrated gradient value for every token
in the test set vocabulary and sort them in descend-
ing order. We then use polynomial regression to
approximate its corresponding Cond-Idf distribu-
tion and measure its correlation with the integrated
gradient distribution.

2.2. Proposed Mitigation Mechanism

Although many prevalent bias mitigation baselines
manage to improve generalization and robustness
by removing known bias, there is no guarantee
that the debiased model would infer based on the
expected behavior of developers instead of resort-
ing to other unknown biases (Yoo and Qi, 2021).
Motivated by this concern, we propose a novel miti-
gation mechanism called batch partition regulariza-
tion (BPR) to regularize the behavior of neural code
models (see Figure 2). BPR follows the invariant-
risk-minimization (IRM) (Arjovsky et al., 2019) phi-
losophy and aims to constrain neural code repre-
sentation so that the model’s learning behavior is
expected to be invariant when handling samples
with similar syntactic and semantic evidence. De-
tails of the BPR algorithm are shown in Algorithm 1.

Dataset Unshuffling. Given a training set X,
we first compute a similarity matrix A € RI*IxI¥I
of the training set (see line 1-3). Specifically, for

samples (z;,z;) € X x X, we first map them to
a measure space with the embedding function g,
then calculate their similarity with the similarity
function x: A;; < s(p(x;), u(z;)). Intuitively, this
measures the level of logic closeness (similarity) of
syntactic or semantic invariance between samples.
For type inference, we focus on variables with
assignment, we use bag-of-words (BoW) (Harris,
1954) vector that consists of tokens within the
assignment statement of the target word as
embedding 1 and use cosine similarity S, as
k to calculate logic closeness: x(u(:),u(:)) =
Se(BoW (ASSIGN(+)), BoW (ASSIGN(+))),
where ASSIGN(-) denotes the function that
extracts the body of the assignment statement of
the variable. The intuition is that the body of the
assignment statement often contains consistent
and generalizable information that is related to the
type of the variable. For vulnerability detection,
we use an encoder model pre-trained only on
adversarial samples as p (we use CodeBERT
in this work). The adversarial samples are
constructed from semantic-preserving identifier
name replacement, denoted as p (refer to Section
3.1). The intuition is that this encoder would
only rely on the generalizable code semantics
for detection as the biased user-defined token
names are all normalized. The similarity score
between a sample pair (z;,z;) is calculated as:
Aij = Sc(e(p(z;)), e(p(z;))), where ¢(-) denotes the
pre-trained embedding model, S. denotes cosine
similarity function. The training samples are then
unshuffled and sorted according to the vectorized
similarity matrix sorted(vec(AM\{\i;|i = j})) (see
line 4-7). In this way, after batchifying, each
mini-batch B € batches(X,) would consist of
samples with the closest logic relations.

In-batch Regularization. Finally, during training,
within each mini-batch, we use the cosine embed-
ding loss 1%S.(f(z;;0), f(x;;0)) to regularize the
model into using similar representation when em-
bedding samples with the same label and close
logic relations. Here, f denotes the backbone en-
coder, 1% is a boolean operator that selects sam-
ples with the same label. We weigh the loss of
each sample pair with their corresponding similar-
ity score \;; to prevent misalignment. Detailed BPR
loss is as follows:

Lepr = E(o, z)onx 17k (u(2;), p(z;))
. Sc(f(xza 9)7 f(xj; 0))

Lppr can be trained together with existing mitiga-
tion methods and our final loss function is: £ =
LpeBIas +7 - Lepr. In this work, we combine BPR
with adversarial training/gradient reversal methods.
Lpeias denotes loss function for adversarial train-
ing (Yefet et al., 2020)/gradient reversal (Stacey

(3)

17208

Type Inference (CB)

Vulnerability Detection (CB) Vulnerability Detection (GCB) Type Inference (GCB)

— ohens - —

Integrated Gradient
Cond-1df

token index token index token index

Vulnerability Detection (CB) Vulnerability Detection (GCB) Type Inference (CB) Type Inference (GCB)

1df
1df
1df
1df

Figure 3: For the figures in the first row: the lower distribution in each figure is the ranked integrated
gradient distribution. The upper red dashed line denotes the polynomial regression approximation of
the corresponding Cond-Idf distribution in terms of token index. CB and GCB denote the CodeBERT
and GraphCodeBERT models. For the figures in the second row: The blue and orange lines denote the
polynomial regression approximation of the Cond and Idf distribution in terms of token index respectively.

