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Abstract
Natural language processing for programming aims to use NLP techniques to assist programming. It is increasingly
prevalent for its effectiveness in improving productivity. Distinct from natural language, a programming language is
highly structured and functional. Constructing a structure-based representation and a functionality-oriented algorithm
is at the heart of program understanding and generation. In this paper, we conduct a systematic review covering
tasks, datasets, evaluation methods, techniques, and models from the perspective of the structure-based and
functionality-oriented property, aiming to understand the role of the two properties in each component. Based on the
analysis, we illustrate unexplored areas and suggest potential directions for future work.
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1. Introduction

Natural language processing for programming
(NLP4P) is an interdisciplinary field of NLP and
software engineering (SE), aiming to use NLP tech-
niques for assisting programming (Lachmy et al.,
2021). It could relieve developers from laborious
work, e.g., by automatically writing documentation
for a program. Meanwhile, it provides easy access
for non-professional users to improve efficiency,
e.g., by performing a cross-application operation
with natural language (NL) interface (Liu et al.,
2016a). Therefore, it is beneficial for improving
the productivity of the whole society.

Distinct from NL, a programming language (PL) is
characterized by two properties: structure-based
and functionality-oriented, as shown in Figure 1.
First, PL is highly structure-based since it typically
contains multiple sophisticated structures, such as
hierarchy, loops, and recursions. Appropriately
modeling the components and obtaining a structure-
based representation is the key to program under-
standing (Mou et al., 2016; Allamanis et al., 2018;
Hu et al., 2018; Guo et al., 2020; Wang et al., 2021;
Guo et al., 2022). Second, PL is functionality-
oriented since it is executable and ought to convert
given input into expected output. Developing an
algorithm oriented to the functionality is at the heart
of generating a logically correct program (Chen
et al., 2021; Hendrycks et al., 2021; Li et al., 2022;
Nijkamp et al., 2022; Le et al., 2022). Despite the
benefits, the two properties cannot be directly mod-
eled by conventional NLP approaches due to the
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def fib(n):
    if n == 1 or n == 2:
        return 1
    return fib(n-1) + fib(n-2)

Calculate the n-th element of the Fibonacci sequence
Natural Language
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Figure 1: An example of the structure-based
and functionality-oriented property of programming
language. Colored fonts and indents denote dif-
ferent aspects of the structure-based property.
Functionality-oriented refers to the property that
PL should convert given input into expected output.

heterogeneity between NL and PL, making the in-
tegration of the properties a fundamental topic in
NLP4P.

From the perspective of pre-training, Niu et al.
(2022), Zan et al. (2023) have summarized the
recent advances. Nevertheless, the role of the
structure-based and functionality-oriented property
has not been sufficiently discussed. In this paper,
we focus on the properties and systematically re-
view their effect in defining tasks (§2), constructing
datasets (§3), forming evaluation methods (§4),
supporting techniques (§5), and achieving SOTA
performance (§6). Based on the analysis, we il-
lustrate unexplored areas of current NLP4P and
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Figure 2: Categories of NLP4P tasks.

potential directions for future work (§7). The contri-
butions of this paper are summarized as follows:

• We identify two properties of PL: structure-
based and functionality-oriented, which are
essential for program understanding and gen-
eration, respectively.

• From the perspective of the properties, we sys-
tematically review current work, covering tasks,
datasets, evaluation methods, techniques, and
representative models that achieve SOTA per-
formance.

• By analysis of current NLP4P, we illustrate un-
explored areas and suggest potential direc-
tions for future work.

2. Tasks

As shown in Figure 2, we classify a task as
functionality-oriented if it aims at program genera-
tion; otherwise as structure-based. Within each cat-
egory, we further divide the tasks according to ap-
plication scenarios to cluster related tasks and high-
light subtle differences between them. The partition
of the structure-based and functionality-oriented
roughly aligns with the partition of understanding
and generation in NLP. In addition to the classi-
cal tasks, there is a trend in program-aided task
which improves the performance of downstream
tasks by programming. The two paradigms of the
program-aided task are also consistent with our
structure-based and functionality-oriented perspec-
tive, which will be introduced in detail at the end of
this section.