CodeBERT GraphCodeBERT

#Words Top1 Top2 Top3 Top1 Top2 Top3

CodeBERT GraphCodeBERT

#Words Top1 Top2 Top3 Top1 Top2 Top3

Ratio 66.6% 83.0% 90.0% 132% 21.4% 28.8%

Ratio 25.6% 31.6% 34.9% 275% 33.0% 36.9%

Table 1: The ratio of samples whose top-n (n €
{1, 2, 3}) interpretation words contain user-defined
identifiers (vulnerability detection).

et al., 2020) (see Section 3.1). The hyperparam-
eter v denotes the regulatory coefficient for BPR
loss.

3. Experiments

3.1. Experimental Setup

Tasks & Datasets. We experiment with two rep-
resentative program analysis tasks:

» Type Inference: The goal of this task is to pre-
dict the type for variables/parameters/functions
in a code snippet written in optionally typed lan-
guage. In this work, we use the TypeScript
dataset (Hellendoorn et al., 2018). After pre-
processing, the dataset contains samples from
233 TypeScript projects. We follow previous
work (Hellendoorn et al.,, 2018) and split the
dataset by project into 80%, 10% and 10% for
inter-project OOD/adversarial training validation
and test set. The training portion is also randomly
shuffled and split by 80-20 proportions for IID train
and test. We perform a semantic-preserving non-
targeted attack (Yefet et al., 2020) by replacing
variable/parameters/function names with a set of
dummy variables e.g., {var_e, var_1, ...} on the
corresponding inter-project samples to form the
adversarial set.

Table 2: The ratio of samples whose top-n (n €
{1, 2, 3}) interpretation words contain user-defined
identifiers (type inference).

 Vulnerability Detection: Previous work formulates
vulnerability detection as a sequence/graph clas-
sification task, in which given a code snippet, the
neural model should learn to predict whether it
contains vulnerability or not. In this work, we col-
lect 999 C-language open-source projects from
GitHub that contain vulnerabilities via keyword
filtering in the commit message. We split the
dataset by project into 70% for IID training and
testing (randomly split by 80-20 proportions), 10%
and 20% for inter-project OOD/adversarial vali-
dation and test set.We use the same adversarial
set construction as the type inference task.

Mitigation Baselines. We evaluate BPR along
with four representative mitigation baselines: two
model-agnostic methods (reweighting, product-of-
expert (PoE)) and two representation-based meth-
ods (adversarial training, gradient reversal). For
reweighting (Schuster et al., 2019; Clark et al.,
2019), it first obtains a biased model by training
the model only on the biased features, then the
output probability of the bias-only model p;, is used
to adjust the weights of the training samples to train
the debiased model, such that the contribution of
samples to which the biased model assigns high
prediction probability is lower weighted. For the
PoE (He et al., 2019; Clark et al., 2019; Mahabadi
etal., 2020), it also requires a trained biased model,

17209

CodeBERT \ GraphCodeBERT

Methods Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)
INTRA INTER ADV INTRA INTER ADV RA INTER ADV INTRA |INTER ADV
Original 94.82 8291 66.01 98.35 94.87 86.00 \ 9454 83.02 6532 98.77 95.05 84.53
Reweighting 9419 8322 66.81 98.73 9565 86.24 | 9474 8363 66.24 98.97 9588 84.76
PoE 91.66 80.24 6450 96.74 89.74 82.21 93.84 8256 64.73 97.62 90.29 8248
Grad-rev 9434 83.16 66.26 98.32 9528 85.73 | 9462 8358 66.01 98.69 95.63 84.38
Grad-revw/BPR 9490 83.95 66.51 98.85 9584 86.77 | 9537 8442 66.20 98.93 96.06 84.82
Adv-train 9492 8342 7955 98.84 96.08 9427 | 9545 83.74 79.32 99.08 95.82 94.06
Adv-trainw/ BPR 95.25 84.45 80.57 98.87 96.24 94.31 95.68 8495 80.44 99.12 96.08 95.06

Table 3: Generalization and robustness evaluation on the type inference task.

the debiased model is trained by ensembling its
output probability with that of the biased model. For
adversarial training (Madry et al., 2017; Yefet et al.,
2020), it optimizes the model based on both orig-
inal samples and perturbed adversarial samples
so that the co-occurrence of spurious data cues
and labels are down-weighted. Finally, for gradi-
ent reversal (Stacey et al., 2020; Kim et al., 2019;
Minervini and Riedel, 2018), it unlearns the bias in
a minimax game by predicting the target bias us-
ing model representation and reverses its gradient
during backpropagation.

Implementation Details. We focus on the analy-
sis of two encoder-only LLMs-based neural code
models: the pretrained CodeBERT (CB) and Graph-
CodeBERT (GCB) models. We use the open-
sourced checkpoints from Feng et al. (Feng et al.,
2020) and Guo et al. (Guo et al., 2021). For both
benchmarks, we fine-tune the model for 10 epochs,
which all models could converge. We use the Adam
optimizer for the update and the learning rate is set
as 2 x 10~°. The training batch size is set as 16.
We conducted all experiments on a Ubuntu 18.04
server with 24 cores of 2.20GHz CPU, 251GB RAM
and two Quadro RTX 8000 GPUs.

3.2. Project-Specific Bias Analysis &
Interpretation

In this section, we quantitatively analyze and inter-
pret the project-specific bias learning behavior of
the CB and GCB models.

Bias Behavior Analysis. We calculate the mean
integrated gradient for each token in the IID test set
vocabulary and rank them in descending order to
obtain the sorted distribution. Then, for vulnerabil-
ity detection, we perform lexical analysis and cate-
gorize the vocabulary into user-defined identifiers
(denoted as identifier) and others. The identifier
category contains user-defined variable/function
names and macro-definition names. As shown in
Figure 3 (first row), we illustrate the integrated gra-
dient weights of the project-specific tokens with red
bars and others with blue bars. For type inference,
we categorize tokens into user-defined Boolean

variable/function name identifiers and others. Sim-
ilarly, we use red and blue bars to represent the
integrated gradient weights of these two categories,
as shown in Figure 3 (first row). As shown in the dis-
tribution, we observe that the area under the head
of the distribution is heavily reddish for both models
in terms of the type inference task, which indicates
that the models focus heavily on user-defined com-
ponents. Quantitatively, we take the top 1% of the
tokens as the head. While the user-defined identi-
fiers only occupy 15.0% of the vocabulary, 88.1%
of tokens within the head fall into this category for
the CB model, and 83.6% for the GCB model. The
results indicate that the data-flow aware pretraining
objectives of the GCB model allow it to be less bi-
ased than the CB model on the type inference task
which is reliant on explicit def-use relations. The
result is consistent for the vulnerability detection
task. With the top 1% of the tokens as the head,
while the self-defined tokens take up 56.6% of the
vocabulary, 66.8% of the tokens within the head
belong to the user-defined components for the CB
model, while it drops to 39.7% for the GCB model.
Furthermore, we measure the extent of the bias
learning behavior from the sample level. Specifi-
cally, we calculate the ratio of samples whose top-n
(n € {1,2,3}) integrated gradient tokens contain
user-defined identifiers. The results are shown in
Table 1,2. The results indicate that the behavior
of both the CB and GCB models are biased for a
considerable amount of samples. For example, for
vulnerability detection (CB), up to 90.0% of the sam-
ples leverage project-specific user-defined tokens
as its top-3 attribution words for prediction.

Bias Behavior Interpretation. Given the ranked
integrated gradient distribution, we calculate the
corresponding Cond-Idf distribution in terms of the
token index and approximate it with polynomial re-
gression (order=10). As shown in the first row of
Figure 3, we observe that for the head part of the
distribution where models give relatively high at-
tribution weights, the fitted curve of Cond-Idf is
positively correlated with the integrated gradient
distribution for both tasks. We further conduct a
detailed ablation analysis of the Cond-Idf measure-
ment, the results are shown in the second row of

17210

CodeBERT

GraphCodeBERT

Top-1 Acc (%)

F1-score (%)

F1-score (%)

Methods Top-1 Acc (%)
INTRA INTER ADV INTRA INTER ADV A INTER ADV INTRA INTER ADV
Original 81.61 64.01 61.50 82.37 67.94 67.83 ‘ 81.70 64.48 64.34 83.53 68.51 68.18
Reweighting 80.34 61.99 58.64 81.06 67.35 67.31 80.67 63.78 59.93 81.85 67.49 66.2
PoE 81.24 63.09 58.12 81.90 68.02 67.73 81.28 63.61 61.37 83.04 68.39 67.25
Grad-rev 81.66 64.52 63.21 83.05 69.00 68.82 81.27 64.17 64.07 82.78 69.86 69.78
Grad-revw/ BPR 81.73 64.57 64.56 83.20 69.21 69.38 81.57 65.12 65.01 82.33 70.05 70.02
Adv-train 81.89 64.53 63.31 82.60 68.92 68.80 81.91 64.95 64.98 84.07 68.89 68.89
Adv-train w/ BPR 82.76 64.72 64.83 83.24 69.37 69.41 82.46 66.31 66.38 84.47 70.18 70.18

Table 4: Generalization and robustness evaluation on the vulnerability detection task.