2.1. Summarization Tasks
The summarization task summarizes a program
into an NL description. It is crucial for the mainte-

nance of software, especially those involving multi-
ple developers. From the perspective of NLP, ab-
stractive summarization is a generation task. We
classify it as structure-based since PL lies in its
input side, and the key to the task is understand-
ing the content of PL by the structure. According
to the format of the output, it can be further di-
vided into comment generation (Nie et al., 2022)
and docstring generation (Clement et al., 2020).
The output of the latter contains some structural
information, such as parameters and input/output
examples.

2.2. Retrieval Tasks
The retrieval task mainly refers to the code search.
It aims to retrieve relevant programs given NL
query (Husain et al., 2019). It has a similar ap-
plication scenario and input/output format to pro-
gram synthesis. The difference is that its output is
extracted from existing programs, rather than be-
ing synthesized from scratch. Sourcegraph1 is a
typical application of the code search. It enables
rapid search of code from large codebases, aiding
developers in finding relevant code snippets.

2.3. Classification Tasks
The classification task detects whether given pro-
grams have specific characteristics, e.g., being
cloned (clone detection), or being vulnerable
(vulnerability identification). They are essen-
tial in protecting software from the effects of ad-
hoc reuse (Svajlenko et al., 2014) (e.g., Code In-
sight developed by Pattern Insight2) and cyber at-
tacks (Zhou et al., 2019). The granularity of the
input ranges from a coarse-grained software repos-
itory (Hovsepyan et al., 2012) to a fine-grained func-
tion (Russell et al., 2018; Zhou et al., 2019).

Despite the fact that NL does not explicitly occur
in either input or output, we include tasks of such
form for two reasons. First, PL has been demon-
strated to contain abundant statistical properties
similar to NL (Mou et al., 2016). Second, most of
the ways that PL is processed are derived from
NLP, like machine translation techniques (Tufano
et al., 2019) in the transcription task (§ 2.5).

2.4. Synthesis Tasks
The synthesis task generates a program given a
context (which can be NL, PL, or their mixture),
thus can accelerate the development process. It
can be further divided into program synthesis and
code completion by the formal completeness of
the output. The output of program synthesis is a

1https://sourcegraph.com/
2https://patterninsight.com
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relatively independent unit, such as a function and
a class, while the output of code completion is less
restricted, ranging from tokens to code snippets.

Program synthesis is also called code gen-
eration. It is the systematic derivation of a
program from a given specification (Manna and
Waldinger, 1980). Conventional deductive ap-
proaches (Manna and Waldinger, 1980; Polozov
and Gulwani, 2015) take logical specifications,
which are logically complete but hard to write. In-
ductive approaches (Lieberman, 2001) list input-
output examples as specifications, which are more
accessible but incomplete. In contrast, an NL spec-
ification is sufficient to describe the logic of a pro-
gram. Meanwhile, it is compatible with input-output
examples by including them in a docstring. There-
fore, it can take advantage of both the deductive
and inductive approaches.

Code completion is also called code sugges-
tion in early research (Tu et al., 2014; Hindle et al.,
2016). It suggests the next program token given
a context and has been widely applied to IDEs (Li
et al., 2018). The application scenario includes
the completion of method calls, keywords, vari-
ables, and arguments. With the bloom of the pre-
trained models, the scenario has been extended
to punctuations, statements, and even code snip-
pets (Svyatkovskiy et al., 2020), further blurring the
line between program synthesis and code comple-
tion. Copilot3 is exactly a representative product
that can accomplish both two tasks.

2.5. Transcription Tasks
The transcription task converts a given program to
meet a specific requirement. Concretely, program
translation aims to convert between high-level PL,
e.g., C++ and Java (Zhu et al., 2022). It can acceler-
ate the update of projects written by deprecated PL,
and the migration of algorithms implemented by var-
ious PLs, represented by the TransCoder (Roziere
et al., 2020). Code refinement aims to convert a
buggy program into correct one (Wang et al., 2021)
or optimize an existing program. It is closely related
to vulnerability identification but is required to fix the
detected bugs simultaneously. For instance, the
Snyk4 can identify and fix security issues in code.
The transcription task differs from the synthesis
task in two aspects. First, its input program is for-
mally complete (input program is None or a function
header in program synthesis, a partial code snip-
pet in code completion). Second, its output can be
strictly aligned with the input in both the format and
the content.