Figure 3. Specifically, we break the measurement
into the conditional probability distribution approxi-
mation (Cond) and Idf distribution approximation.
For the two evaluated models on both the vulner-
ability detection and type inference tasks, we can
observe that the head of the ranked integrated gra-
dient distribution positively correlates with both the
Cond and Idf distributions. Quantitatively, to cal-
culate the correlation, we sample 50 data points
that are evenly spaced from the top 50% of both
the ranked integrated gradient distribution and the
Cond/Idf distributions. We use the Spearman’s
rank correlation as the measurement. E.g., for the
GCB model on the type inference task, the head of
the Cond measurement and the ranked integrated
gradient distribution are correlated with a Spear-
man’s rank correlation of pcona = 0.566; and for
the Idf measurement: prq¢ = 1.00. Similarly, for
the CB model on the vulnerability detection task,
the two measurements correlate with the ranked
integrated gradient distribution with high rank cor-
relation (pcona = 0.561, pras = 0.700).

3.3. Bias Mitigation Effectiveness

We present results on the intra-project IID test set,
inter-project OOD set and adversarial set. In Ta-
ble 3, we evaluate the type inference performance
in terms of top-1 and top-5 accuracy following previ-
ous works (Wei et al., 2020; Jesse et al., 2021). In
Table 4, we evaluate the vulnerability detection per-
formance in terms of top-1 accuracy and F1-score.
We have the following three key findings:

+ With the standard IID training-test split, both mod-
els achieve decent performance on the intra-
project 1ID test set relying on shortcut features,
whereas their performance drops significantly
on the inter-project OOD and adversarial set.
For example, for type inference, CB achieves
94.82%@top1-Acc on the intra-project test set
and drops to 82.91% on the inter-project OOD
and further decreases to 66.01% on adversarial
data. The results indicate that the bias learning
behavior seriously undermines models’ general-
izability and robustness.

* Among the baselines evaluated, model-agnostic
mitigation approaches (reweighting and PoE) are
less helpful compared to representation-based
methods (adversarial training and gradient re-
versal). For example, for vulnerability detec-
tion (CB), adversarial training increases adversar-
ial robustness accuracy by +1.81%@top1-Acc,
while reweighting and PoE decrease it by -2.86%
and -3.38% respectively. The results are similar
for type inference. One possible reason is that
there is no clear boundary for defining biased
and unbiased sample, since every code sample
requires the usage of user-defined words like vari-
able/ function names, thus representation-based
mitigation methods are more effective compared
with model-agnostic methods.

« When combined with Grad-rev and Adv-train,
BPR demonstrates a consistent capacity to en-
hance both generalization and robustness by
learning more robust representation. Notably,
it is intriguing to observe that the implementation
of BPR can even yield enhancements in terms of
IID performance. For example, for vulnerability
detection (GCB), BPR improves adversarial train-
ing by +1.40%@top1-Acc, +1.29%@F1 on the
adversarial set. To better understand the source
of improvement, we compute the mean integrated
gradient values of the ground-truth tokens that
the model should focus on for the original model,
model trained with adversarial training and model
trained with adversarial training w/ BPR (we ex-
periment on the GCB model since it achieves
overall better performance). For vulnerability de-
tection, we compute the mean IG value of the
memory management API of the C standard li-
brary. And for type inference, we compute the
value of the boolean constant and logical opera-
tors. The results are shown in Figure 4. Specifi-
cally, adversarial training significantly improves
over the original GCB model, and by incorporat-
ing BPR, the mean IG values of the ground-truth
tokens are all further increased, which indicates
that the model’s behavior is much more robust
and focuses more on the ground-truth tokens.
We further conduct a case study of vulnerability

17211

»

o= o w b s

4.18

334 346 321

w

2.42

IS}

1.14

Type inference

Adv-train w/ BPR

Integrated Gradient

Vul. detection

B Ori Adv-train
Figure 4: Mean integrated gradient of the original
and mitigated GCB models on the ground-truth
evidence.

detection as shown in Figure 5. The union ccb is
first allocated with memory using the C standard
APl malloc. However, it would cause a memory
leak as the program directly return while failing
to free up the memory properly. It is obvious
that the original model completely ignores the
ground-truth API token malloc and erroneously
predicts the function as non-vulnerable. When
trained with adversarial training, model starts fo-
cusing on it and infers correctly. Finally, when
incorporated with BPR, model robustly predicts it
as vulnerable by paying much higher attention to
the ground-truth evidence.

4. Related Work

Shortcut Learning & Mitigation. DNNs have
been shown powerful and prevalent in many ar-
eas (He et al., 2015; Vaswani et al., 2017; Hu
et al., 2021, 2023; Huang et al., 2023). However,
researchers observe that neural models tend to
leverage shallow statistical cues instead of gen-
eralizable features for prediction (Du et al., 2023;
Li et al., 2023a,b). For the VQA task, it is found
that the model often conditions its predictions on
language prior while ignoring the image (Manju-
natha et al., 2019a; Agrawal et al., 2018). For
the NLI task, models tend to focus on a single
branch of input or frequent but spurious unigram
words (Schuster et al., 2019; Niven and Kao, 2019).
One of the most representative line of mitiga-
tion method is debiasing from bias-only model,
which includes re-weighting (Schuster et al., 2019),
product-of-expert (He et al., 2019; Clark et al., 2019;
Zhou and Bansal, 2020; Cadene et al., 2019), etc.
Representation-based methods are another line of
effort that is proven to be effective. The idea is to
orthogonalize model’s representation from the bias
features (Madry et al., 2017; Stacey et al., 2020;
Kim et al., 2019).

Code Representation Learning. Neural models
are useful in modeling programming language data
and perform well in software analysis tasks, e.qg.,

Original pred: non-vul
cam_rescan (struct cam_sim * sim) {
union ccb * ccb = malloc (sizeof (union ccb)) ;
if (xpt_create_path (cam_sim_path (sim)))
return ;}

Adpv. Training

cam_rescan (struct cam_sim * sim) {
union ccb * ccb = malloc (sizeof (union ccb)) ;
if (xPl_create_path (cam_simfpath (sim PPN
return [}
Adyv. Training+BPR
cam_rescan (struct cam_sim * sim) {
union ccb ¥ ccb = malloc (sizeof (union ccb) ;
if (xPE_createllpath (cam@sim_path (sim HRN
return §}

pred: vul

pred: vul

Figure 5: lllustrated example of applying BPR com-
pared to the baseline methods for the vulnerability
detection task.

vulnerability detection (Zhou et al., 2019), program
synthesis (Chen et al., 2018), etc.

The Transformer architecture-based Large Lan-
guage Models (LLMs) have become the most
widely used neural code models due to their state-
of-the-art performance on a wide range of down-
stream tasks. These models can be categorized
into three major groups according to their architec-
tures (Hou et al., 2023): encoder-only (Feng et al.,
2020; Guo et al., 2021), encoder-decoder (Ahmad
et al., 2021; Raffel et al., 2020; Wang et al., 2021),
and decoder-only (Chen et al., 2021; Touvron et al.,
2023) models. Many of the previous neural code
models literature conduct evaluation only under the
intra-project setting instead of the inter-project set-
ting, despite the fact that the latter is closer to reality.
In addition, previous work notices that these neural
code models are vulnerable to naive adversarial
attack (Yefet et al., 2020) such as variable name
change or dead code insertion.

5. Conclusion and Future Work

In this work, we analyze the project-specific bias
learning behavior of the encoder-only LLMs-based
neural code models, which renders them ungener-
alizable to inter-project OOD or adversarial set-
tings. We observe that this phenomenon can be
interpreted via the Cond-Idf measurement. Further-
more, we propose a general mitigation mechanism
BPR that forces the model to infer based on robust
representation using logic relations among sam-
ples. Experimental results on two representative
benchmarks validate that BPR improves OOD gen-
eralization and adversarial robustness while not
sacrificing 11D performance. In the future, we plan
to study bias learning behavior on more bench-
marks and model architectures.

17212

6. Acknowledgments

This research is supported by the National Re-
search Foundation, Singapore, and the Cyber Se-
curity Agency under its National Cybersecurity R&D
Programme (NCRP25-P04-TAICeN) and NRF In-
vestigatorship NRF-NRFI06-2020-0001. Any opin-
jons, findings and conclusions or recommendations
expressed in this material are those of the author(s)
and do not reflect the views of National Research
Foundation, Singapore and Cyber Security Agency
of Singapore.