3https://github.com/features/copilot
4https://snyk.io/

2.6. Program-aided Tasks

The program-aided approach improves the perfor-
mance of a target task by the following two main
paradigms: using program structure to construct in-
termediate representation, and executing program
functionality to obtain the expected output.

Typically, the target task of the first paradigm in-
volves structured commonsense reasoning, whose
output is a graph (Madaan et al., 2022; Wang et al.,
2023a). Since language models cannot directly
generate a graph, a sequential intermediate repre-
sentation is generated instead, and subsequently
converted into a graph. In this way, the program
is intrinsically superior to intermediate representa-
tions in other formats. First, the program is highly
structured and qualified to represent graphical in-
formation. Second, the program is an essential
source of the training data of LLM (especially code
LLM), thus is more readily to be processed than
other intermediate representations.

The second paradigm generates a program
whose functionality accomplishes the target task.
The program can be simply an equation, which can
be calculated by an interpreter to avoid numerical
error (Gao et al., 2023), or API commands to invoke
external tools (Surís et al., 2023).

3. Datasets

Datasets are the basis for supporting the learning
process of tasks. We thus classify current datasets
(exhaustively searched from 2016 to date) into gen-
eral, structure-based, and functionality-oriented,
following the categories of tasks (as shown in Ta-
ble 1). The general dataset is less processed and
can be used in the early learning stage regardless
of tasks. The structure-based and functionality-
oriented datasets are dedicated data that properly
processed for specific tasks.

3.1. General vs. Dedicated

There are two primary sources of general datasets:
1) open-source platforms such as GitHub, GitLab,
and SeCold, 2) community-based spaces like Stack
Overflow. The datasets are automatically collected
and large in scale, thus can be applied to pre-
training to ensure generated PL is grammatically
correct and logically valid. However, sometimes
they are noisy and non-informative. For instance, a
commit message like “update” is of little substantial
content; a code snippet answer might be irrelevant
to its question (Iyer et al., 2018).

Structure-based datasets are specially formatted
to support particular tasks. Concrete structure infor-
mation is available via open-source parsers, e.g.,
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Data Source PL Size Type

G
en

er
al

D
at

as
et

PanguCoder (2022) GitHub Python 147 NL-PL
PL

The Pile (2020) GitHub, ArXiv,... - 825 NL
PL

Ahmad et al., 2021 GitHub, Java, 655 NL
Stack Overflow Python PL

Fried et al., 2022 GitHub, GitLab, 28 216 NL
Stack Overflow PL

The Stack GitHub 30 3,100 PL
Li et al., 2022 GitHub 12 715 PL

BigQuery GitHub C/C++, Go, Java, 340 PLJS, Python
BIGPYTHON (2022) GitHub Python 217 PL

CodeParrot GitHub Python 180 PL
Chen et al., 2021 - Python 159 PL

GCPY (2022) GitHub Python - PL

St
ru

c-
ba

se
d CG CodeNN (2016) Stack Overflow C#, SQL <1 NL-PL

CS CodeSearchNet (2019) GitHub Go, Java, JS, PHP, 17 NL-PL
Python, Ruby PL

CD BigCloneBench (2014) SeCold Java 2 PL
POJ-104 (2016) - C/C++ <1 PL

VI Devign (2019) QEMU, FFmpeg C <1 PL

Fu
nc

tio
na

lit
y-

or
ie

nt
ed

PS

CONCODE (2018) GitHub Java 13 NL-PL
CodeNet (2021) AIZU, AtCoder 55 8 NL-PL

CodeContests (2022) CodeNet, Codeforces, C/C++, Java, 3 NL-PLCaballero et al., 2016 Python

APPS (2021) Codewars, AtCoder,
Kattis, Codeforces Python 1 NL-PL

Code Alpaca (2023) Machine-generated Python <1 NL-PL
HumanEval (2021) Hand-craft Python <1 NL-PL

HumanEval-X (2023) Hand-craft C++, Go, Java, <1 NL-PLJS, Python
MBPP (2021) Hand-craft Python <1 NL-PL