Limitations

Despite that BPR can effectively increase the gen-
eralization and robustness of the model, one lim-
itation of our approach is that it requires careful
design of the modeling of human expert knowledge.
However, for many software analysis tasks, human
expert knowledge is suboptimal or difficult to ab-
stract. Thus automatic identification of latent bias
for neural code model would be an important future
direction.

Ethics Statement

We state that the vulnerability detection dataset
we used in this work is collected from GitHub via
keyword mapping in the commit message and has
been through rigorous human review, in which all
vulnerabilities are fully disclosed and repaired by de-
velopers, and shall contain no sensitive information
or exposure of privacy. Thus, it would not produce
any potential negative societal consequences.

7. Bibliographical References

Antonio A Abello, Roberto Hirata, and Zhangyang
Wang. 2021. Dissecting the high-frequency bias
in convolutional neural networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 863—-871.

Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and
Aniruddha Kembhavi. 2018. Don't just assume;
look and answer: Overcoming priors for visual
question answering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, pages 4971-4980.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-
training for program understanding and genera-
tion. arXiv preprint arXiv:2103.06333.

Ali Al-Kaswan, Toufique Ahmed, Maliheh lzadi,
Anand Ashok Sawant, Premkumar Devanbu, and
Arie van Deursen. 2023. Extending source code
pre-trained language models to summarise de-
compiled binarie. In 2023 IEEE International
Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 260-271. IEEE.

Miltiadis Allamanis, Earl T Barr, Soline Ducousso,
and Zheng Gao. 2020. Typilus: Neural type hints.
In Proceedings of the 41st acm sigplan confer-
ence on programming language design and im-
plementation, pages 91-105.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and
David Lopez-Paz. 2019. Invariant risk minimiza-
tion. arXiv preprint arXiv:1907.02893.

Pavol Bielik and Martin Vechev. 2020. Adversarial
robustness for code. In International Conference
on Machine Learning, pages 896-907. PMLR.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2017. Enriching word vec-
tors with subword information. Transactions
of the association for computational linguistics,
5:135—-146.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sas-
try, Amanda Askell, et al. 2020. Language mod-
els are few-shot learners. Advances in neural
information processing systems, 33:1877-1901.

Remi Cadene, Corentin Dancette, Matthieu Cord,
Devi Parikh, et al. 2019. Rubi: Reducing uni-
modal biases for visual question answering. Ad-
vances in neural information processing systems,
32:841-852.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. 2021. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374.

Xinyun Chen, Chang Liu, and Dawn Song. 2018.
Execution-guided neural program synthesis. In
International Conference on Learning Represen-
tations.

Christopher Clark, Mark Yatskar, and Luke Zettle-
moyer. 2019. Don'’t take the easy way out:
Ensemble based methods for avoiding known
dataset biases. Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

17213

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather
than generators. In 8th International Conference
on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. Proceedings of the 2019 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies.

Mengnan Du, Fengxiang He, Na Zou, Dacheng
Tao, and Xia Hu. 2023. Shortcut learning of
large language models in natural language un-
derstanding.

Mengnan Du, Varun Manjunatha, Rajiv Jain, Ruchi
Deshpande, Franck Dernoncourt, Jiuxiang Gu,
Tong Sun, and Xia Hu. 2021. Towards interpret-
ing and mitigating shortcut learning behavior of
nlu models. Proceedings of the 2021 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies.

Francesc Esteva and Lluis Godo. 2001. Monoidal
t-norm based logic: towards a logic for left-
continuous t-norms. Fuzzy sets and systems,
124(3):271-288.

Richard Evans and Edward Grefenstette. 2018.
Learning explanatory rules from noisy data. Jour-
nal of Artificial Intelligence Research, 61:1-64.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan,
Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert:
A pre-trained model for programming and natural
languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
1536-1547.

Robert W Floyd. 1962. Algorithm 97: shortest path.
Communications of the ACM, 5(6):345.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, Frangois Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. The journal of machine learning research,
17(1):2096—-2030.

Robert Geirhos, Jorn-Henrik Jacobsen, Claudio
Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. 2020.
Shortcut learning in deep neural networks. Na-
ture Machine Intelligence, 2(11):665-673.

Robert Geirhos, Patricia Rubisch, Claudio
Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. 2019. Imagenet-trained
cnns are biased towards texture; increasing
shape bias improves accuracy and robustness.
Seventh International Conference on Learning
Representations.

lan J Goodfellow, Jonathon Shlens, and Chris-
tian Szegedy. 2014. Explaining and har-
nessing adversarial examples. arXiv preprint
arXiv:1412.6572.