DS-1000 (2023) Stack Overflow Python <1 NL-PL
CoderEval (2023) Github Java, Python <1 NL-PL
AixBench (2022b) - Java <1 NL-PL

AixBench-L (2023a) Github Java <1 NL-PL

CC PY150 (2016) GitHub Python <1 PL
Github Java (2013) GitHub Java <1 PL

PT CodeTrans Lucene, POI, JGit, Antlr C#, Java <1 PL
CR Bugs2Fix (2019) GitHub Java 15 PL

Table 1: An overview of datasets. Struc-based denotes the structure-based. Abbreviations in upper
case denote tasks (Figure 2). For datasets that contain numerous kinds of PL, the total number of PLs is
reported instead of concrete PL types. The unit of data size is GB. NL-PL in the last column denotes a
parallel dataset whose all samples contain paired NL and PL. Single NL or PL denotes a monolingual
dataset whose dominant language is NL or PL.

Tree-sitter.5 Most functionality-oriented datasets
contain a number of test cases for each sample
to verify the functional correctness of synthesized
programs. Therefore, the datasets are typically
hand-crafted (Chen et al., 2021; Austin et al., 2021)
or collected from online judge websites (Iyer et al.,
2018; Puri et al., 2021; Hendrycks et al., 2021; Li
et al., 2022), including AIZU, AtCoder, Codeforces,
Codewars, and Kattis.

5https://tree-sitter.github.io/tree-sitter/

3.2. Parallel vs. Monolingual

To further explore the potential of datasets outside
their original tasks, we divide them into parallel
(denoted as NL-PL) and monolingual (denoted as
NL or PL). We define a dataset as parallel if all
samples include paired NL and PL, otherwise as
monolingual. The type of monolingual datasets is
denoted by their dominant language. For instance,
Stack Overflow QA pairs with optional code snip-
pets are denoted as NL, and GitHub programs with
optional comments are denoted as PL. Note that a
dataset may consist of multiple subsets of different
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types, we explicitly list them in the last column of
Table 1. Generally, parallel datasets are relatively
homogeneous, and thus can support other tasks
whose dataset is of the same type. For example,
CodeSearchNet can also be used for comment gen-
eration (Lu et al., 2021). In contrast, a monolingual
dataset is usually task-related with specific labels,
limiting its generalization ability for other tasks.

4. Evaluation Methods

The evaluation metric is also closely related to the
task. Considering that the retrieval and classifica-
tion tasks are well-defined and their metrics (such
as F1, MRR, and accuracy) are universally ac-
cepted, we focus on the summarization, synthesis,
and transcription tasks, whose evaluation remains
an open question. Concretely, the output of summa-
rization is NL. Thus the evaluation can directly refer
to NLP. For the synthesis and transcription task,
whose output is PL, the functionality-oriented prop-
erty is the main concern, assisted by the structure-
based property as an auxiliary.

4.1. NL Evaluation
NL evaluation can refer to NLP and be conducted
by the following two complementary approaches.
Automatic Evaluation is usually implemented by
comparing the n-grams between the predicted out-
put and given references. Concrete metric includes
BLEU (Papineni et al., 2002), MENTOR (Banerjee
and Lavie, 2005), and ROUGE (Lin, 2004). How-
ever, limited by the number of references, they
might correlate weakly with the real quality (Liu
et al., 2016b). Hence, it is crucial to conduct a
human evaluation simultaneously. Human Evalua-
tion consists of several independent dimensions,
such as naturalness, diversity, and informative-
ness. Human evaluation is more accurate, fine-
grained, and comprehensive than automatic eval-
uation. However, it is also time-consuming and
labor-intensive, and thus can only be conducted on
a small subset of the test set.

4.2. PL Evaluation
PL evaluation can be conducted by the following
two methods using the references and the test
cases as evidence, respectively.

Reference based Evaluation Regarding a pro-
gram as a sequence of tokens, PL can also be
evaluated by n-gram based NL metrics. To further
capture the structure-based property, Ren et al.
(2020) propose the CodeBLEU metric, which takes
AST and data flow graph into consideration. Sim-
ilar to NL, PL is expressive in that a program can

be implemented differently, leading to the same
weak correlation issue with a limited number of
references.

Test Case based Evaluation Hendrycks et al.
(2021) propose two metrics based on test cases:
Test Case Average and Strict Accuracy. Suppose
there is a single generated program and a varying
number of test cases for each sample. Test Case
Average computes the average test case pass rate
over all samples. Strict Accuracy is a relatively
rigorous metric. A program is regarded as accepted
if and only if it passes all test cases, and the final
Strict Accuracy is the ratio of accepted programs.

Actually, we can generate more than one (e.g.,
K) program for each sample to improve the perfor-
mance. In this way, Strict Accuracy regards a sam-
ple as accepted if any of the K programs pass all
test cases. Therefore, it is also called p@k in some
literature. The sampling size could be huge, but
the number of submissions sometimes is limited,
like the competition scenario. To highlight the dif-
ference between the sampling and submission, Li
et al. (2022) further propose the n@k metric, which
computes the acceptance ratio when sampling k
and submitting n programs.

The test case based evaluation is a remarkable
progress, which has already in turn improved the
training process via reinforcement learning (Le
et al., 2022). Currently, the associated datasets
are only available in program synthesis. Extending
it to other functionality-oriented tasks is expected
to gain similar improvement.

5. Techniques

The heterogeneity between NL and PL requires ex-
tra effort in techniques to process programs. First,
the key to understanding the content of a program
is appropriately representing its structure informa-
tion. Second, at the heart of program generation
is elaborately designing an algorithm to achieve
functional correctness. Therefore, we introduce
the techniques by structure-based understanding
and functionality-oriented generation, respectively.

5.1. Structure-based Understanding
Compared with NL, PL has more sophisticated
structures, such as hierarchy, loops, and recursions.
Generally, it would benefit the performance by ex-
plicitly representing the structures with appropriate
data structure, including relative distance, abstract
syntax tree, control flow graph, program depen-
dence graph, and code property graph.

Relative Distance typically refers to the distance
between two tokens in the source code sequence.



1695

In this way, it can be easily combined into token
representations as a feature. Ahmad et al. (2020)
represent the relative distance as a learnable em-
bedding and introduce it into transformer models
by biasing the attention mechanism. Results show
that the relative distance is an effective alternative
to AST to capture the structure information. Based
on that, Zugner et al. (2021) further extend the con-
cept of relative distance from textual context to AST.
Jointly training a model with the two types of relative
distance achieves further improvement.

Abstract Syntax Tree (AST) is a tree representa-
tion that carries the syntax and structure information
of a program (Shi et al., 2021). It simplifies inessen-
tial parts (e.g., parentheses) of the parse tree by
implying the information in its hierarchy. Each node
of AST has arbitrary number of children orga-
nized in a specific order. Therefore, a lossless
representation of AST should capture the two char-
acteristics simultaneously. Despite that, some AST
can be complex with a deep hierarchy (Guo et al.,
2020), which delays the parsing time and increases
the input length (up to 70%) (Guo et al., 2022).

Control Flow Graph (CFG) represents a pro-
gram as a graph. Its node (also called a basic
block) contains a sequence of successive state-
ments executed together. Edges between nodes
are directed, denoting the order of execution (Allen,
1970). CFG makes it convenient to locate specific
syntactic structures (such as loops and conditional
statements) and redundant statements.

Program Dependence Graph (PDG) is another
graphical representation of a program. Nodes in
PDG are statements and predicate expressions,
and edges denote both data dependencies and
control dependencies (Ferrante et al., 1987). The
data dependencies describe the partial order be-
tween definitions and usages of variables, and
have been demonstrated to be beneficial for pro-
gram understanding (Krinke, 2001; Allamanis and
Brockschmidt, 2017; Allamanis et al., 2018; Guo
et al., 2020). Similar to CFG, control dependencies
also model the execution order, but it highlights a
statement or a predicate itself by determining edges
according to its value (Liu et al., 2020a).

Code Property Graph (CPG) is a joint graph that
merges AST, CFG, and PDG (Yamaguchi et al.,
2014). In this way, it takes advantage of all the rep-
resentations, and thus can comprehensively repre-
sent a program for structure-based tasks, such as
vulnerability identification (Zhou et al., 2019) and
comment summarization (Liu et al., 2020a).