Jian Gu, Pasquale Salza, and Harald C Gall. 2022.
Assemble foundation models for automatic code
summarization. In 2022 IEEE International Con-
ference on Software Analysis, Evolution and
Reengineering (SANER), pages 935-946. IEEE.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. Unixcoder: Unified
cross-modal pre-training for code representation.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 7212—-7225. Association
for Computational Linguistics.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng,
Duyu Tang, Shujie Liu, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, Michele Tu-
fano, Shao Kun Deng, Colin B. Clement, Dawn
Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. Graphcodebert: Pre-
training code representations with data flow. In
9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146-162.

He He, Sheng Zha, and Haohan Wang. 2019.
Unlearn dataset bias in natural language in-
ference by fitting the residual. arXiv preprint
arXiv:1908.10763.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and
Jian Sun. 2015. Deep residual learning for image
recognition.

Vincent J Hellendoorn, Christian Bird, Earl T Barr,
and Miltiadis Allamanis. 2018. Deep learning
type inference. In Proceedings of the 2018 26th
acm joint meeting on european software engi-
neering conference and symposium on the foun-
dations of software engineering, pages 152—162.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kai-
long Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. 2023. Large language

17214

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
http://arxiv.org/abs/2208.11857
http://arxiv.org/abs/2208.11857
http://arxiv.org/abs/2208.11857
https://aclanthology.org/2022.acl-long.499
https://aclanthology.org/2022.acl-long.499
https://openreview.net/forum?id=jLoC4ez43PZ
https://openreview.net/forum?id=jLoC4ez43PZ
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385

models for software engineering: A systematic lit-
erature review. arXiv preprint arXiv:2308.10620.

Ming Hu, Jiepin Ding, Min Zhang, Frédéric Mallet,
and Mingsong Chen. 2021. Enumeration and
deduction driven co-synthesis of ccsl specifica-
tions using reinforcement learning. In 2021 IEEE
Real-Time Systems Symposium (RTSS), pages
227-239. IEEE.

Ming Hu, Zeke Xia, Dengke Yan, Zhihao Yue, Jun
Xia, Yihao Huang, Yang Liu, and Mingsong Chen.
2023. Gitfl: Uncertainty-aware real-time asyn-
chronous federated learning using version con-
trol. In 2023 IEEE Real-Time Systems Sympo-
sium (RTSS). IEEE.

Ziniu Hu, Ting Chen, Kai-Wei Chang, and Yizhou
Sun. 2019. Few-shot representation learning
for out-of-vocabulary words. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4102—4112.

Yihao Huang, Qing Guo, and Felix Juefei-Xu.
2023. Zero-day backdoor attack against text-
to-image diffusion models via personalization.
arXiv preprint arXiv:2305.10701.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit,
Miltiadis Allamanis, and Marc Brockschmidi.
2019. Codesearchnet challenge: Evaluating the
state of semantic code search. arXiv preprint
arXiv:1909.09436.

Paul Jaccard. 1912. The distribution of the flora in
the alpine zone. 1. New phytologist, 11(2):37-50.

Kevin Jesse, Premkumar T Devanbu, and Toufique
Ahmed. 2021. Learning type annotation: is big
data enough? In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations
of Software Engineering, pages 1483-1486.

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin
Kim, and Junmo Kim. 2019. Learning not to learn:
Training deep neural networks with biased data.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages
9012-9020.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang
Xue, and Xipeng Qiu. 2020. Bert-attack: Adver-
sarial attack against bert using bert. In Proceed-
ings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 6193-6202.

Tianlin Li, Qing Guo, Aishan Liu, Mengnan Du,
Zhiming Li, and Yang Liu. 2023a. Fairer: Fair-
ness as decision rationale alignment.

Tianlin Li, Cao Yue, Zhang Jian, Zhao Shigian,
Huang Yihao, Liu Aishan, Guo Qing, and Liu
Yang. 2023b. Runner: Responsible unfair neu-
ron repair for enhancing deep neural network fair-
ness. In 2024 IEEE/ACM 46th International Con-
ference on Software Engineering (ICSE), pages
66—78. IEEE Computer Society.

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu.
2017. Towards deep learning models resis-
tant to adversarial attacks. arXiv preprint
arXiv:1706.06083.