Call Graph and Inter-procedural Control Flow
Graph (ICFG) both provide rich dependency rela-
tionships among functions. As a reference, the re-
cently released DeepSeek-Coder (Guo et al., 2024)
has achieved a new SOTA among open-source
code models. A significant innovation of its data
processing is exactly the incorporation of file-level
dependency. It would be interesting to explore if a
more fine-grained function-level dependency in Call
Graph and ICFG could gain further improvement
in future work.

In summary, a structure-based representation
benefits program understanding. Among the repre-
sentations, relative distance takes the most concise
form but has the minimum structure information,
while CPG is the other extreme. AST, CFG, and
PDG are a balance between conciseness and infor-
mation capacity. As a tree representation, AST can
be more easily integrated by a backbone model
than the graphical CFG and PDG, and thus is the
most widely used structure-based representation.

5.2. Functionality-oriented Generation
Distinct from NL, PL is executable and ought to con-
vert an input into an expected output to implement
specific functionality. The techniques to ensure
functional correctness involve the entire period of
developing a model, including preparing training
data (self-instruct), generation (interactive program-
ming), and post-processing (sampling & filtering).

Self-Instruct Supervised fine-tuning (SFT) is cru-
cial for generating correct programs that aligned
with human intentions (Hendrycks et al., 2021).
However, instruction-code pairs for SFT are hard to
collect in practice. To this end, Chaudhary (2023)
employ the self-instruct approach (Wang et al.,
2022) to automatically construct an instruction-
code dataset named Code Alpaca via LLM. Based
on the dataset, Luo et al. (2023) propose an evol-
instruct approach to evolve existing samples into
more complex and diverse samples. The evolution
process can be iterated up to three times, gradually
improving the functional correctness.

Interactive Programming Generally, program-
ming is an evolutionary process involving multiple
iterations, rather than writing from scratch at one
time. For instance, it is difficult to solve a problem
with a single submission despite the developers
being experienced. As a reference, the average
accept rate of Codeforce,6 a competitive program-
ming website, is only 50.03%. Interactive program-
ming, a progressive paradigm with a natural lan-
guage interface, may shed light on this problem.
Concretely, the interaction can be conducted by

6http://codeforces.com/
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Code Search (MRR) Clone Detection (F1) Program Translation (BLEU) Program Synthesis (BLEU)

CodeT5 UniXcoder GraphCodeBERT PLBART CodeBERT

Functionality-oriented TasksStructure-based Tasks

Figure 3: The results of structure-based models on CodeXGLUE. CodeT5, UniXcoder, and GraphCode-
BERT, whose inputs have structure information, significantly outperform others on structure-based tasks.
For functionality-oriented tasks like program translation, the performance of encoder-decoder architecture
(CodeT5 and PLBART) is higher than that of decoder-only architecture (UniXcoder, GraphCodeBERT,
and CodeBERT).

disentangling a problem into several simple sub-
problems and resolving them step by step (Nijkamp
et al., 2022). Meanwhile, the interaction can also
occur among iterations by taking into account the
execution feedback (Zhang et al., 2023).

Sampling & Filtering To further improve the
functional correctness, NLP4P has developed a
sampling-based paradigm, which first samples a
large volume of candidates and subsequently se-
lects the desired program by test case based filter-
ing and clustering techniques (Chen et al., 2021;
Li et al., 2022; Nijkamp et al., 2022). To ensure
good coverage of the desired program, first, the
number of sampling should be as large as possible
(up to 1M per problem in Li et al., 2022). Second,
it would be better to employ the standard sampling
with temperature or the top-k sampling algorithm,
rather than the beam search, whose generated can-
didates can be pretty similar to each other (Li et al.,
2016). The resulting programs are subsequently
filtered by checking the functional correctness on
given test cases (Li et al., 2022; Chen et al., 2022).
However, the number of programs after filtering
can still be huge if there are too many programs
sampled. To fit the scenario where the number of
submissions is limited, Li et al. (2022) propose a
clustering strategy. It first clusters the programs ac-
cording to their behaviors on generated test cases.
Then it selects and submits a program from the
clusters one by one. This strategy avoids repeti-
tively submitting programs with identical bugs.

5.3. Backbone Models

Most of the functionality-oriented algorithms are
model-agnostic and have little impact on the choice
of a backbone model. In this section, we focus on
the match between the structure-based represen-
tation (e.g., AST) and backbone models.

Recurrent Neural Network (RNN, Mikolov et al.,
2010) and its variant LSTM (Hochreiter and Schmid-
huber, 1997) are capable of processing variable-
length inputs. Therefore, it is well-suited for repre-
senting NL description (Liu et al., 2016a; Weigelt
et al., 2020) and PL token sequence (Wei et al.,
2019). Meanwhile, it accepts the structure-based
representation formatted as a sequence, e.g., the
pre-order traversal of AST. However, such trans-
forms are lossy in that the AST cannot be recovered.
To this end, Hu et al. (2018) propose a structure-
based traversal (SBT) approach, adding parenthe-
ses into the sequence to mark hierarchical rela-
tionships. Distinct from SBT that adapts data to
a model, Shido et al. (2019) propose a Multi-way
Tree-LSTM, which directly takes input as AST. It
first encodes the children of a node with a standard
LSTM, and subsequently integrates the results into
the node with a Tree-LSTM.

Convolutional Neural Network (CNN, LeCun
et al., 1989) extracts the features by scanning an
input with a sliding window and applying stacked
convolution and pooling operations on the window.
Both two operations can be parallelized, making
CNN more time-efficient than RNN. CNN in NLP4P
usually takes input as execution traces (Gupta et al.,
2020), input-output pairs (Bunel et al., 2018), and
encodes them into an embedding as the output.
Similar to Tree-LSTM, CNN can also be adapted to
the structure-based representation. For instance,
Mou et al. (2016) propose a tree-based convolu-
tional neural network (TBCNN), which encodes
AST by a weight-base and positional features.

Transformer (Vaswani et al., 2017) has a similar
interface to RNN. It is more time-efficient and can
better capture long-term dependencies, which is
essential for processing PL since programs can
be pretty long (Ahmad et al., 2020). Despite these
approaches, some studies explore the usage of
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feed-forward neural network (Iyer et al., 2016; Loy-
ola et al., 2017), recursive neural network (Liang
and Zhu, 2018), and graph neural network (Liu
et al., 2020a). The architecture of the models, as
well as RNN and CNN, can be flexibly adapted to
customized data, e.g., the primitive AST. While for
large-scale general data, the transformer is sug-
gested due to its high capacity and easy access to
pre-training.

6. Representative Pre-training Models

SOTA pre-training models can be roughly divided
into two categories according to the benchmarks
they are evaluated. The first category focuses
on the CodeXGLUE benchmark (Lu et al., 2021),
which is composed primarily of structure-based
datasets, as shown in Figure 3. The second aims
at passing the test cases of functionality-oriented
datasets, as typified by HumanEval (Chen et al.,
2021) in Figure 4. We denote the two categories as
structure-based models and functionality-oriented
models, respectively.

6.1. Structure-based Models
The performance of this category is shown in Fig-
ure 3. GraphCodeBERT (Guo et al., 2020), UniX-
coder (Guo et al., 2022), and CodeT5 (Wang et al.,
2021) incorporate data dependencies of PDG, AST,
and node types of AST, respectively. As a ref-
erence, we also report the result of an encoder-
only based CodeBERT (Feng et al., 2020) and an
encoder-decoder based PLBART (Ahmad et al.,
2021), neither of which utilize the structure-based
representation.

Generally, incorporating structure-based repre-
sentation can boost the performance of NLP4P
tasks. Concretely, UniXcoder performs better on
understanding tasks, while CodeT5 outperforms
others on generation tasks. For program synthesis,
although CodeT5 has the highest BLEU score, it
would be better to use its variant CodeT5+ (Wang
et al., 2023b) or other functionality-oriented models.

6.2. Functionality-oriented Models
Figure 4 shows the p@1 HumanEval results of rep-
resentative functionality-oriented models, including
CodeGen2.5 (Nijkamp et al., 2023), CodeT5+, Star-
Coder (Li et al., 2023b), and Code Llama (Rozière
et al., 2023). We employ a unified “ModelName-
Variant-#Parameter” format to highlight the differ-
ences between models. The suffixes “Python” and
“Instruct” denote the variant that trained on extra
Python data and SFT data, respectively.