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and
James Henderson. 2020. End-to-end bias mit-
igation by modelling biases in corpora. In Pro-
ceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages
8706-8716.

Varun Manjunatha, Nirat Saini, and Larry S Davis.
2019a. Explicit bias discovery in visual ques-
tion answering models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9562—-9571.

Varun Manjunatha, Nirat Saini, and Larry S Davis.
2019b. Explicit bias discovery in visual ques-
tion answering models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 9562—-9571.

Pasquale Minervini and Sebastian Riedel. 2018.
Adversarially regularising neural nli models to in-
tegrate logical background knowledge. Proceed-
ings of the 22nd Conference on Computational
Natural Language Learning (CoNLL 2018).

Grégoire Montavon, Wojciech Samek, and Klaus-
Robert Miller. 2018. Methods for interpreting
and understanding deep neural networks. Digital
Signal Processing, 73:1-15.

Timothy Niven and Hung-Yu Kao. 2019. Probing
neural network comprehension of natural lan-
guage arguments. Proceedings of the 57th An-
nual Meeting of the Association for Computa-
tional Linguistics.

Judea Pearl et al. 2000. Models, reasoning and
inference. Cambridge, UK: CambridgeUniversi-
tyPress, 19.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yangi Zhou, Wei Li, and Peter J Liu. 2020. Explor-
ing the limits of transfer learning with a unified
text-to-text transformer. The Journal of Machine
Learning Research, 21(1):5485-5551.

17215

https://doi.org/10.1109/rtss59052.2023.00022
https://doi.org/10.1109/rtss59052.2023.00022
https://doi.org/10.1109/rtss59052.2023.00022

Tal Schuster, Darsh J Shah, Yun Jie Serene Yeo,
Daniel Filizzola, Enrico Santus, and Regina
Barzilay. 2019. Towards debiasing fact verifi-
cation models. Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP).

Joe Stacey, Pasquale Minervini, Haim Du-
bossarsky, Sebastian Riedel, and Tim Rock-
taschel. 2020. Avoiding the hypothesis-only bias
in natural language inference via ensemble ad-
versarial training. Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Mukund Sundararajan, Ankur Taly, and Qiqi Yan.
2017. Axiomatic attribution for deep networks. In
International Conference on Machine Learning,
pages 3319-3328. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier lzacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023. Llama: Open
and efficient foundation language models. arXiv
preprint arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
t ukasz Kaiser, and lllia Polosukhin. 2017. Atten-
tion is all you need. Advances in neural informa-
tion processing systems, 30.

Haohan Wang, Zexue He, Zachary C Lipton, and
Eric P Xing. 2018. Learning robust representa-
tions by projecting superficial statistics out. In
International Conference on Learning Represen-
tations.

Yue Wang, Weishi Wang, Shafiq Joty, and
Steven CH Hoi. 2021. Codet5: Identifier-aware
unified pre-trained encoder-decoder models for
code understanding and generation. arXiv
preprint arXiv:2109.00859.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dil-
lig. 2020. Lambdanet: Probabilistic type infer-
ence using graph neural networks. The Interna-
tional Conference on Learning Representations
(ICLR).

Noam Yefet, Uri Alon, and Eran Yahav. 2020. Ad-
versarial examples for models of code. Proceed-
ings of the ACM on Programming Languages,
4(O0OPSLA):1-30.

Jin Yong Yoo and Yanjun Qi. 2021. Towards improv-
ing adversarial training of nlp models. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 945-956.

Jerrold H Zar. 2005. Spearman rank correlation.
Encyclopedia of biostatistics, 7.

Xiang Zhou and Mohit Bansal. 2020. Towards ro-
bustifying nli models against lexical dataset bi-
ases. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 8759-8771.

Yagin Zhou, Shangging Liu, Jingkai Siow, Xiaoning
Du, and Yang Liu. 2019. Devign: Effective vulner-
ability identification by learning comprehensive
program semantics via graph neural networks.
Advances in neural information processing sys-
tems, 32.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun.
2021. A robustly optimized bert pre-training ap-
proach with post-training. In Proceedings of the
20th Chinese National Conference on Computa-
tional Linguistics, pages 1218—1227.

17216

	Introduction
	Methodology
	Behavior Analysis and Interpretation
	Proposed Mitigation Mechanism

	Experiments
	Experimental Setup
	Project-Specific Bias Analysis & Interpretation
	Bias Mitigation Effectiveness

	Related Work
	Conclusion and Future Work
	Acknowledgments
	Bibliographical References