Concretely, models in Figure 4 are roughly di-
vided into three groups by the number of param-
eters. There is an increase from the 7B group to
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Figure 4: The p@1 results of functionality-oriented
models on HumanEval benchmark. The two suf-
fixes split by “-” in each model denote a variant and
the number of parameters, respectively.

the 34B group, indicating that model size is the
primary factor for improving functional correctness.
Meanwhile, each “Python” variant significantly out-
performs its “Base” counterpart, which indicates
that constantly learning a specific PL is promising
to gain improvement on the PL.7

7. Future Directions

Taking advantage of both SE and NLP, NLP4P has
achieved remarkable performance. However, some
features of the two fields (e.g., multilingual learning
in NLP) have not been sufficiently explored. Incor-
porating them is expected to further improve the
performance on NLP4P tasks.

7.1. Multilingual NLP4P
As the bloom of the open source software plat-
form, e.g., GitHub, source code, along with their NL
descriptions, has accumulated to a considerable
amount, making it possible to learn a data-driven
NLP4P model. However, the distribution of these
data is highly unbalanced. Most of the NL part is
English, and the PL part is Java and Python. As
a result, the performance of low-resource NL and
PL is much worse than the average performance.
For example, Ruby only takes a minor proportion
in CodeSearchNet dataset and is inferior to other
PL in both code search and comment generation
tasks (Feng et al., 2020).

To bridge the gap between different languages,
the simplest way is to translate a low-resource lan-
guage into its high-resource counterpart. For tasks
whose input is low-resource NL, we can translate
it into English before sending it to the model. For
tasks whose output is low-resource PL, we can first
generate a Java program and subsequently trans-
late it into the desired PL. However, it introduces

7The PL of HumanEval is Python.
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extra effort and cascading errors during the trans-
lation. Multilingual learning approaches (Conneau
et al., 2020; Liu et al., 2020b; Xue et al., 2021) pro-
vide access to address the issue. It can efficiently
utilize the data presented in various languages,
representing them in a unified semantic space and
avoiding cascading errors.

7.2. Multi-modal NLP4P
NL specification may refer to other modalities (e.g.,
figures) for better understanding. For instance, the
“Seven Bridge Problem”, a classical graph problem,
is hard to understand by plain NL descriptions. At
the heart of the multi-modal approaches is the align-
ment of various modalities. However, there is no
such dataset in the area of NLP4P, and annotating
a new one is costly. Therefore, it would be crucial to
utilize the knowledge entailed in the existing multi-
modal datasets (e.g., COCO Lin et al., 2014) and
the language-vision pre-trained models (such as
CLIP Radford et al., 2021, Flamingo Alayrac et al.,
2022, and METALM Hao et al., 2022a).

7.3. Long-Context Code Processing
Distinct from NL, PL has a long-distance depen-
dency across multiple lines and files, which is
hard for conventional NLP approaches to pro-
cess. Potential solutions include (1) hierarchical
approaches (Wu et al., 2021), which break long
documents into segments and then hierarchically
integrate them, and (2) retrieval-augmented ap-
proaches (Zhu et al., 2019; Cai et al., 2022), which
retrieve the most relevant segments to compress
the context.

8. Ethical Considerations

NLP4P techniques can potentially be misused for
creating malicious software or leaking personally
identifiable information. Fortunately, NLP4P itself
can also be employed to detect malicious intent,
e.g., detecting malicious emails with an AUC of
0.99 (Muralidharan and Nissim, 2023). In addition,
NLP4P might potentially reduce the demand for
repetitive programming work. However, it also cre-
ates opportunities for more creative programming
roles, where NLP4P is utilized to augment human
capabilities, rather than replacing them.

9. Conclusion

In this paper, we review a broad spectrum of NLP4P
work. We identify two intrinsic properties of PL:
structure-based and functionality-oriented, which
are at the heart of program understanding and gen-
eration, respectively. They naturally partition the

tasks, datasets, techniques, and models, highlight-
ing the characteristics of each category. Addition-
ally, the structure-based property is the key to the
choice of backbone models, and the functionality-
oriented property is the primary concern of evalua-
tion methods. Through the analysis, we list topics
that have yet to be fully considered and might be
worth researching in the future.
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